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The oxidative addition of a range of robust aryl C–F bonds to a single Al(I) center
supported by a (NacNac)− bidentate ligand ((NacNac)− = [ArNC(Me)CHC(Me)NAr]− and
Ar = 2,6–Pri2C6H3) have been explored by density functional theory calculations. Our
calculations demonstrate that the Al(I) center-mediated C–F insertion generally proceeds
via the concerted mechanism that involve both the donation (nAl → σ∗C−F) and
back-donation (σF(p) → π

∗
Al(p)) interactions. In addition, the predicted free energy barriers

for the C–F bond activation show good agreement with the experimental information
available. Finally, the comparative studies show that B(I) is the most active among group
III metals (B, Al, Ga), thus supplying a testable prediction for experiments.

Keywords: fluorobenzene, NacNacAl, density functional theory, C–F bond, reaction mechanism

INTRODUCTION

In natural organic halides, the fluorinated compounds have relatively low abundance (Harper
et al., 2003), but their importance has been increasingly recognized in pharmaceuticals, advanced
materials, agrochemicals, and polymer chemistry (Hiyama and Yamamoto, 2000; Müller et al.,
2007; Purser et al., 2008; O’Hagan, 2010). This is mainly because the introduction of fluorine
can significantly modify the electron-density distribution in a molecule or a building block,
resulting in a dramatic change in their reactivity and properties, but inducing little effects in their
steric hindrance.

The C–F bond is one of the strongest σ covalent single bonds, and its activation typically
requires the transition metal catalysis (TMs) (Huang et al., 2018; Lin et al., 2019). In last
decades, the functionalization of C–F bonds has received considerable interest, and extensive
efforts have been made to develop various strategies for the C–F activation (Mazurek and
Schwarz, 2003; Panetier et al., 2011; Johnson et al., 2012; Klahn and Rosenthal, 2012; Nova
et al., 2012; Kuehnel et al., 2013). In the transition metal-mediated C–F activations, the strong
repulsion interactions between the d-occupied orbital of TM and the electron-rich F atom
would raise the activation energies for the concerted oxidative addition reactions. As such, the
C–F activation would have a preference for the stepwise manner (Choi et al., 2011), which
usually involves σ-bond metathesis or insertion–elimination reactions during these processes
(Watson et al., 2001; Kraft et al., 2010; Nova et al., 2010).
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In addition to the transition metals, the compounds of the
some main-group elements may have the transition-metal-like
reactivity and catalyze the oxidative addition of the C–F bond
(Jana et al., 2010; Stahl et al., 2013; Swamy et al., 2017; Chu
and Nikonov, 2018). In particular, recent experimental studies
demonstrated that a monomeric Al(I) center supported by the
NacNac− ligand (NacNac−= [ArNC(Me)CHC(Me)NAr]− and
Ar = 2,6–Pri2C6H3) could catalyze the oxidative addition of
the C–F bond (Chu et al., 2015; Crimmin et al., 2015). As
aluminum is non-toxic and the most abundant metal in nature,
Al(I) compound represents a promising strategy for the C–
F activation. In NacNacAl (1), the conjugate bidentate ligand
NacNac− can combine with Al+ through the N→ Al dative
bond, in which HOMO is basically composed of an sp2-like lone
pair occupied orbital at Al, while LUMO+1 is mainly contributed
by the p-type orbital of Al (Scheme 1) (Cui et al., 2000; Schoeller
and Frey, 2013).

Our previous studies show that the aluminum center of
NacNacAl (1), as the N-heterocyclic carbene (NHC) analog, has
similar electronic characters with the transition metal (Zhang
and Cao, 2016). Although the C–F bond activation by the main-
group element centers has been investigated, both experimentally
(Meier and Braun, 2009; Caputo et al., 2013; Stahl et al., 2013;
Chen et al., 2017; Bayne and Stephan, 2019; Pait et al., 2019) and
theoretically (Mondal et al., 2017), the detailed mechanisms for
the oxidative addition of C–F bonds at the Al(I) of NacNacAl (1)
are still largely unknown. Herein, we have performed extensive
density functional theory (DFT) calculations on the C–F bond
activation, and the possible mechanisms for the diversity of
oxidative addition reactions and dependence of the ease of
C–F oxidative addition on the fluorination and position have
been explored.

COMPUTATIONAL DETAILS

For convenience, the aryl C(sp2)–F substrates are labeled as
4, 7, 9, 11, 14, and 18 [Scheme 2 and Figure SI1], while
the intermediates and transition states are labeled as IM1−Y

(IM1−Yiso) and TS1−X (TS1−Yiso), respectively, where Y is
the substrate label (Scheme 2 and Figures 3, 4). The reactant

SCHEME 1 | Schematic drawings for the structure of NacNacAl and its representative molecular orbitals.

complex is labeled as R1−Y, and the corresponding products are
labeled with Y+1, Y+2, etc. for multiple reaction channels.

The geometries of reactants, intermediates, transition states,
and products have been fully optimized by the DFT calculations
with the functionals M06-2X (Zhao and Truhlar, 2008), and
a comparison of structures by experiment and theory with
different functionals is shown in Figure SI2. In particular, based
on previous computational investigations and the evaluation of
functional performance (Zhang and Cao, 2016), several selected
functionals have been used for the aryl C–F bond systems
(Figure SI3).

Frequency calculations at the same level of theory have been
carried out to confirm if the optimized structures are local
minima without any imaginary frequency, or transition states
(TS) with only one imaginary frequency on the potential-energy
surface (PES). The intrinsic reaction coordinate (IRC) (Fukui,
1970, 1981) analysis is used to track the minimum energy path
correlating the transition state with the corresponding reactant
and product. The natural bond orbital (NBO) analysis (Reed
et al., 1988) has been also carried out to further examine the
electronic and bonding properties of the optimized structures.

Here, two different basis sets are considered for all atoms.
The relatively small basis set 6-31G(d) (Hehre et al., 1972; Francl
et al., 1982) (BS1) is used for all of the geometry optimizations
and frequency calculations, and the larger 6-311+G(d,p) basis
set (BS2) is used for the single-point calculations with the
SMD solvation model for estimation of the solvent effect of
benzene (Marenich et al., 2009). The corrections of Gibbs
free energy and zero-point energy (ZPE) from the gas-phase
frequency calculations are used to determine the relative reaction
energetics. In consideration of overestimation of the entropic
effect from the gas-phase calculation, a correction of −2.6
(2.6) kcal/mol (Benson, 1982) (at T = 298.15K) was applied
to calibrate the relative free energies for the reaction step
with the molecular number ratio of reactant to product of
2:1 (or 1:2) according to the free volume theory and previous
theoretical calculations (Schoenebeck and Houk, 2010; Ariafard
et al., 2011; Liu et al., 2012; Wang and Cao, 2013). Here, all
calculations have been performed by the Gaussian 09 program
(Frisch et al., 2009).
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RESULTS AND DISCUSSION

Herein, NacNacAl (1) catalyzed oxidative addition of the aryl
C–F bonds from various fluorobenzene derivatives has been
investigated (see Scheme 2). In particular, substrates 4, 7, and
18 have been studied in experiments. For comparison, we
also considered additional fluorobenzene derivatives 9, 11, and
14 in this study. It is seen from Scheme 2 that the reaction
conditions for the C–F activation in substrate 7 is much harsher
than that in substrate 18, suggesting that substrate 18 is much
more reactive than substrate 7. Based on DFT calculations,
the predicted relative energies are collected in Table SI1. The
Cartesian coordinates of all molecules, intermediates, and

transition states for their optimized structures are compiled
into Table SI2.

Addition of the Aryl σ C–F Bond
NacNacAl (1)-mediated oxidative additions of the aryl C–F
bonds in 4, 7, 9, 11, 14, and 18 have been explored.

Figure 1 shows the optimized structures of complexes
of NacNacAl (1) with substrates 4 and 7; the optimized
structures for other substrates are summarized in the Supporting
Information (Table SI2). Note that F atoms from the substrates
maintain a long distance with the Al center, but a relatively short
distance with methyl H atoms. All these suggest that interactions

SCHEME 2 | C–F addition reactions of NacNacAl (1) complex with the fluorinated benzenes. 4, 7, and 18 are from experiments, while the additional fluorobenzenes 9,
11, and 14 are also considered in this study.

FIGURE 1 | Optimized structures of reactant complexes of NacNacAl (1) with the trifluorobenzene derivatives (4 and 7). For clarity, only the key atoms are highlighted
with the ball-and-stick model.
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betweenNacNacAl (1) and substrates are dominated by C–H···F-
type H-bond interactions (Saha et al., 2018). For substrate 4,
two binding conformations (IM1−4 and IM1−4iso) are located
in calculation, which would lead to two distinct products as
observed in experiments (Scheme 2).

Considering that the electronic structure of the Al(I) center
in NacNacAl (1) resembles that of a transition metal (Cui et al.,
2000; Schoeller and Frey, 2013), the NacNacAl (1)-mediated
oxidative addition reactions may proceed via the concerted
insertion mechanism. Indeed, the concerted insertion transition

FIGURE 2 | Proposed mechanism for the C–F bond activation (A) and the optimized transition-state structure for the C–F activation of substrate 4 (B, bond lengths in
Å) in reactions R1−4.

FIGURE 3 | The predicted relative free energies and energies [1G(1E) in kcal/mol, the same below] here (the ZPE correction was included in relative energy in
parentheses) for these oxidative additions are calculated by the M06-2X approach. The reactions of 1 with 4 and 11 produce two isomers 5, 6, and 12, 13.
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states have been located for all fluorobenzene substrates in this
study (Figure SI4). Figure 2 presents the mechanism and the
representative transition state structures for the C–F activation
of substrate 4.

It is seen from Figure 2B that NacNacAl (1)-mediated
oxidative C–F addition involves a transition state of the three-
membered ring structure TS1−4, in which the Al–F and C–
F distances are 2.04 and 1.49 Å, respectively. It was found
that the C–F bond can be efficiently activated by the donation
(nAl → σ

∗
C−F) and back-donation (σF(p) → π

∗
Al(p)) interactions

(Figure 2A) (Schoeller and Frey, 2013). In contrast to transition
metals (Clot et al., 2011), the Al center in NacNacAl (1) has
the additional empty p-orbital, which renders the donation
(nAl → σ

∗
C−F) and back-donation (σF(p) → π

∗
Al(p)) interactions

simultaneously, thus resulting in the concerted mechanism for
the C–F bond insertion reactions. The predicted free energy
barrier for substrate 4 is 26.1 kcal/mol relative to 1 + 4, and this

reaction is remarkably exothermic, with the Gibbs free energies
of the reaction 1G of −91.9 kcal/mol (298.15K). The C–F
bond insertion reaction leads to the formation of the fluorinated
species NacNacAlF(C6H3F2) (O’Hagan, 2010), in which the Al
center has been converted to sp3 hybridization, from the initial
sp2 hybridization.

Figure 3 compares the calculated relative energy profiles for
all the fluorinated benzene substrates. We note that substrate
18 has the lowest overall free energy barrier (1G6= = 19.5
kcal/mol) among these substrates, indicating that it is the most
reactive. This is in accordance with the experimental findings
(Scheme 2). For substrates 4 and 7, the calculated lowest free
energy barriers are 24.1 and 26.6 kcal/mol, respectively. The
predicted reactivity order 18> 4> 7 is indeed in good agreement
with experiments. In addition, our calculations predict that
substrates 9 and 11 have similar reactivity with 4 and 7,
as all these substrates have similar free energy barriers for

FIGURE 4 | The predicted relative free energies and energies [1G(1E) in kcal/mol]. Optimized transition-state structures involved in the oxidative additions of
1,2,4,5-tetrafluorobenzene (Choi et al., 2011) to the NacNacAl (1), NacNacB (1B), and NacNacGa (1Ga) by M06-2X.
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C–F activation. For comparison, we also considered the C–
F activations of other isomers of 4 and 11 (20 and 24 in
Figure SI5), and the calculated lowest barriers are 26.8 kcal/mol
for 20 and 24.5 kcal/mol for 24 (Figure SI6). It was found that
the predicted reactivities for the C–F activation are correlated
with the C–F bond strength of different substrates. Among all
these substrates, 18 has the lowest bond dissociation energy
(BDE = 122.4 kcal/mol, Figure SI5), while 7 has the highest
bond dissociation energy (BDE = 126.5 kcal/mol). These BDE
values show good correlations with the predicted reactivity of
18 and 7.

As B and Ga atoms in Group III have similar electronic
configurations with Al, we also compared their performance
in C–F activation. Figure 4 summarizes the calculated energy
profiles for C–F activation of 14 by NacNacAl (1), NacNacB (1B),
and NacNacGa (1Ga) (Asay et al., 2011). For NacNacAl (1), we
have compared C–F activations at three different positions: para-
, meta-, and ortho-positions, and the calculated barriers are 20.6
(TS1−14), 23.7 (TS1−14ortho), and 23.1 kcal/mol (TS1−14meta),
respectively. All these indicate that the C–F bond at the para-
position is the most active. As such, all the NacNacB (1B)-
and NacNacGa (1Ga)-mediated C–F activations occur at the
para-position. It is seen from Figure 4 that the calculated
barriers for the para C–F activation are 20.6 kcal/mol for
NacNacAl (1), 10.8 kcal/mol for triangle singlet transition
state NacNacB (1B), and 24.7 kcal/mol for NacNacGa (1Ga),
indicating that the electron-deficient compound 1B has the
highest reactivity toward C–F activation. Among these three
elements, the B atom has the smallest atomic radius (Kutzelnigg,
1984), which results in stronger σ donor interactions than Al
and Ga atoms. Meanwhile, we found that the ground state of
NacNacB (1B) is actually the triplet state, instead of the singlet
state as in NacNacAl (1) or NacNacB (1Ga). In the triplet
state, we located both the linear and the triangle transition
states that are characterized as “diradical” TS; the calculated
barriers are 33 and 19.9 kcal/mol, respectively (Figures SI7, SI8).
Clearly, the triangle transition state in the closed shell singlet
state, with a barrier of 10.8 kcal/mol (Figure 4), is preferred

over all other pathways (Table SI1). As such, we located
a two-state reactivity for the NacNacB (1B)-mediated C–
F activations.

CONCLUSIONS

Extensive density functional calculations have been used to
explore the oxidative additions of robust σ C(sp2)–F bonds
to the Al(I) center, and plausible reaction mechanisms and
optimized structures of reactants, intermediates, transition states,
and products have been predicted. Our calculations demonstrate
that all Al(I) center-mediated C–F insertions proceed via the
concerted mechanism, which is governed by both the donation
(nAl → σ∗C−F) and back-donation (σF(p) → π

∗
Al(p)) interactions.

All the calculated C–F insertion mechanisms resemble that of the
conventional transition-metal-like catalysis, and the predicted
free energy barriers show good agreement with experiments.
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