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Chromosome-shortening is characteristic of normal cells, and is known as the end
replication problem. Telomerase is the enzyme responsible for extending the ends of the
chromosomes in de novo synthesis, and occurs in germ cells as well as most malignant
cancers. There are three subunits of telomerase: human telomerase RNA (hTERC),
human telomerase associated protein (hTEP1), or dyskerin, and human telomerase
reverse transcriptase (hTERT). hTERC and hTEP1 are constitutively expressed, so
the enzymatic activity of telomerase is dependent on the transcription of hTERT.
DNA methylation, histone methylation, and histone acetylation are basic epigenetic
regulations involved in the expression of hTERT. Non-coding RNA can also serve as
a form of epigenetic control of hTERT. This epigenetic-based regulation of hTERT
is important in providing a mechanism for reversibility of hTERT control in various
biological states. These include embryonic down-regulation of hTERT contributing to
aging and the upregulation of hTERT playing a critical role in over 90% of cancers.
Normal human somatic cells have a non-methylated/hypomethylated CpG island within
the hTERT promoter region, while telomerase-positive cells paradoxically have at least
a partially methylated promoter region that is opposite to the normal roles of DNA
methylation. Histone acetylation of H3K9 within the promoter region is associated
with an open chromatin state such that transcription machinery has the space to
form. Histone methylation of hTERT has varied control of the gene, however. Mono-
and dimethylation of H3K9 within the promoter region indicate silent euchromatin,
while a trimethylated H3K9 enhances gene transcription. Non-coding RNAs can target
epigenetic-modifying enzymes, as well as transcription factors involved in the control of
hTERT. An epigenetics diet that can affect the epigenome of cancer cells is a recent
fascination that has received much attention. By combining portions of this diet with
epigenome-altering treatments, it is possible to selectively regulate the epigenetic control
of hTERT and its expression.

Keywords: human telomerase reverse transcriptase (hTERT), epigenetics, DNA methylation, histone acetylation,
histone methylation, non-coding RNA

Frontiers in Genetics | www.frontiersin.org 1 May 2016 | Volume 7 | Article 83

http://www.frontiersin.org/Genetics/
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://dx.doi.org/10.3389/fgene.2016.00083
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3389/fgene.2016.00083
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2016.00083&domain=pdf&date_stamp=2016-05-09
http://journal.frontiersin.org/article/10.3389/fgene.2016.00083/abstract
http://loop.frontiersin.org/people/295154/overview
http://loop.frontiersin.org/people/32372/overview
http://www.frontiersin.org/Genetics/
http://www.frontiersin.org/
http://www.frontiersin.org/Genetics/archive


fgene-07-00083 May 5, 2016 Time: 17:20 # 2

Lewis and Tollefsbol Telomerase Reverse Transcriptase Epigenetic Regulation

INTRODUCTION

Telomeres are DNA sequences that cap the ends of chromosomes
in order to compensate for the end-replication problem. This
end-replication problem is the result of DNA polymerase being
unable to reach the end of the lagging strand of chromosomes
during DNA replication. Because DNA polymerase cannot
reach the end of the chromosomes, hundreds of base pairs
are lost each round of replication. Telomeres protect the
chromosomes from degradation and damage, and they are
necessary for cell proliferation. In mammals, telomeres consist
of a six nucleotide tandem repeat, 5′-TTAGGG-3′ (Moyzis
et al., 1988). The ribonucleoprotein enzyme telomerase consists
of three subunits that are responsible for extending the
telomeric repeats (Cohen et al., 2007). Human telomerase RNA
(hTERC) and dyskerin are constitutively expressed in cells,
but the third subunit, known as human telomerase reverse
transcriptase (hTERT), is the limiting factor in telomerase
functionality (Shay and Bacchetti, 1997; Li et al., 2003).
During each round of mitosis, in the absence of telomerase,
approximately 300 base pairs of DNA are lost from the ends
of the chromosomes. When telomeres become critically short
the cells enter cellular senescence or die via the apoptotic
pathway.

Human telomerase reverse transcriptase is under strict
transcriptional control in most somatic cells, but this
transcriptional control appears to be relaxed in cancer cells,
germinal cells, and other self-renewing tissues (Liu et al., 2004).
hTERT is the major catalytic subunit for human telomerase,
and it specifically facilitates the addition of nucleotides to the
3′ end of a telomere (Nugent and Lundblad, 1998). The reverse
transcriptase portion of TERT is highly conserved between
species, and mutations to this portion result in loss of function
(Lingner et al., 1997). The presence of aspartate residues gives
the hTERT subunit an overall negative charge, which can lead
to recruitment of metal ions for stabilization. This feature is
common in reverse transcriptase enzymes, as the metal ions
aid in nucleotide addition (Steitz, 1998). Aberrant expression
of hTERT in cancer cells provides a means for escaping cellular
senescence and death.

Telomerase activity is regulated by mechanisms that affect
its catalytic activation. Forced expression of TERT is generally
enough to induce enzyme activation, and senescence can
be bypassed. In many cancers, up-regulating TERT mRNA
expression and down-regulating tumor suppressor genes such
as Rb and p16 can achieve immortality (Wright et al., 1989).
Approximately 90% of all human cancers contain an increased
level of telomerase (Figure 1), and understanding the epigenetic
regulation of the gene that encodes for the TERT subunit provides
a mechanism for controlling its expression (Kim et al., 1994).

The field of epigenetics provides a modified approach
for transcriptional control. There are four major epigenetic
mechanisms for gene regulation: DNA methylation, histone
acetylation, histone methylation, and non-coding RNA. DNA
methylation involves modifying cytosine into 5′-methylcytosine
within CpG sites. These CpG sites may cluster as CpG islands,
which occur within greater than 50% of gene promoters (Vavouri

FIGURE 1 | Stylistic depiction of general trends in human telomerase
reverse transcriptase (hTERT) gene expression and telomere length
during embryogenesis, senescence, and cancer. hTERT gene expression
is elevated in embryo development and initial differentiation, but is nearly lost
in somatic cells and replicative senescence whereas in tumor cells there is a
reactivation of hTERT. Telomere length is stable in embryonic stem cells and
germline cells, but telomeres begin to shorten during embryonic development
until cells reach senescence and crisis. Aberrant reactivation of telomerase
activity in cancer allows cells to escape crisis and achieve indefinite
proliferation despite telomeres being notably shorter. One explanation for
decreased telomere length despite increased hTERT expression is that
telomerase cannot keep up with the highly proliferative state of cancer cells
(Levy et al., 1992; Tollefsbol and Andrews, 2001).

and Lehner, 2012). Generally DNA methylation is associated with
gene repression by preventing activating transcription factors
from binding to the DNA. DNA methylation can act as an
activator when avoiding the binding of repressors, though (Wan
and Bartolomei, 2008). DNA methylation of CpG islands within
the promoter is associated with repression, while tissue-specific
methylation occurs at CpG ‘shores,’ where there’s a lower CpG
density close to the CpG islands. In general, CpG islands are
non-methylated in normal cells. Within gene bodies, methylation
of expressed genes probably prevents incorrect transcriptional
initiation (Barter et al., 2012). Histone acetylation of H3 and
H4 is associated with euchromatin, and the acetylation of these
histones proximal to a promoter region is associated with
gene expression (Schübeler et al., 2004; Vaissiére et al., 2008).
Methylation of histones generates a varied response based on
the amount of methyl groups added, and to which lysine residue
they are added. They can be an indicator of heterochromatin
or of active gene transcription. Non-coding RNAs are associated
with carcinogenesis through interaction with oncogenes, and by
down-regulating tumor suppressors, usually through interaction
with the 3′UTR of the mRNA (Gaur et al., 2007; Bartel, 2009).
Together these epigenetic gene regulators influence hTERT gene
expression.

ORGANIZATION OF THE hTERT
PROMOTER

The hTERT gene is comprised of 16 exons and 15 introns,
spanning ∼35 kb on chromosome 5p15.33 (Bryce et al., 2000).
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By performing deletion mutagenesis and DNA footprinting it
was determined that the promoter region spans from 330 bp
upstream of the transcription start site to the second exon
(Cong et al., 1999). Promoter activity correlates with telomerase
activity, and therefore justifies the assumption that regulation of
telomerase is mainly at the transcriptional level.

Takakura et al. (1999) cloned the 5′ promoter region of
the hTERT gene for the first time in order to map sites of
transcription factors. The proximal 260 bp region is identified as
the core promoter region, specifically for cancer transcriptional
activity. E-boxes, which are binding sites for c-Myc and Mad1,
are found at −165 and +44. The consensus sequence of the
E-box is 5′-CACGTG-3′. When bound by c-Myc these are key
activators for transcription, while Mad1 binds antagonistically
to c-Myc at the E-boxes, and serves to suppress hTERT gene
activity (Tollefsbol and Andrews, 2001). Myc-expressing cells
have telomerase activity comparable to that of cancerous cells
(Wang et al., 1998). Also present within the core hTERT
promoter are GC-boxes, which are binding sites for Sp1
transcription factor. Sp1 can interact with c-Myc and stimulate
telomerase expression through the transcriptional ability of
MBD1-containing chromatin-associated factor 1 (MCAF1) (Liu
et al., 2007, 2008; Kyo et al., 2008). Further involvement of
Sp1 and hTERT expression are explored in Daniel et al. (2012).
Mutations in any of the five GC-boxes reduce core promoter
activity (Kyo et al., 2008). Other key binding sites found in
the hTERT promoter include AP1, which binds the Jun/Fos
dimer as a transcriptional repressor, AP-2, which shows tumor-
specific hTERT upregulation, and HIF-1, which upregulates
hTERT expression in hypoxic events. Mutations that generate
an ETS binding site play a role in increasing hTERT promoter
activity (Huang et al., 2015).

Upstream of the core promoter are a high concentration
of binding sites for transcription factors as well as hormone
response elements. Estrogen and progesterone receptor binding
sites are included in this region, which play a large role in
telomerase modulation for certain cancers, such as those of
the prostate and breast. Other upstream promoter elements
may contribute to the regulation of hTERT, just in different
cells and/or growth conditions (Cong et al., 1999). For a basic
schematic of the hTERT promoter region see Figure 2.

DNA METHYLATION AND hTERT
EXPRESSION

The epigenetic process of DNA methylation is crucial in gene
expression. Methylation occurs genome-wide at CpG sites,
usually in non-coding regions, and clusters of CpG sites form
islands. These islands tend to be unmethylated and located within
gene promoters. There are several DNA methyltransferases
(DNMTs) that catalyze the methylation of DNA. These include
DNMT3A, DNMT3B, and DNMT1 (Ting et al., 2006). DNMT3A
and B are involved in de novo methylation while DNMT1 is
responsible for the methylation of hemimethylated DNA during
the replication process (Irvine et al., 2002). The loss of DNMT3A
impairs hematopoietic stem cell (HSC) differentiation, while
the loss of DNMT3B results in hypomethylation of certain
gene promoters (Challen et al., 2011; Micevic et al., 2016). The
hypomethylation of DNMT3B can activate the transcription of
microRNAs involved in tumorigenesis.

Canonically DNA methylation is associated with gene
silencing. Cancer cells experience variations in DNA methylation
status, where the CpG sites often become hypomethylated,
and some CpG islands are prone to hypermethylation. This
hypermethylation is associated with gene silencing of tumor
suppressors such as p16 and hMLH1 (a part of DNA mismatch
repair) (Merlo et al., 1995; Herman et al., 1998; Li et al.,
2013; Feng et al., 2015). hTERT is an exception to this rule,
though, considering that the majority of the hTERT promoter
region contains hypermethylated CpG islands in most cancer
cells where it is expressed. Methylation status can vary among
cell lines. Previous studies determined that CpG methylation
correlated inversely with gene expression, but partial methylation
of the hTERT promoter could exist in telomerase-positive cells
(Dessain et al., 2000). Hypermethylation decreases the affinity
of transcriptional activators for the hTERT promoter region,
while hypomethylation allows for binding of transcriptional
repressors.

For the hTERT promoter, though, this hypermethylated state
can prevent transcriptional repressors from binding, such as
CTCF. CTCF binds to the first exon of hTERT when the CpG
island is not methylated (Renaud et al., 2007). This repression
of CTCF binding is well reported in the H19/IGF2 cluster (Wan

FIGURE 2 | The promoter region of hTERT. Included are the binding sites for common transcription factors in the proximal region, and estrogen receptor in the
upstream region. Transcription start site is indicated, and translational start occurs at the ATG present at +1 (Cong et al., 1999; Zinn et al., 2007).
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and Bartolomei, 2008). The active hTERT promoter is non-
methylated at the 11th, 12th, 19th and 27th CpG sites (Choi et al.,
2010). These sites of non-methylation are the binding sites for
three activators: two SP1 molecules at sites 11, 12, and 19, and
one c-Myc protein at site 27 (Figure 2). There are three regions
within the hTERT promoter for methylation analysis. Upstream
region from −650 through −400 is considered BS−1, −400
through −150 BS−2, and −150 through +150 is considered
BS−3 (with +1 being ATG) (Figure 2). Colon cancer cell lines
Caco-2 and RKO experience dense methylation in both BS−1
and BS−2, while they only experience partial methylation in
BS−3. SW480 colon cancer cells and MCF-7 breast cancer cells
experience similar methylation patterns. HCT116 colon cancer
cells and H209 lung cancer cells are densely methylated in
BS-1 and BS-2, but are completely non-methlyated in BS-3.
MDA-MB-231 breast cancer cells experience few non-methylated
alleles in BS-3, and are densely methylated in BS-1 and BS-
2. MDA-MB-435 breast cancer cells and H82 lung cancer cells
are densely methylated in BS-1, slightly methylated in BS-2,
and partially methylated in BS-3. Despite varying methylation
patterns within these regions, all of the studied cell lines show
some degree of non-methylation in BS-3 where the transcription
start site is located (Zinn et al., 2007). Despite MDA-MB-231
cells showing increased methylation in BS-3 there must be some
present in order for the transcription machinery to bind. hTERT
promoter methylation can be heterogeneous, and some alleles
lack methylation around transcription start site (Renaud et al.,
2007).

The degree to which the hTERT promoter is methylated
plays a role in carcinogenesis. There is a strong association
between hTERT hypermethylation and gastric cancer, but not
between hypermethylation and hTERT expression (Gigek et al.,
2009). This same result was observed in cervical cancer, as
well as ovarian cancer (Widschwendter et al., 2004; Oikonomou
et al., 2007). For other cancer types, such as B-cell lymphocytic
leukemia, colorectal, and pancreatic cancers the level of hTERT
methylation impacts telomerase activity (Bechter et al., 2002;
Choi et al., 2007; Kumari et al., 2009). Both DNA methylation and
histone modification appear to play a role in hTERT regulation in
hepatocellular carcinoma (Iliopoulos et al., 2009). The multiple
methods of hTERT regulation and control are proof that other
factors play a key role in telomerase activity.

Various antitumor agents utilize the fact that the hTERT
promoter region is hypermethylated in most tumor cells.
Trichostatin A (TSA) is a histone deacetylase (HDAC) inhibitor.
Transcriptionally active genes in normal human cells treated
with TSA will reactivate hTERT, but in cancerous cells TSA
represses the expression of hTERT. This indicates that hTERT
is under other epigenetic controls. Several CpGs within the
hTERT promoter become non-methylated upon treatment
with TSA. The HDAC inhibitor deacetylates the histones of
the DNMT1 gene and decreases its transcription (Figure 3)
(Choi et al., 2010). The non-methylation associated with
TSA treatment results in the opening of CTCF binding
sites, and the transcriptional repression of hTERT (Ou et al.,
2007). Initial methylation status does play a role in TSA
effects, though. Cell lines with partially demethylated or

FIGURE 3 | The effects of TSA on CpG island methylation within the
hTERT promoter region. By treating cancer cells with TSA, and in return
down-regulating DNMT1, the CpG islands within the hTERT promoter are
demethylated. This demethylated status allows for the binding of
transcriptional repressor CTCF.

non-methylated CpGs within the hTERT promoter do not
undergo down-regulation associated with TSA treatment (Choi
et al., 2010).

5-aza-2′-deoxycytidine (5-azadC) is a common DNA
demethylating agent involved in the reexpression of hTERT in
hTERT-negative cells. Demethylation by 5-azadC restores the
binding capability of CTCF to the first exon of hTERT and E2F-1
to the promoter. Therefore, one of the main roles of hTERT
methylation is probably to prevent binding of the CTCF and
E2F-1 repressors and permit transcription (Kitagawa et al., 2000;
Crowe et al., 2001; Guilleret and Benhattar, 2003; Kumakura
et al., 2005; Renaud et al., 2007). Hypermethylation of the hTERT
promoter during senescence is linked to diminished telomerase
activity, as well as hTERT mRNA expression. Exposing these cells
to 5-azadC restores hTERT expression (Shin et al., 2003).

Certain proliferative somatic cells experience telomerase
activity, such as the colorectal crypts, gastric cells, and
endometrial cells. Colorectal cancer cells experience a higher
level of methylation within the hTERT promoter. Lower
methylation within a tumor cell hTERT promoter correlated to
shorter telomeres and lower telomerase activity (Valls-Bautista
et al., 2011). Colorectal tumors with a high degree of hTERT
promoter methylation revealed high telomerase activity. hTERT
promoter methylation is required for hTERT expression, and thus
telomerase activity. For the normal proliferative colorectal cells,
though, hTERT methylation is not sufficient to sustain telomerase
activity. Aberrant methylation of CpG islands within the hTERT
promoter in addition to a large change in telomerase activity
occurs in tumor cells (Kim et al., 2006).

Frontiers in Genetics | www.frontiersin.org 4 May 2016 | Volume 7 | Article 83

http://www.frontiersin.org/Genetics/
http://www.frontiersin.org/
http://www.frontiersin.org/Genetics/archive


fgene-07-00083 May 5, 2016 Time: 17:20 # 5

Lewis and Tollefsbol Telomerase Reverse Transcriptase Epigenetic Regulation

A partially methylated hTERT minimal core promoter along
with a methylated exon 1 in vitro exhibits similar levels of hTERT,
as seen in human cancers. Tissue-specific factors play a role in
the expression of hTERT aside from the methylation status, based
on the variation in methylation among cancer cell lines and
highly proliferative cells. For example, in adult gliomas, DNA
methylation appears to be an alternative mechanism for TERT
upregulation behind mutations, while pediatric brain tumors
experience DNA hypermethylation of the TERT promoter (Arita
et al., 2013; Castelo-Branco et al., 2013). Consistent with the
pediatric study, there was an increase in hTERT promoter
methylation in adult pituitary adenomas (Köchling et al., 2016).
This further demonstrates variation in methylation status among
age group and cancer type.

Hydroxymethylation is a transition product for the active
loss of methylated DNA, as seen in the comparisons between
pluripotent and differentiated cells (Baylin and Jones, 2011).
Hydroxymethylation (5′hydroxymethylcytosine, 5 hmC) was
first described Kriaucionis and Heintz (2009) and Tahiliani
et al. (2009) as the intermediary between methylated and
non-methylated DNA. The 10–11 translocation (TET)
proteins are responsible for converting 5-methylcytosine to
5-hydroxymethylcytosine, as well as further oxidations to
5-formylcytosine and 5-carboxylcytosine. 5 hmC is linked to
transcriptionally active genes and enhancer regions associated
with these genes. In this same mechanism, 5 hmC can also
be linked to insulator regions, and therefore, transcriptional
repression. The TET proteins are responsible for both the
activation and repression associated with 5 hmC (Wu and
Zhang, 2011). Further mechanisms behind 5 hmC are supported
in Dawson and Kouzarides (2012). 5 hmC is highly tissue-specific
in normal cells, and the same can be expected for cancerous cells.
TET mutations in conjunction with deregulation of epigenetic
modifiers can prevent any sort of pattern forming in sites of
DNA methylation (Dolnik et al., 2012; Jeschke et al., 2016).

HISTONE MODIFICATION EFFECTS ON
hTERT EXPRESSION

Histones are responsible for chromatin organization with the
nucleus of cells. Affecting the charges on the amino acid tails
of the histones can change the affinity of the histones for the
associated DNA. Histone tail modifications include acetylation,
methylation, phosphorylation, and ubiquitination (Jenuwein and
Allis, 2001). Most commonly, methylation at lysine 4 on histone
3 (H3K4) and hyperacetylation of histones are associated with
active gene transcription, and typically unmethylated DNA.
Methylation at lysine 9 and lysine 27 on histone 3 (H3K9 and
H3K27) and hypoacetylation are associated with inactive and
typically hypermethylated DNA.

Cancer cell lines experience an enrichment of acetyl-
H3K9 and dimethyl-H3K4. These are marks for active gene
transcription. In contrast, trimethyl-H3K9 and H3K27 are
depleted in cancer cells, and are marks for inactive gene
transcription. Me-H3K9 (methylated lysine 9 on histone 3) is
expressed the lowest in cell lines expressing high levels of hTERT.

Traditionally repressive Me-H4K20 is observed in similar levels
between normal fibroblasts and hTERT-expressing tumor cells,
which means that this modification must have an additional role
other than gene repression. Tumor cells expressing the highest
levels of hTERT also express the highest levels of AcH3, AcH4,
and Ac-H3K9. Me-H3K4 is also higher in hTERT-expressing
tumor cells (Liang et al., 2004; Atkinson et al., 2005). These
modifications are tightly linked to the promoter sequences and
are related to either gene expression or repression.

Human telomerase reverse transcriptase expression can be
reactivated by treatment with HDAC and DNMT inhibitors like
TSA and 5-azadC, respectively, depending on the cell context.
Together these compounds can maintain histone acetylation and
DNA demethylation (Cong and Bacchetti, 2000). Telomerase
reactivation in telomerase-negative cells can be achieved by
chromatin remodeling, such that the promoter region of hTERT
is more accessible. Myc:Max complexes activate transcription by
binding to E-boxes, but these sites are often being competed for
by the Mad:Max repressor complex. Mad represses the hTERT
promoter through the interaction of HDACs (Laherty et al.,
1997). This complex can be repressed, though, by chromatin
condensation through HDAC inhibitors (Cong and Bacchetti,
2000).

SET and MYND domain-containing protein 3 (SMYD3) is
a H3K4-specific dimethyltransferase and trimethyltransferase
that plays an important role in oncogenesis, as noted by its
upregulation in colorectal carcinoma, hepatocellular carcinoma,
and breast cancer (Tsuge et al., 2005; Hammamoto et al.,
2006). SYMD3 activates transcription by interacting with its
binding motif 5′-CCCTCC-3′ within the promoter region of
its target genes, then dimethylating or trimethylating H3K4.
The methylated histone increases accessibility of DNA to
transcription machinery (Hammamoto et al., 2004). There are
five potential SMYD3 binding sites present within the core hTERT
promoter. A highly trimethylated H3K4 is associated with an
actively transcribed hTERT gene in telomerase-positive tumor
cells (Atkinson et al., 2005). By knocking down SMYD3 with
siRNA, there was a significant reduction in hTERT mRNA in
colorectal carcinoma HCT116 cells, hepatocellular carcinoma
Hep3B cells, and Hodgkin’s lymphoma L1236 cells. Two of
the SYMD3 binding sites were important for transcription of
hTERT. Upon knocking down SMYD3, H3K4 trimethylation
was abolished in the core promoter, which indicates SMYD3’s
responsibility for H3K4 trimethylation specifically within the
hTERT promoter. Associated with transcriptional repression due
to the knockdown of SMYD3 is the inability of both c-Myc
and Sp1 to bind the promoter (Guccione et al., 2006; Liu et al.,
2007). H3K4 trimethylation is crucial in permitting chromatin
accessibility by transcription factors. It is also proposed that
E2F-1, a transcriptional repressor of hTERT, is involved in
the transcriptional activation of SMYD3. The presence of
E2F-1 activates SMYD3, which in turn compensates for the
inhibitory effect of E2F-1 on the hTERT promoter (Tsuge et al.,
2005).

As aforementioned, Trichostatin A (TSA) is a HDAC inhibitor
involved in the activation of the hTERT promoter. Sp sites within
the hTERT promoter may be important for the HDAC-mediated
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transcriptional repression within normal human somatic cells.
By mutating these sites promoter activity is increased, and there
is a decrease in TSA-responsiveness. Endogenous Sp1 and Sp3
are tightly associated with HDAC within the hTERT promoter
of normal human somatic cells. TSA may convert the Sp1
and Sp3 sites within the promoter from repressor to activator
sites through preventing the normally associated HDAC activity
(Won et al., 2002). Histone deacetylation is a factor largely
responsible for the repression of the hTERT within normal
human somatic cells (Xu et al., 2000). Many HDAC inhibtors and
demethylating agents, including TSA are responsible for down-
regulating hTERT in leukemia cells on an epigenetic level (Sui
et al., 2013).

Suberoylanilide hydroxamic acid (SAHA), clinically known as
vorinostat, is also a HDAC inhibitor (Bouchain and Delorme,
2003). It has various anticancer affects, and is clinically approved
for the treatment of cutaneous T-cell lymphoma (CTCL) by
inducing apoptosis (Zhang et al., 2005). SAHA can also induce
cell cycle arrest and inhibition of differentiation in cancer cells
(Munster et al., 2001; Arnold et al., 2007). SAHA has an indirect
effect on the methylation status of the hTERT promoter via down-
regulation of DNMT1 and DNMT3b, and, therefore, induces
demethylation of the CpGs in non-small cell lung cancer cells (Li
et al., 2011).

Sirtuin 1 (SIRT1) is an NAD-dependent deacetylase involved
in telomeric maintenance, and may act as a tumor promoter
or suppressor depending on the type of cancer in which it is
implemented (Fang and Nicholl, 2011). SIRT1 is elevated in
prostate tumors and hepatocellular carcinomas (Huffman et al.,
2007; Chen et al., 2011, 2012; Choi et al., 2011). SIRT1 does
not regulate hTERT through the proximal promoter, it did not
regulate hTERT through the 3′UTR, and it may not affect hTERT
expression through CpG island methylation. Based on this
information, SIRT1 interacts with transcription factors associated
with the hTERT promoter. Depletion of SIRT1 is associated
with H3K9 acetylation and reduction of H3K9 trimethylation

of the hTERT promoter (Zhang et al., 2014). SIRT1 physically
interacts with the C-terminus of c-Myc and deacetylates it.
This deacetylation causes c-Myc to associate with Max, thus
facilitating its activity on the hTERT promoter (Mao et al.,
2011).

NON-CODING RNA AND hTERT

Non-protein coding RNA molecules are a rapidly growing class
of RNA molecules that regulate the activity of specific mRNA.
MicroRNAs (miRNAs) are approximately 18–25 nucleotides
in length, and expression is strongly associated with disease
progression, including cancers (Kala et al., 2013). These miRNA
molecules can be used as diagnostic and prognostic biomarkers in
cancer type and progression (Grady and Tewari, 2010). miRNA is
generated in a complicated process (Figure 4), and can be found
not only in the introns or exons of genes, but also in intergenic
sequences (Bartel, 2004). Deregulation of these non-coding RNAs
has the ability to contribute to cancer formation by acting with
oncogenes and/or down-regulating tumor suppressors (Gaur
et al., 2007). Usually miRNAs play an important role in post-
transcriptional regulation of target genes by binding recognition
sites in the 3′ untranslated regions (3′UTRs) of transcripts,
specific base pair sequences within the 5′UTRs, and ORFs (Bartel,
2009).

miRNAs have the ability to regulate the expression of
epigenetic-modifying enzymes involved in carcinogenesis, as well
as genes that play a role in chemoresistance (Guil and Esteller,
2009). Specific non-coding RNA interaction with hTERT has
been found in multiple types of cancers. The miRNA profile is
different for each cell type, but miR-491-5p has been shown to
be involved in the initiation and progression of multiple tumor
types, including cervical cancer. It is down-regulated in cervical
cancer, and enforced expression of miR-491-5p significantly
inhibited proliferation through targeting hTERT (Zhao et al.,

FIGURE 4 | Generation of ncRNA can occur from specific genes (as seen above), or by modification of excised introns. The method depicted above
involves initial transcription of the gene into pri-miRNA, followed by cleavage into pre-miRNA by the enzymes Drosha and Pasha. Exportins move the pre-miRNA into
the cytoplasm, where the enzyme Dicer removes the hairpin loop in order to generate the final miRNA product. This product can act alone or be incorporated into an
enzyme complex.
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2015). miR-1182 modulates hTERT protein levels by binding the
open reading frame of hTERT mRNA between 2695 and 2719
within different types of gastric cancer cells. Upon examining
tissues of patients with gastric cancer, there was an inverse
correlation between miR-1182 and hTERT, which shows miR-
1182 as a potential treatment of gastric cancer (Zhang et al., 2015).
miR-1207-5p and miR-1266 also target hTERT within gastric
cancers, and are significantly repressed in gastric cancer tissue
samples (Chen et al., 2014). Overexpression of miR-138 induced
a reduction in hTERT protein expression by interation with the
3′UTR in anaplastic thyroid carcinoma (ATC) (Mitomo et al.,
2008). Other microRNAs that directly regulate TERT include let-
7g, miR-133a,−342, and−541 (Hrdličková et al., 2014). Directly
regulating hTERT mRNA with miRNA will become more feasible
as more of these non-coding RNAs are discovered. A summary of
hTERT regulation by miRNA can be seen in Table 1.

Non-coding RNAs can also target transcription factors
involved in the control of hTERT. miR-21 targets E2F, miR-26,
−107, and −210 are induced in response to low oxygen via HIF-
dependent mechanisms, and decrease proapoptotic signaling
within the hypoxic environment (Chan et al., 2005; Kulshreshtha
et al., 2007). In pancreatic cancer, miR-494 was down-regulated
and correlated with poor prognosis. c-Myc and SIRT1 expression
levels were inversely correlated with miR-494 expression in
pancreatic cancer tissues due to direct interaction with the 3′UTR
with the mRNA transcripts of both c-Myc and SIRT1, and
restoring miR-494 sensitized the cells to chemotherapy (Liu Y.
et al., 2015). c-Myc is a direct target of miR-1294 in esophageal
squamous cell carcinoma. Down-regulating miR-1294 directly
resulted in a poor prognosis by elevating c-Myc expression
(Liu K. et al., 2015). These are just a few examples of non-coding
RNA epigenetic control of hTERT indirectly. Each day more
microRNAs are being discovered and characterized for their role
in gene regulation.

Long non-coding RNAs (lncRNAs) are also emerging in
association to gene regulation and cancer. Their regulatory
function is much more extensive than that of miRNAs, which
involves competing endogenous RNAs (ceRNAs) (Yamaguchi
and Abe, 2012). lncRNA, ceRNA, and mRNA transcripts can
affect each other by competing for the miRNA response element
(MRE) (Cesana et al., 2011; Salmena et al., 2011; Shi et al.,
2013). The lncRNAs compete for miRNAs, and inhibit their
binding to MREs, therefore, protecting target RNAs. lncRNAs

and hTERT-encoding genes are syntropic transcripts and may
influence adjacent gene expression. For example, lncRNA
BC032469 is overexpressed in gastric cancer tissue, and its
expression is correlated with tumor size and differentiation, as
well as hTERT protein abundance (Lü et al., 2015).

DIETARY COMPOUNDS AND THEIR
EFFECT ON THE hTERT PROMOTER

There has been much interest recently in the consumption
of dietary compounds in order to make reversible changes
to the DNA. This concept has been coined the “epigenetics
diet”, and utilizes bioactive dietary components to cause
changes to the epigenome (Hardy and Tollefsbol, 2011). Some
examples of these foods include green tea (tea polyphenols),
soybeans (genistein), grapes (resveratrol), cruciferous vegetables
(sulforaphane), and turmeric (curcumin). These components
have the ability to alter the status of DNA methylation and
histone modification. Epigenetic modifications by bioactive
compounds can induce tumor suppressor genes or inhibit tumor-
promoting genes (Meeran et al., 2010a). These phytochemicals
can also influence the expression of non-coding RNAs. They
affect the expression of different miRNAs depending on the
cancer type (Krakowsky and Tollefsbol, 2015). An important
benefit for bioactive compounds is the ability to induce gene
regulation and apoptosis selectively in cancer cells, but not in
normal cells.

Tea Polyphenols
The most prevalent chemical compound in green tea is the family
of catechins, the most abundant being (−)-epigallocatechin-
3-gallate (EGCG) (Graham, 1992; Lin and Liang, 2000). In
general, the epigenetic anticancer effects of EGCG include the
inhibition of DNMT1, leading to demethylation and reactivation
of methylation-silenced genes, although there are notable
exceptions (Kim et al., 2010; Chen et al., 2011; Shanmugam
et al., 2011). EGCG implements its inhibitory effects by blocking
cytosine from entering DNMT1’s active site (Fang et al., 2003).
Because a hypermethylated promoter activates hTERT, EGCG
has the ability to inhibit telomerase activity by demethylating
the hTERT promoter. The demethylation allowed transcriptional
repressors such as E2F-1 to bind (Berletch et al., 2008). EGCG

TABLE 1 | Regulation of hTERT via miRNA.

miRNA Tissue type Mode of action Reference

miR-491-5p Cervical cancer Unknown, inhibits hTERT Zhao et al., 2015

miR-1182 Gastric cancer Binds the ORF of hTERT mRNA, preventing translation Zhang et al., 2015

miR-1207-5p Gastric cancer Represses hTERT in normal tissues Chen et al., 2014

miR-1266 Gastric cancer Represses hTERT in normal tissues Chen et al., 2014

miR-138 Anaplastic thyroid carcinoma (ATC) Interaction with 3′UTR of hTERT to reduce protein expression Mitomo et al., 2008

let-7g Pulmonary fibrosis Interaction with 3′UTR of hTERT to reduce expression Singh et al., 2010

miR-133a Jurkat cells Interaction with 3′UTR of hTERT to reduce expression Hrdličková et al., 2014

miR-342 Jurkat cells Interaction with the 3′UTR of hTERT to reduce expression Hrdličková et al., 2014

miR-541 Jurkat cells Interaction with the 3′UTR of hTERT to reduce expression Hrdličková et al., 2014
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also has strong histone acetylase (HAT) inhibitory activity, and
can modify gene expression by histone modifications (Choi
et al., 2009). EGCG can remodel the chromatin associated with
the hTERT promoter by decreasing acetyl-H3, acetyl-H3K9,
and acetyl-H4. Hypomethylation and deacetylation recruits
transcriptional repressors such as E2F-1 and Mad1 (Meeran et al.,
2011).

Genistein
Genistein is an isoflavone/phytoestrogen found in soybeans, fava
beans, kudzu, lupin, and psoralea (Valls et al., 2009). Genistein is
responsible for reactivating tumor suppressor genes such as p21,
p16, and BTG3 by DNA demethlyation and histone modifications
(Kikuno et al., 2008; Majid et al., 2008). It also inhibits the
expression of hTERT in breast cancer cells by inihibiting DNMT1,
DNMT3a, and DNMT3b, and trimethylating H3K9. Dimethyl-
H3K4, an active transcription marker, is depleted in response
to genistein, and hypomethylation of the E2F-1 recognition site
causes increased binding to the hTERT promoter. Binding of
c-Myc decreases in response to genistein. By combining genistein
with 5-azadC there was a higher hTERT inhibition than that
of each treatment alone (Li et al., 2009). Because genistein is
a phytoestrogen, it can be found more highly concentrated in
breast tissues with a greater distribution of estrogen receptors
(Cassidy and Faughnan, 2000). Depending on the tissue type and
tumor stage, though, genistein can also have very negative effects
(Balabanič et al., 2011; Schug et al., 2011; Guerrero-Bosagna and
Skinner, 2014).

Resveratrol
Resveratrol is a polyphenol derived from grapes, berries, peanuts,
and other plant sources, but is most commonly consumed in the
form of red wine. Its anticancer properties include the ability
to inhibit proliferation of human tumor cells through a variety
of epigenetic mechanisms. Resveratrol has weaker anti-DNMT
activity compared to some of the other bioactive compounds, and
is associated with activation of type III HDAC inhibitors, such
as SIRT1 and p300 (Howitz et al., 2003; Kaeberlein et al., 2005).
The activation of SIRT1 by resveratrol decreases expression
of the anti-apoptotic protein Survivin by deacetylating H3K9
within its promoter (Stünkel et al., 2007; Wang et al., 2008).
Treatment of cells that had undergone oncogenic events with
resveratrol in vitro actually shows an increase in telomerase
activity (Pearce et al., 2008; Wang et al., 2011). Studies from
our laboratory have shown that resveratrol in combination with
pterostilbene suppresses TERT activity via suppression of SIRT1,
γ-H2AX, and DNMTs within breast cancer cells (Kala et al.,
2015).

Sulforaphane (SFN)
Sulforaphane (SFN) is an isothiocyanate that is abundant in
cruciferous vegetables including, but not limited to, broccoli,
cauliflower, cabbage, and kale. SFN is a DNMT inhibitor, and
treatment exhibits both a dose- and time-dependent inhibition
of hTERT in MCF-7 and MDA-MB-231 breast cancer cells. SFN
induced site-specific demethylation of CpG islands within the
first exon of hTERT, which facilitated CTCF binding, and thus

repression of transcription. Repression of hTERT was followed
by apoptosis in breast cancer cells (Meeran et al., 2010b). SFN
also has HDAC inhibitory activity in HCT116 colorectal cancer
cells, prostate cancer BPH-1, LNCaP, and PC-3 cells (Myzak et al.,
2004, 2006; Ho et al., 2009).

Curcumin
Curcumin is a yellow pigment found in turmeric, and it has
been extensively studied for its anti-oxidant, anti-inflammatory,
and anti-cancer properties (Sharma et al., 2005). It is a known
DNMT inhibitor and HDAC inhibitor, but its solubility and
bioavailability are proven obstacles in being a viable therapeutic
(Aggarwal et al., 2003; Shishodia et al., 2007; Fu and Kurzrock,
2010). Curcumin inhibits telomerase activity in T47D human
breast cancer cells, and it down-regulates the expression
of hTERT mRNA (Khaw et al., 2013; Nasiri et al., 2013).
Curcumin exhibits its inhibitory effect by binding to the catalytic
thiolate of C1226 of DNMT1, preventing DNA methylation,
and resulting in global hypomethylation (Liu et al., 2005).
Depending on the type of cancer cell, curcumin has a strong
antagonistic effect on HDACs and HATs. CBP and p300 are two
HATs targeted by curcumin, which suppresses non-homologous
end joining (NHEJ) and homologous recombination (HR)
by down-regulation of BRCA1 (Marcu et al., 2006; Ogiwara
et al., 2013). Hypoacetylation of genes is associated with gene
silencing.

There are many more bioactive compounds that have been
identified for their abilities to cause changes to the epigenome
through inhibition of methylation or histone modification.
These include more isothiocyanates, selenium, garlic, and folic
acid. Dietary factors in which bioactive compounds are found
include coffee, cashews, milk, parsley, rosemary, thistle, and
tomatoes (Hardy and Tollefsbol, 2011). Combinations of dietary
components should also be considered due to their ability to
cause synergistic, additive, or antagonistic effects. Together they
have the potential to target many of the cellular processes
involved in control of the hTERT promoter.

CONCLUSION

Human telomerase reverse transcriptase is regulated by several
modes of epigenetic modifications. These epigenetic changes are
proving to be fruitful ways of selectively targeting hTERT in terms
of prevention or potential cancer treatment. Although telomeres
are shorter in cancer cells than normal somatic cells, the enzyme
responsible for telomere maintenance, telomerase, is upregulated
in approximately 90% of all human cancers. Expression of
the telomerase reverse transcriptase subunit of the holoenzyme
telomerase is responsible for regulating enzyme activity. The
down-regulation of DNMTs reduces the hypermethylated state of
the hTERT promoter by allowing repressor binding. Chromatin
remodeling changes the state of histones present within the
hTERT promoter by influencing the binding of transcription
factors. miRNAs can change the expression of hTERT in a post-
transcriptional manner by binding to the 3′UTR of its mRNA,
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or by affecting the presence of transcription factors responsible
for the transcription or repression of hTERT. Dietary compounds
can also influence hTERT by increasing or decreasing the
activities of DNMTs and histone-modifying enzymes.

Expression of hTERT does not appear to be controlled simply
by one mechanism. Modes of regulation are cell-type and
age specific. Epigenetic modifiers are epigenetically modified,
so control of hTERT can function indirectly. There is no
‘golden bullet’ responsible for epigenetic regulation of hTERT.
This is why combinations of epigenetics-altering drugs are
used to manipulate telomerase expression. Controlling hTERT
epigenetically through various mechanisms appears to be a more
consistent approach to preventing or treating cancers that have
aberrantly expressed telomerase.
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