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Abstract

Background: Non-coding DNA sequences comprise a very large proportion of the total genomic
content of mammals, most other vertebrates, many invertebrates, and most plants. Unraveling the
functional significance of non-coding DNA depends on how well we are able to align non-coding
DNA sequences. However, the alignment of non-coding DNA sequences is more difficult than
aligning protein-coding sequences.

Results: Here we present an improved pair-hidden-Markov-Model (pair HMM) based method for
performing global pairwise alignment of non-coding DNA sequences. The method uses an explicit
model of indel length frequency distribution which can be specified, and allows any time reversible
model of nucleotide substitution. The method uses a deterministic global optimiser to find the
alignment with the highest posterior probability. We test MCALIGN?2 in simulations, and compare
it to a previous Monte Carlo based method (MCALIGN), to the pair HMM method of Knudsen and
Miyamoto, and to a heuristic method (AVID) that performed very well in a previous simulation
study. We show that the pair HMM methods have excellent performance for all combinations of
parameter values we have considered. MCALIGN2 is up to ten times faster than MCALIGN.
MCALIGN2 is more accurate in resolving indels given an accurate explicit model than heuristic
methods, but is computationally slower.

Conclusion: MCALIGN2 produces better quality alignments by explicitly using biological
knowledge about the indel length distribution and time reversible models of nucleotide
substitution. As a result, it can outperform other available sequence alignment methods for the
cases we have considered to align non-coding DNA sequences.

Background

The advent of automated DNA sequencing methods has
resulted in an enormous growth in the volume of
sequence data deposited in public databases. The increas-
ing availability of genome sequence data for many related
organisms offers great opportunities to study gene func-

tion and genome evolution, but it also presents new chal-
lenges for DNA sequence analysis, especially for non-
coding DNA sequences.

For much of the past two decades, research in DNA
sequence analysis has focused on protein-coding
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sequences, which account for only a very small propor-
tion of the total genomic content in mammals, most other
vertebrates, many invertebrates, and most plants [1]. For
example, protein-coding gene sequences comprise as little
as 1-2% of the human and mouse genomes [2,3]. How-
ever, there is an increasing body of evidence showing that
non-coding DNA sequences contain many functional
sequences involved in gene regulation and potentially
other unknown functions. For example, it has been esti-
mated that ~50% of bases in intergenic and intronic
sequences of Drosophila melanogaster are selectively con-
strained [4]. In rodents, it has been inferred that the total
number of selectively constrained nucleotides in non-cod-
ing DNA adjacent to gene sequences is similar to that in
coding DNA [5], Evidence for the presence of a large
number of potentially functional non-coding sequences
on human chromosome 21 has recently been obtained
from a comparative genomics analysis [6]. Determining
the fraction of non-coding DNA that is functional and
establishing what that function is, is therefore a central
problem in genome research.

Accurate inferences about the function of non-coding
DNA from comparative methods depends critically on
correct alignments of non-coding sequences. However,
the alignment of non-coding DNA sequences is more dif-
ficult than aligning protein-coding sequences. Protein-
coding sequences tend to be highly evolutionarily con-
served, so insertions and deletions (indels) are uncom-
mon and rarely cross codon boundaries. However, indel
events are common in non-coding DNA, and can occur at
most nucleotide sites. Numerous advances in sequence
alignment methods for noncoding DNA have been made.
Many recently proposed methods are based on heuristic
alignment algorithms that can be very fast and accurate in
cases where sequences are similar, but perform less well
when sequence divergence is high [7]. Furthermore, heu-
ristic scoring functions are not guaranteed to use the cor-
rect relationship between the relative penalties for point
substitution and indel events, as they have no evolution-
ary interpretation. Therefore, explicit evolutionary models
are desired to address this problem.

True evolutionary models of sequence evolution allow
both multiple point substitutions and multiple indel
events to affect any site in the sequence. The first true evo-
lutionary model of indel evolution was introduced by
Thorne, Kishino, and Felsenstein [8], the TKF91 model,
and allows single-residue indel events. This method uses
a maximum likelihood algorithm to estimate the evolu-
tionary distance between two sequences, summing over
all possible alignments in the likelihood calculations [8].
It was subsequently improved by allowing longer indel
events with a geometric length distribution [9], by assum-
ing that the sequence contains unbreakable fragments,
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and that only whole fragments are inserted and deleted.
This assumption introduces hidden information in the
form of fragment boundaries, and may potentially bias
multiple alignment [10]. Knudsen and Miyamoto [11]
presented a pairwise statistical alignment method based
on an explicit evolutionary model of indel events. Indel
length was assumed to be geometrically distributed, and
up to two overlapping events were allowed for indels. A
good approximation to such a model was then made
using a pair HMM. The geometric distribution parameter,
the indel rate, and the evolutionary time were estimated
by maximum likelihood. A "long indel" evolutionary
model has been introduced recently by Miklos et al. [12],
which allows multiple-residue indels without hidden
information such as fragment boundaries. They devel-
oped a finite trajectory approximation for computing the
likelihood function, producing a method that has very
good performance [12].

Previously, Keightley and Johnson [13] proposed a non-
coding sequence alignment method called MCALIGN.
This is based on a simplified evolutionary model that does
not allow for any multiple hits or interaction between
indel events. A key feature of their approach is that it uses
additional data from "unambiguous" alignments (e.g.
between sequences from closely related species) to infer
the actual distribution of indel lengths, and the relative
rate of indels to point substitutions. They used a Monte
Carlo (MC) hill-climbing algorithm to search for the most
probable alignments. This method has been successfully
used for aligning real genomic sequences, such as Dro-
sophila, rodent and hominid non-coding DNA [5,14,15].
In a simulation study, Keightley and Johnson [13] found
that MCALTGN was generally superior to the other align-
ment methods that it was compared to.

Here, we describe an improved non-coding sequence
alignment algorithm based on a generalisation of the evo-
lutionary model used by Keightley and Johnson [13]. We
show how a combination of a dynamic programming
(DP) algorithm and a one dimensional deterministic opti-
misation - algorithm can be used to find the most proba-
ble pairwise sequence alignment. Note that when we
assume the Jukes-Cantor [16] model for nucleotide sub-
stitution, the present DP method and the previous MC
method are essentially using two different optimisers to
attempt to maximise the same "score" function: align-
ment probability. However, the new optimiser is expected
to be better and faster.

We have compared our method to the pair HMM method
of Knudsen and Miyamoto (PairHMM_KM hereafter),
which is quite similar to the present method in that it
explicitly makes use of an evolutionary time parameter
[11]. We have also compared our method to the heuristic
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alignment program AVID of Bray et al. [17] in simulations
that assume a general-time-reversible (GTR) model [18]
that had first been fitted to real Drosophila non-coding
DNA sequence data. It has been shown that AVID per-
forms very well compared to other heuristic methods
[13,17], so here we only compare our method to AVID
rather than other heuristic methods.

In our tests, the new DP method (MCALIGN2) is up to ten
times faster than the previous MC method (MCALIGN),
and is also faster than the pairHMM_KM method [11],
although none can compete in speed terms with heuristic
methods.

For cases of real non-coding sequence data, we also com-
pared MCALIGN2 with AVID and CLUSTALW [19], and
show that they perform differently for some specific cases.

Implementation

We use a Bayesian statistical framework [20,21] to make
inference about the pairwise alignment. The aim is to
compute the posterior probabilities of different possible
alignments, using the observed sequences as data and
eliminating other "nuisance" parameters from the analy-
sis. Here we focus on finding the alignment with the high-
est posterior probability.

Let t be the total divergence time between two sequences,
abe an alignment of two sequences, and S be the observed
data, which is two non-coding DNA sequences. In a Baye-
sian framework, the behaviours of all variables are mod-
elled by probability distributions. Joint inference about a
and ¢ is accomplished simply via Bayes' theorem

P(at]S) = P(aS| t)P(t)%. (1)

The probability P(S) that appears in the denominator of
equation (1) may be difficult to calculate, but because in
Bayesian inference the observed data S is held fixed, the
unconditional probability P(S) is constant. We can there-
fore make our inference using only relative probabilities
and P(S) need not be calculated. The other unconditional
probability that appears in equation (1) is P(t), which is
specified as a prior; our method will work for any prior.

To calculate the posterior probability of an alignment, we
consider the divergence time ¢ as a nuisance parameter.
The posterior probability for an alignment is therefore
marginal to the divergence time ¢, and is calculated using
the integral

P(alS) =] P(a, t|S) dt. (2)
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We approximate this integral using Laplace's method,
described in detail below.

Probability model of sequence evolution

The most difficult probability to specify in equation (1) is
P(a,S|t), which is the joint probability of alignment a and
sequences S given a divergence time ¢. This probability is
specified according to a model. Here, we use the pair hid-
den Markov model (HMM) shown in Figure 1. For a com-
prehensive introduction to pair HMMs, see the books by
Durbin et al. [21] and Ewens and Grant [22]. For a given
time ¢, the pair HMM shown in Figure 1 generates the
sequence alignment by using a series of transitions
between states, accompanied by emissions. Once in a
given state, the transition probabilities (shown in Figure
1) govern which state the pair HMM will move to next.
Upon arrival at a new state, the pair HMM emits some
observed data according to the emission probability dis-
tributions (shown in Figure 1). For example, state M has

emission probability distribution Pmn, for emitting an

aligned base pair m;n;,

tions ¢,, and n for emitting nucleotide base m; and n;

and state I, and I, have distribu-

against a gap, in each of the two sequences (labelled x and
y respectively).

The transition probabilities for the pair HMM determine
the pattern of indels in the alignment. The emission prob-
abilities for the pair HMM determine the sequences that
are observed, given the pattern of indels in the alignment.
We specify the transition probabilities with an explicit
model of insertion and deletion events, and the emission
probabilities are specified by a model of nucleotide fre-
quencies and of nucleotide substitutions. We consider the
transition and emission probabilities in turn.

We assume that insertions and deletions occur as inde-
pendent events over time with a total rate 0 per interbase
site relative to nucleotide substitutions. As we ignore mul-
tiple hits for indels, the probability of an indel is 1-e(-09)
per interbase site, which we approximated as 6t, an
approximation that should be good for small values of t.
An indel can correspond to a gap in sequence x or a gap in
sequence y. These two events have the same probability,
so the probability of a gap in either of the two sequences,
x and y, is then 0t/2. In Figure 1, this corresponds to the
transition probability from the M state to the I, , state, or
to the I ; state. The pair HMM must move through one of
these states whatever the length of the indel.

The standard affine gap model corresponds to assuming
that the lengths of indels follow a geometric distribution
[21,23]. Empirical data on indel lengths in Drosophila
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Pair HMMs assuming an affine gap model. Assume two homologous sequences x and y. Let m; be the ith nucleotide in sequence
x and n; be the jth nucleotide in sequence y. M represents the state that m;is aligned to n,, I, represents the state that m;is
aligned to a gap (in an insertion with respect to y), and |, represents the state that n;is in an insertion with respect to x. The
numbers shown after x or y indicate the positions of m;and n;in the insertion with respect to the other sequence. The transi-

tion probability is shown between states.
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The empirical distribution of indel lengths in noncoding DNA
between D. simulans and D. sechellia from Keightley and John-
son 2004 (green histogram), the indel length frequency distri-
bution assumed by MCALIGN?2 (black histogram) and the
indel length frequency distribution expected under a geomet-
ric distribution based on maximum likelihood estimation
given the observed data (red histogram).

non-coding DNA show an obvious departure from a geo-
metric distribution, since 1- or 2-residue indels are more
common than expected (Figure 2). Therefore, our model
includes separate parameters for the probabilities of
indels of length 1-bp and 2-bp, since these can be reliably
estimated. Because there are less data on the length distri-
bution for longer indels, we assumed a geometric distribu-
tion. Other more complex distributions are widely
preferred for protein sequence alignments [12,24], but
their large numbers of parameters cannot be reliably fitted
using available data for noncoding sequences. Let w; be
the probability of an indel of length i, with w;,,/w;,; =
w;,,/w; for i > 3, and 2w, = 1. We follow the approach of
Keightley and Johnson [13] and estimate these parame-
ters, along with the parameter 6 that describes the total
rate of indels relative to nucleotide substitutions, from
additional data, as described below.

As shown in Figure 1, given that the pair HMM has arrived
in state I, ; or I,; (for any i > 1), the transition probability

. i1 .
back to the M state is w;/ (1 - 2;=1 w;) and the transition

probability to state I,;,; or I,;,;is 1 - w;/ (1—23_:11 wj).

(Here a sum with no terms is understood to be zero.) This
produces the desired distribution of indel lengths. We also
assume that a gap in sequence x will not be followed
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directly by a gap in sequence y, and therefore there are no
transitions from any of the states I, to any of the states I,
or vice versa. Our approach could be extended to accom-
modate an indel length distribution that is any mixture of
geometric distributions (as used by Miklos et al. [12]) by
duplicating the nodes in the pair HMM for insertions and
deletions, and setting transition probabilities according to
each component in the mixture. Such an extension may
lead to increased accuracy, but at the expense of increased
computational demands.

In order to make our pair HMMs describe a probability
distribution over all possible alignments, we need to
include a Begin state and an End state. We set the transi-
tion probability from the Begin state to states M, I, ; and
L, to be the same as those from the M state. We allow all
states to make transitions to the End state, with a low tran-
sition probability €. If € is small enough, we can ignore it
in all of our calculations [21].

The emission probabilities, which determine the
sequences given the pattern of indels, are derived from the
general time-reversible (GTR) model of nucleotide substi-
tution [18]. The Jukes-Cantor [16] model and the Kimura-
2-parameter [25] model are two specific cases of the GTR
model when certain parameters are fixed.

The emission probabilities ¢, and dn; are the equilib-

rium frequencies of nucleotides m; and n;, which are equal

for sequences x and y. The emission probabilities Pmn,

are the probabilities of starting with an unobserved com-
mon ancestor nucleotide o, drawn from the equilibrium
distribution of nucleotide frequencies, and evolving inde-
pendently down two lineages, to m; in time t, along one

lineage and to n;in time ¢, along the other lineage. (Under

a time reversible model, this is the same as the probability
of starting with n;and evolving to m; (or vice versa) in time

t;+ ;). Since the times ¢; and ¢, are individually noninden-

tifiable, we parameterise our model simply by the total
divergence time t = t;+ t,. For a given total divergence

time, the conditional probability of evolving to m; given
starting with n; is Pmin. = Pmn, / n, and the matrix of

these conditional probabilities, Q(t), can be calculated
from the fixed instantaneous rate matrix A by matrix expo-
nentiation [26], that is,

Q) = e (3)
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which can be calculated using the eigenvalues and eigen-
vectors of A. Here we estimate the rate matrix A from the
same external data that is used to estimate the parameters
for indels, as described below.

Alignment algorithm

Given that P(a,S|t) has been specified by the model, and
that a prior P(t) for the divergence time has also been
specified, we have developed an algorithm to infer the
approximate maximum a-posteriori (MAP) alignment a .
This is the alignment with highest posterior probability
given the observed sequences, with the divergence time
eliminated as a nuisance parameter. Thus, a is the align-
ment that maximises P(a|S), which is given by the integral
in equation (2). To approximate this integral, we assume
that P(a, t|S), when treated as a function of ¢ with both a
and S held fixed, is approximately Gaussian. Then, using
Laplace's method [27], we can write

1
P(a|S)=P(a-t, |SV2r |V, |2 . (4)

Here i, is the mode, or value of t that maximises P(a, t|S)

(again, when treated as a function of t with a and S held
fixed). The quantity

1
d*InP(a,t|S)
dt?

is the modal dispersion, which is the reciprocal of the cur-

|Va |=

(5)

|t=ta

vature at the mode {, . We make a further approximation,

P(a|S) = P(a, t,|S)*C(S) (6)

where C(S) is a constant that depends on S but not on a
or t. This approximation can be made when we wish to
maximise P(a|S) over a set of a for which |V,| is approxi-
mately constant. The goodness of this approximation is
discussed below.

Given that our approximations hold, Equation (6) shows
that 4 maximises P(a|S) if and only if 4 maximises
P(a,t,]S). Since by definition (a, t,) maximises P(a,
t|S), we see that a can be found by unrestricted optimisa-
tion of P(a, t|S). Our algorithm to find a exploits the fact
that we are free to solve the unrestricted optimisation

problem with any manner we choose, and specifically that
we can "change the order of maximisation". The statistical
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argument we presented above says that we should find i,
for each a, and then maximise P(a, f, |S) over all a. An
equivalent solution is to find a, for each ¢ (that is, the
best alignment for a given t) and then maximise P(a ,, t|S)

over all t. The second solution is much easier in practice,

because a, can be found using a standard dynamic pro-
gramming algorithm for pair HMMs [21], and then P(a ,,

t|S) can be maximised using any standard algorithm for
maximising a one dimensional function.

The dynamic programming algorithm guarantees to find
the global maximising a, (with ties broken arbitrarily).
We find a straightforward Golden Section Search [28] to
be adequate for maximising P(a , t|S). This assumes that

there is a single global optimum to be found. Actually we
are able to trap events where local optima are detected.
However, no local optima has ever been detected. We ter-
minate the search when the values of t bracketing the max-
imum differ by less than 0.001. Moreover, we are able to
terminate earlier when the optimal alignment is the same
at all points within the bracketing area.

Parameterization of models of sequence evolution

Our model of noncoding DNA evolution is parameterized
according to the empirical distribution of indel lengths
and their overall rate relative to nucleotide substitutions
from species for which essentially unambiguous align-
ments can be made. Here, we consider a parameterization
by intronic data of D. simulans and D. sechellia (Shown in
Figure 2). For these data, the rate of indels per interbase
site, relative to the rate of nucleotide substitution, was pre-
viously estimated as 6 = 0.225 [13]. We fitted the observed
frequencies of different indels lengths to our model as fol-
lows. We directly use the observed frequencies of 1-bp and
2-bp indels, that is, 0.455 and 0.182, respectively. For
indels of > 3-bp, the frequencies, W,, for the model were
obtained by minimizing the sum over > 3-bp indels of the
squared differences between the observed frequency dis-
tribution and w, = §/a*. Here B is a constant. The estimate
for o was 1.170. Our software performs this curve fitting
and in fact the whole analysis with a supplied empirical
distribution of containing any lengths.

A GTR model of nucleotide substitution was fitted to Dro-
sophila data shown in Table 1. By assuming the GTR
model, we can then symmetrise this matrix by averaging
the table with its transpose before any of the following
calculations were carried out. The estimated equilibrium
frequencies of each base are obtained from the normal-
ised column sums, yielding (44, 9 9c 9r) = (0.324, 0.197,
0.213, 0.266). The estimated rates of each type of substi-
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Table I: Drosophila intronic data that is used to derive a GTR model of DNA evolution.

A G

Sequence | A 1363 45
G 37 823

C 21 I

T 17 Il
total 1438 890

Sequence 2

C T total
18 54 1480
9 17 886
898 32 962
27 1120 1175
952 1223 4503

Pairs of nucleotide for 4503 sites of sequence that has diverged according to a general-time-reversible (GTR) model, from real Drosophila intronic
data. The columns are the bases in the first sequence. Here, we chose a long intron from D. simulans and D. melanogaster, aligned them using AVID,

then counted the aligned sites regardless of gaps.

tution are obtained by dividing the entries in each column
by the respective column sums, yielding:

0.934201 0.0461712 0.0203762 0.029608
0.0281014 0.926802 0.0104493 0.0116764
0.0133653 0.0112613 0.938349 0.0246038
0.0243317 0.0157658 0.0308255 0.934112

Q= (7)
Finally, find the matrix A that satisfies Equation (3) when

time is measured in units of expected substitutions, to
obtain our estimate of the instantaneous rate matrix:

—-0.995107 0.706988 0.301277  0.446817
0.430299 -1.1037 0.153414 0.17136

0.197616 0.165335 -0.922152 0.373111
0.367192 0.231375 0.467461 -0.991288

A=

Performance evaluation

For non-coding sequences, there are few externally veri-
fied alignments available to test the performance of align-
ment methods. As a substitute, we simulate sequence
divergence in silico, so that sequences are generated that
are related by a known, "correct" alignment [7]. We tested
the MCALIGN2 program by examining the posterior
probability of the best alignment found by the algorithm,
the fraction of correctly aligned sites, an estimate of diver-
gence time calculated from the estimated alignment, and
the time taken to compute the alignment.

We compared the dynamic programming approach used
here against the Monte-Carlo approach proposed previ-
ously [13] and the pair HMM approach of Knudsen and
Miyamoto [11] in simulations assuming the Jukes-Cantor
model of nucleotide evolution. In comparisons of
MCALING2 and MCALIGN, for each simulated pair of
sequences, we compared the posterior probability, P(a|S)

= P(a, t,|S), of the best alignment found by MCALIGN2
with the best alignments found by MCALIGN.

We also compared MCALIGN2 against AVID of Bray et al.
[17] in simulations assuming a GTR model, parameter-
ised using the Drosophila intronic data as described above.

In these comparisons we investigated cases in which the
model assumed by MCALIGN?2 differed from the simula-
tion model, by using the simpler JC and K2P models to
analyse data simulated under a GTR model.

In all comparisons, we calculated the fraction of correctly
aligned sites by counting the number of base pairs or
bases-to-gaps which were correctly aligned in a compari-
son to the true alignment. As an alternative measure of
alignment quality, we considered the precision of diver-
gence time estimated from the alignments. The estimator
of divergence time we used was distance under the GTR
model. It is made by estimating the base frequencies g,
and the rates a;, and finding ones that most closely predict
the observed net transition matrix P [26]. This estimator
of divergence time uses only the non-indel regions, and
does not use the presence of indels to help estimate diver-
gence time. For all the simulations with a given divergence
time t and a certain evolutionary model, we observed the
mean and variance of the estimator of t calculated from
both the true alignment and the alignments estimated by
sequence alignment methods we considered here. We
express the precision of the estimator as the estimated
root mean squared error (e.r.m.s.e.), since none of the
estimators examined are perfectly unbiased. For ¢, this is

er.mse. = \/%Z( tost = Lirue )2 (9)

when there are N simulations.

Although our program allows any prior for divergence
time, for all comparisons we used a relatively diffuse or
uninformative prior:

4 (30

P(t)=§e 3 (10)

which has the mean 0.75. Because low divergences are
more likely than high ones for two homologous
sequences, this prior on t seems to be a reasonable one.
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Table 2: Performance of MCALIGN2(DP), MCALIGN(MC) and PairHMM_KM compared by the estimator of divergenct time

corrected by the Jukes-Cantor model

Alignment Estimated
PairHMM_KM MC DpP

Simulated

t ® Alignment Known
0.05 0.225 0.0502 (0.0107)
0.10 0.225 0.0998 (0.0146)
0.15 0.225 0.1493 (0.0208)
0.20 0.225 0.2025 (0.0241)
0.25 0.225 0.2515 (0.0286)
0.30 0.225 0.3003 (0.0311)
0.15 0.10 0.1519 (0.0198)
0.15 0.30 0.1515 (0.0202)
0.15 0.40 0.1512 (0.0194)

0.0496 (0.0103)
0.0987 (0.0152)
0.1482 (0.0226)
0.1994 (0.0267)
0.2440 (0.0348)
0.2955 (0.0419)
0.1503 (0.0189)
0.1507 (0.0226)
0.1480 (0.0220)

0.0499 (0.0104)
0.0994 (0.0153)
0.1507 (0.0230)
0.2053 (0.0263)
0.2593 (0.0346)
0.3162 (0.0525)
0.1502 (0.0189)
0.1566 (0.0234)
0.1645 (0.0263)

0.0501 (0.0103)
0.0989 (0.0154)
0.1487 (0.0208)
0.2001 (0.0256)
0.2476 (0.0319)
0.2981 (0.0349)
0.1500 (0.0188)
0.1523 (0.0218)
0.1516 (0.0213)

Estimates of sequence divergence, t, and proportion of matched bases from 200 replicates for each combination of t and 0, with sequences of length
500 base pairs. Estimated root mean square error (e.r.m.s.e.) is shown after divergence time in parentheses.

Results

Comparison amongst PairHMM_KM, MCALIGN2(DP)
and MCALIGN(MC)

We generated non-coding sequence data using a model of
non-coding DNA evolution in which gap lengths are par-
ametrized by intronic data of D. simulans and D. sechellia,
and point substitutions occur according to the Jukes-Can-
tor model to compare the performances of PairHMM_KM,
MCALIGN2 (DP hereafter) and MCALIGN (MC hereaf-
ter). In this setting, the DP and MC methods aim to find
the same most probable alignment, since they assume
essentially the same model and prior, but use different
algorithms.

Table 2 and 3 show the mean and e.r.m.s.e. of estimated
divergence time (t), and the proportions of correctly
aligned sites for combinations of 6 and t. All alignment
methods perform similarly when the true divergence time
is not too great, t < 0.2, and the indel rate is not too great,
6 < 0.3. For these parameters, the fraction of correctly
aligned bases is greater than 90% and is similar for all the
three methods. The mean estimated divergence time cal-
culated from estimated alignments are close to the true

values, and the e.r.m.s.e. are not substantially greater than
if the true alignment is known. However, when the diver-
gence time t became larger (¢t > 0.2) or the indel rate
becomes larger (6 = 0.4), the performance of the MC
method becomes noticeably inferior, since the mean pro-
portion of correctly aligned bases is significantly lower
than for the alignments estimated by the DP and
PairHMM_KM method, and the divergence time estimates
are more biased and have larger e.r.m.s.e. For the largest
indel ratio we considered, 0 = 0.4, the MC method tends
to estimate an alignment with too many gaps and the esti-
mates of t tend to be higher than the true values. Table 3
also shows that the DP and PairHMM_KM methods both
have more stable performances for most of the cases we
have considered, in the sense of producing lower standard
deviations of proportions of correctly aligned sites. It is
also shown that the efficiency of MCALIGN2 is generally
slightly better than PairHMM_KM.

For the same simulated datasets, Figure 3 compares the
the log values of alignment probability for MCALIGN2
and MCALIGN, since they use essentially the same scoring
function. For the two methods, the approximation of

Table 3: Performance of MCALIGN2(DP), MCALIGN(MC) and PairHMM_KM compared by examining the proportions of correctly

aligned sites.

Proportions of correctly aligned sites.

PAIRHMM

MC

DP

Simulated

t ®
0.05 0.225
0.10 0.225
0.15 0.225
0.20 0.225
0.25 0.225
0.30 0.225
0.15 0.10
0.15 0.30
0.15 0.40

0.992 (0.0072)
0.977 (0.0133)
0.954 (0.0210)
0.920 (0.0300)
0.868 (0.0416)
0.810 (0.0500)
0.984 (0.0116)
0.933 (0.0224)
0.905 (0.0325)

0.992 (0.0078)
0.977 (0.0137)
0.951 (0.0235)
0.915 (0.0345)
0.850 (0.0596)
0.761 (0.0853)
0.983 (0.0102)
0.925 (0.0292)
0.894 (0.0376)

0.993 (0.0074)
0.977 (0.0127)
0.955 (0.0186)
0.922 (0.0293)
0.869 (0.0433)
0.813 (0.0511)
0.983 (0.0108)
0.933 (0.0246)
0.906 (0.0329)

Proportion of matched bases from 200 replicates for each combination of t and 6, with sequences of length 500 base pairs. Standard deviation of
mean is shown after the proportion of matched bases in parentheses.
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Figure 3

Probability test using the probability function of
MCALIGN2(DP), comparing the performances of alignments
produced by the DP method and the MC method. All the val-
ues here are log values.

Equation (6) was used to calculate alignment probability
marginal to divergence time. Both methods perform
equivalently for almost all the simulations when diver-
gence time is very small (¢ = 0.05); we presume that both
methods are able to find the globally most probable align-
ment. However, when divergence time and/or rate of
indel events becomes larger, the DP method begins to out-
perform the MC method, in the sense that the alignments
produced by MCALIGN2 have higher probabilities. For
the highest divergence time (t = 0.30) and/or rate of indel
events (0 = 0.40) we considered, the DP method outper-
formed the MC method for almost all of the replicate sim-
ulations. This clearly indicates that the MC algorithm of
Keightley and Johnson [13] gets stuck at local optima.

http://www.biomedcentral.com/1471-2105/7/292

Comparison between MCALIGN2 and AVID

For each combination of values of t and 6, 200 replicate
simulations were performed, each simulating a pair of
sequences of length 500 base pairs, evolving under an
indel model and a general time reversible (GTR) model of
nucleotide substitution, parameterised using real Dro-
sophila data. This model is very different to the simple
Jukes-Cantor (JC) model, and quite different to Kimura's
2 parameter (K2P) model. In addition to comparing
MCALIGN2 with AVID, it is interesting to explore the
effect of the nucleotide substitution model assumed by
MCALIGN2. We aligned each simulated pair of sequences
using MCALIGN2 under the assumptions of the correct
GTR model, a simple K2P model with the ratio of transi-
tion events to transversion events equal to 2, and the JC
model.

The results in Table 4 and 5 show that the alignments
found by MCALIGN2, when the correct GTR model was
assumed, are more accurate for almost all combinations
of parameter values we have considered. In comparison,
alignments found by MCALIGN2, when the incorrect JC
or K2P models were assumed, are only slightly less accu-
rate. Alignments found by AVID generally have the lowest
accuracy in the cases studied.

Here, lower accuracy is indicated by a lower proportion of
correctly aligned bases, and estimates of divergence time t
that are more biased and have larger e.r.m.s.e.. In particu-
lar, alignments produced by AVID exhibit consistent
upward bias estimates of t, and lower means proportions
of correctly aligned bases than alignments produced by
MCAL1GN?2. This remains true, for most of the cases we
considered here, whether MCALIGN2 used the correct
GTR model of nucleotide substitution, or the incorrect JC
or K2P models. The improvement in alignment quality
gained by knowing the correct model of nucleotide substi-
tution is generally modest, but worthwhile.

Table 4: Performance of MCALIGN2 and AVID compared by proportions of correctly aligned sites based on a GTR model

Simulated Proportion of matched bases
t ® AVID MCALIGN2(JC) MCALIGN2(K2P) MCALIGN2(GTR)
0.05 0.225 0.991 (0.0085) 0.993 (0.0057) 0.993 (0.0057) 0.993 (0.0057)
0.10 0.225 0.973 (0.0141) 0.978 (0.0127) 0.979 (0.0127) 0.979 (0.0127)
0.15 0.225 0.946 (0.0283) 0.954 (0.0212) 0.956 (0.0184) 0.958 (0.0184)
0.20 0.225 0.904 (0.0325) 0.916 (0.0283) 0.920 (0.0269) 0.922 (0.0269)
0.25 0.225 0.852 (0.0452) 0.867 (0.0438) 0.873 (0.0410) 0.876 (0.0396)
0.30 0.225 0.795 (0.0566) 0.811 (0.0495) 0.824 (0.0481) 0.831 (0.0481)
0.15 0.10 0.980 (0.0141) 0.982 (0.0113) 0.982 (0.0113) 0.983 (0.0113)
0.15 0.30 0.913 (0.0283) 0.935 (0.0226) 0.936 (0.0212) 0.941 (0.0212)
0.15 0.40 0.876 (0.0354) 0.900 (0.0311) 0.905 (0.0297) 0.916 (0.0283)

Proportion of matched bases from 200 replicates for each combination of t and 0, with sequences of length 500 base pairs. Standard deviation of
mean is shown after the proportion of matched bases in parentheses. Here MCALIGN?2 is tested by assuming either the correct model of DNA

evolution(GTR) or the incorrect models (JC and K2P).
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Table 5: Performance of MCALIGN2 and AVID compared by estimator of divergence time based on a General Time-Reversible

AVID

Alignment Estimated

MCALIGN2(/C)

MCALIGN2(K2P)

MCALIGN2(GTR)

Model
Simulated
t @ Alignment Known
0.05 0.225 0.0504 (0.0100)
0.10 0.225 0.0991 (0.0145)
0.15 0.225 0.1522 (0.0191)
0.20 0.225 0.2034 (0.0225)
0.25 0.225 0.2531 (0.0286)
0.30 0.225 0.3003 (0.0302)
0.15 0.10 0.1520 (0.0207)
0.15 0.30 0.1509 (0.0200)
0.15 0.40 0.1526 (0.0208)

0.0523 (0.0181)
0.1023 (0.0159)
0.1575 (0.0226)
0.2131 (0.0283)
0.2699 (0.0383)
0.3222 (0.0420)
0.1528 (0.0219)
0.1634 (0.0301)
0.1794 (0.0398)

0.0501 (0.0100)
0.0981 (0.0151)
0.1496 (0.0192)
0.1985 (0.0238)
0.2493 (0.0316)
0.2944 (0.0324)
0.1510 (0.0203)
0.1489 (0.0207)
0.1507 (0.0213)

0.0500 (0.0100)
0.0976 (0.0149)
0.1494 (0.0192)
0.1978 (0.0239)
0.2453 (0.0308)
0.2914 (0.0311)
0.1508 (0.0203)
0.1470 (0.0208)
0.1477 (0.0203)

0.0500 (0.0100)
0.0983 (0.0149)
0.1502 (0.0194)
0.2003 (0.0235)
0.2491 (0.0311)
0.2987 (0.0323)
0.1510 (0.0204)
0.1499 (0.0207)
0.1508 (0.0211)

Estimates of sequence divergence,t, from 200 replicates for each combination of t and 0, with sequences of Length 500 base pairs. Estimated root
mean square error (e.r.m..e.) is shown after divergence time in parentheses. Here MCALIGN2 is tested by assuming either the correct model of

DNA evolution(GTR) or the incorrect models (JC and K2P).

Test using real data

We also compared MCALIGN2 with AVID and CLUS-
TALW using real intronic DNA sequences from mouse and
rat. Although we do not know the true alignments for real
sequence data, we can still judge the alignment perform-
ances of different methods by examining the plausibility
of the alignments (e.g. positions of gaps in the alignments
and proportion of matched bases). Here we show three
specific cases in which MCALIGN2 performed quite dif-
ferently from AVID and CLUSTALW.

As shown in Figure 4(a), AVID and MCALIGN2 produced
similar alignments, which include a long gap between ~70
bp-~320 bp. However, the alignment produced by CLUS-
TALW has several small gaps, which are separated by small
segments of aligned bases. In this example, 93% of base
pairs are matched in alignments produced by AVID and
MCALIGN2, while only 70% of base pairs are matched in
the alignment produced by CLUSTALW. Although it is
impossible to say which alignment is the true alignment,
the positions of gaps and proportion of matched bases
can give some indications of the alignment plausibility. As
the gap-open penalty is higher than the gap-extension
penalty, the cost of having several small gaps is higher
than the cost of having a long gap, if the total length of
gaps is similar among different alignments. Meanwhile, as
the match state has a positive effect on the alignment
probability, the alignment with the higher proportion of
matched bases is more likely to be correct. Therefore, from
the point view of the alignment probability, the align-
ments produced by MCALIGN2 and AVID in this case are
more plausible.

Figure 4(b) shows a different fragment from alignments
produced by AVID, CLUSTALW and MCALIGN2. In this
case, the alignment produced by MCALIGN?2 also has a
long gap from ~300 bp-~1000 bp, and it has the highest
proportion of matched bases compared to other align-

ments. However, the alignment produced by CLUSTALW
has several small gaps and a long gap in the terminal por-
tion, and it has the lowest proportion of matched bases.
Although the alignment produced by AVID looks better
than the one produced by CLUSTALW, it is still frag-
mented by several small-length gaps.

However, MCALIGN2 does not always produce less gaps
than other methods. As shown in Figure 4(c), the align-
ment produced by MCALIGN2 has more gaps than the
others, but a smaller number of nucleotide differences.
Without other information it is impossible to say which is
more plausible.

Execution time

Figure 5 shows the execution times of the different align-
ment algorithms tested above, as a function of sequence
length. Execution times were measured in on a 2.8 GHz
Intel® Xeon™ processor. Results are shown for divergence
time t = 0.2 and 0.3, and ratio of indels to point substitu-
tions 6 = 0.225. Figure 5 shows that for the DP method
(MCALIGN2), execution time increases as a quadratic
function of sequence length, as expected. Similar behav-
iour is observed for the PairHMM_KM method, since this
calculates the sum of the probabilities of all alignments
for two given sequences using the forward algorithm for
pair HMMs, and this gives a time and memory complexity
on the order of L2 [11]. For the MC method (MCALIGN)
execution time increases with sequence length, and,
although it does not follow a power law, it is roughly
quadratic for long sequences. Although it shows a sub-
stantial improvement over the previous Monte Carlo
method and it is faster than the PairHMM_KM method,
MCALIGN? still cannot compare with a heuristic align-
ment method such as AVID. To align two 1000-bp
sequences (t = 0.2) takes about 0.1s using AVID, about 80s
using MCALIGN2, about 160s using PairHMM_KM and
about 350s using MCALIGN. Furthermore, it is also
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Figure 4

Alignments of real non-coding DNA sequences from mouse and rat produced by AVID, CLUSTALW and MCALIGN?2. The
scale is shown below the alignments, and proportion of matched bases in the alignment is shown on the right. There are three
cases (a) alignments of intronic DNA sequence from the Fshb gene, (b) alignments of intronic DNA sequences from the Omd
gene and (c) alignments of small pieces of intronic DNA sequences from Omd, in which MCALIGN2 performed quite differ-
ently from the others.
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Execution time plotted against sequence length for sequence divergence of 0.2 and 0.3, and ratio of indels of 0.225. Execution
times were estimated from the average of ten simulations. (a) execution time of MCALIGN2 comparing to MCALIGN and the
pair HMM method of Knudsen and Miyamoto (black points and lines for divergence of 0.2; colored points and lines for diver-
gence of 0.3). (b) tests the correctness of the program based on execution time for sequence divergence of 0.2. All the num-
bers are in natural log. The slope of log(time) against log(length) is 1.91 for MCALIGN2, which means the program closely
follows the expected algorithm time operation O(n2). The slope of log(time) against log(length) for PairHMM_KM is 1.78, not
far away from the order n2. The pattern for MCALIGN is hard to track.

shown in Figure 5(a) that both MCALIGN and
PairHMM_KM take longer to align sequences with larger
divergence times, whereas execution time of MCALIGN2
is unaffected by divergence. However, given the pair
HMM model used in PairHMM_KM, execution time
should not be affected by divergence for this method. We
suppose that this occurred due to small tolerances chosen
for ML estimation of divergence time in this program.

Discussion

The problem of statistical inference of an alignment can
be separated into two parts: specifying a scoring function,
and finding an alignment that optimises that scoring
function. The scoring function is specified on biological
and/or statistical grounds, and determines the biological
meaningfulness and accuracy of the inferred alignment.
The choice of optimising algorithm determines the speed
of the method, and may hamper accuracy if convergence
to a global optimum cannot be guaranteed. A useful align-
ment method must produce biologically meaningful and
accurate alignments, and also must do so quickly. There is
a trade-off because the most biologically realistic scoring
functions are difficult to optimise.

Many scoring functions can essentially be described by the
relative contributions for individual nucleotide substitu-
tion and indel events, which were traditionally thought of
as penalty scores for mismatches and for gaps. However,
no general theory guides the selection of these penalties
[31], unless divergence time is known [21]. Although
almost all scoring functions have a probabilistic interpreta-
tion [21], only ones in which divergence time is an explicit
parameter have an evolutionary interpretation. This inclu-
sion of a time parameter is crucial in allowing us to train
or parameterize our model using closely related
sequences, in order to improve the accuracy of alignments
between more distantly related sequences. Although the
idea of training a scoring function on known alignments
is an old one (especially with respect to amino acid sub-
stitutions (e.g. PAM250 matrix of Dayhoff et al. [32])), in
the past it has generally been necessary to use a training set
of sequences at similar evolutionary distance as the
sequences that are ultimately to be aligned.

Heuristic scoring functions are often chosen because an
algorithm exists to optimise them efficiently. However,
without any underlying evolutionary model, the align-
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ments produced by such methods will be biased (at least
at some evolutionary distances), in the sense that they will
exhibit features that depart in a systematic direction from
the true alignment.

The evolutionary model used in our method strikes a bal-
ance between biological realism and computational trac-
tability. We ignore multiple hits of indel events, and
assume a distribution of indel lengths that corresponds to
an improved affine gap penalty scheme. Our model is
therefore quite different from more realistic evolutionary
models that account properly for multiple hits of indel
events [8,9,11,12]. The TKF91 model is particularly unre-
alistic for non-coding DNA, since it allows only single
base indels. Keightley and Johnson [13] suggest that the
present model (ignoring multiple hits for indels) is a bet-
ter approximation to their simulation model (which
allowed multiple hits of multi-base pair indels), for the
parameter values used in their simulations. The TKF92
model allows a geometric distribution of indel lengths,
but only allows whole insertions to be subsequently
deleted, or vice versa. That model has therefore been crit-
icised as introducing non-biological "hidden fragment
boundaries". Since our model does not allow insertions to
be deleted at all, or vice versa, it could be seen as also
introducing "hidden fragment boundaries". Our model
allows a more realistic distribution of indel lengths than
the TKF92 model. The approach of Knudsen and Miya-
moto [11] could be seen as an extension of the TKF92
model, assuming a geometric distribution of indel lengths
and allowing multiple hits involving up to two indel
events. Our results suggest that this model (approximated
using a three state pair HMM), and our model (using a
seven state HMM) offer approximations of very similar
quality. Intuitively, we would have expected our model to
be superior when multiple hits of indel events were rare,
i.e. for relatively smaller evolutionary distances and indel
rates. However, it seems that in such cases the perform-
ance of both methods is so good that it is hard to detect
any difference. The "long indel" model of Miklos et al.
[12] is certainly more realistic than either model, since it
allows an arbitrary distribution of indel lengths and
accounts almost exactly for multiple hits of indels. How-
ever, the finite trajectory algorithm [12] used to account
for multiple hits is computationally expensive (O(L*) in
complexity).

When comparing the present method (MCALIGN2)
against a previous Monte Carlo approach (MCALIGN
[13]) we are comparing the performance of two different
optimisers, with the same scoring function. Generally
MCALIGN2 has better global optimum finding proper-
ties, and is much faster than the Monte Carlo method to
align the same sequences. There are two major reasons for
this improvement:

http://www.biomedcentral.com/1471-2105/7/292

(i) MCALIGN2 uses a dynamic programming algorithm
that is guaranteed to find the most probable alignment for
a given divergence time, whereas the stochastic hill-climb-
ing algorithm used in the Monte Carlo method can only
search locally by making heuristically chosen adjustments
to an alignment.

(ii) MCALIGN?2 stops its search when the maximising
divergence time is bracketed to high precision, with the
bracket length being reduced by a geometric factor at each
step of the algorithm. In contrast, the Monte Carlo
method must search until no improvement in alignment
probability is found during a predetermined number of
iterations.

In comparisons of MCALIGN2 against the pair HMM
method of Knudsen and Miyamoto, a method with an
evolutionary time parameter and an affine gap penalty
[11], we found that the two methods performed very sim-
ilarly for almost all cases, but MCALIGN?2 is computation-
ally faster. When comparing MCALIGN?2 against AVID, a
time-naive model [17], we found that MCALIGN2 pro-
duced better quality alignments than AVID for almost all
combinations of parameters. This shows that, when the
evolutionary model is known, this knowledge can be used
in in a model based inference method to estimate align-
ment more accurately.

Despite being substantially faster than our original Monte
Carlo approach and the pair HMM method of Knudsen
and Miyamoto, MCALIGN2 cannot compete with AVID
in terms of execution time, because of the clever heuristics
used by AVID. Its general strategy for aligning two
sequences is to select anchors using a variant of the Smith-
Waterman algorithm [33] to split long sequences into
short sequences, which are aligned by a dynamic pro-
gramming algorithm, Needleman-Wunsch [34]. A set of
maximal matches between sequences is constructed using
a suffix tree. This approach is fast and memory efficient,
and practical for sequence alignments of large genomic
regions up to megabases long [17]. In principle, the fast
heuristics used by AVID can be applied for any pair HMM,
and therefore could be combined with our approach to
give faster, high quality alignments.

In order to examine the robustness of the MCALIGN2
method, we also investigated cases in which the model
assumed in the MCALIGN?2 analysis was a simpler model
(JC or K2P) than the model the data were simulated under
(GTR). Generally, the MCALIGN2 method assuming an
incorrect model still has good performance for small and
medium divergence times, but for larger divergence times
and/or higher indel rates, performance suffers slightly
compared with when the correct GTR model was
assumed. Therefore, when aligning sequences from dis-
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tant species, it is desirable to use an evolutionary model
that is as realistic as possible. However, it is in precisely
this situation that it may be most difficult to estimate a
model, because the assumption of that the evolutionary
process is the same between closely and distantly related
species is most likely to break down.

When inferring alignment in a Bayesian framework, diver-
gence time is a nuisance parameter that must be elimi-
nated by integration (Equation 2). The computational
implementation of our method relies totally on being
able to approximate this integral (Equations 4 and 6)
rather than having to calculate it numerically using e.g.
quadrature. The approximations we make will be good
when P(t|a,S) is approximately normal with constant var-
iance for a certain set of high probability alignments.
Because P(t|a,S) is a product of multinomial probabilities,
the normality approximation will be good for long
sequences under most models of molecular evolution.
The assumption of constant variance will be reasonable
when high probability alignments differ from each other
by only a few indels and substitutions, relative to the total
sequence length. As a concrete check of this assumption,
we used the Monte Carlo search algorithm of Keightley
and Johnson [13] and retained the set of all alignments
visited that had probability at least 0.01 as large as the
maximum probability. Within this set, the correlation
between P(a|S) computed "exactly" (using quadrature)
and P(alS) exceeded 0.98.

It is worth mentioning that, to our knowledge, no better
method has been found for eliminating divergence time
as a nuisance parameter when estimating alignment. Most
authors concentrate on finding the true MLE for ¢, sum-
ming over all possible alignments, using the EM algo-
rithm [8-10,35]. The best way to estimate the alignment
has not been considered in detail, but a common
approach is to use the most probable alignment condi-
tional on the observed sequences and conditional on the
MLE for ¢t. Although our method has a more direct Baye-
sian justification, given the approximations made it is
likely that the two approaches will give similar results.

Conclusion

Sequence alignment is a major issue for the evolutionary
analysis of non-coding DNA. We developed a model-
based method, MCALIGN2, as an improvement to the
previous Monte Carlo method MCALIGN. MCALIGN2
uses a deterministic global optimiser to find the align-
ment with the highest posterior probability. It allows a
rich class of evolutionary models of indel length along
with any time reversible model of nucleotide substitution.
As shown in the test results, MCALIGN2 outperforms
other available non-coding DNA sequence alignment
methods for all the cases we have considered.

http://www.biomedcentral.com/1471-2105/7/292
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