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Abstract

The regulation of heat shock protein (HSP) expression is critically important to
pathogens such as Mycobacterium tuberculosis and dysregulation of the heat shock
response results in increased immune recognition of the bacterium and reduced
survival during chronic infection. In this study we use a whole genome spotted
microarray to characterize the heat shock response of M. tuberculosis. We also begin
a dissection of this important stress response by generating deletion mutants that lack
specific transcriptional regulators and examining their transcriptional profiles under
different stresses. Understanding the stimuli and mechanisms that govern heat shock
in mycobacteria will allow us to relate observed in vivo expression patterns of HSPs
to particular stresses and physiological conditions. The mechanisms controlling HSP
expression also make attractive drug targets as part of a strategy designed to enhance
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Background

The classical heat shock proteins (HSPs) are
stress-inducible molecular chaperones which rep-
resent the most conserved proteins in cellular life.
In prokaryotes and eukaryotes their main role
is to maintain a correctly folded and assembled
protein component of the cell [14]. The essen-
tiality of this function is reflected in the ubiq-
uity of these proteins throughout cellular organ-
isms. Indeed, it is the ancient nature of these
highly conserved molecules, combined with the
utility of their peptide-binding function, that has
allowed evolution to engender many HSPs with
functions additional to those of simple chaperones.
Of greatest importance to the pathogen biologist
are the roles of HSPs in the immune response. As
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host molecules whose expression is induced during
stress conditions, such as infection with a pathogen,
they are in perfect position to act as facilitators
of the immune response, and nature has made no
mistake in taking advantage of circumstance. Mam-
malian/host HSPs act as signals to the immune
system through recognition by cell-surface recep-
tors triggering inflammatory responses [2,8,9,33].
In addition, their functional role as chaperones has
been utilized such that exogenous HSP carrying
peptides from damaged or infected cells can, in
an exquisitely efficient pathway, be taken up by
receptor-mediated endocytosis into antigen present-
ing cells and processed for MHC class I-restricted
presentation to T cells [1,3,4,10,29]. Thus, HSPs
provide an important link between the innate
and acquired arms of the immune response [27].



Regulation of heat shock in Mycobacterium tuberculosis

What makes the expression of HSPs so interesting
to the pathogen biologist is that pathogen HSPs
are also recognized by specific receptors on host
immune cells, triggering an inflammatory immune
response [19,21,23,32]. In addition to this, the con-
servation between host and pathogen HSPs means
that pathogen HSPs can be utilized by the host to
shuttle peptides into the HSP-mediated antigen pre-
sentation pathway [17,30].

Thus, while the pathogen needs to increase
expression of its HSPs in response to the stresses
induced by host defenses [7,20,22,24], it must tem-
per this need so as not to alert the host immune
response to its presence. It is in the context
of this dilemma that we are interested to learn
how pathogens control the expression of their
heat shock proteins. We have chosen to study
Mycobacterium tuberculosis, an intracellular bac-
terial pathogen whose infection profile is critically
governed by a dynamic relationship with the host
immune response. In a recent study we demon-
strated the vital importance of HSP regulation to
M. tuberculosis by generating a mutant strain lack-
ing the HspR repressor protein thus effecting dys-
regulation of the Hsp70 response [28]. The mutant
strain constitutively overexpressed Hsp70 and asso-
ciated HSPs, and during murine infection its sur-
vival was emphatically reduced. The underlying
cause for this attenuation was enhanced immune
recognition of the bacterium.

HSPs are so called because their expression is, in
most cases, easily inducible by elevation of temper-
ature causing denaturation of proteins. However,
the expression of many is also determined by other
stresses or environmental stimuli, such as oxidative
stress, reactive nitrogen and micro-aerophilic con-
ditions [13,18,26], to name several with particular
importance to an intracellular pathogen. It is our
aim to be able to describe under which conditions
the mycobacterial HSPs are expressed and identify
the molecular mechanisms behind their regulation.

Strategy

We have embarked upon an approach based on
whole genome expression profiling, using DNA
microarrays to characterize the wild-type tran-
scriptional response under relevant stresses/stimuli.
These responses will then be dissected into their
constitutive regulatory circuits by generating spe-
cific mutants in different regulatory pathways and
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comparing the expression profiles of resultant
strains in stressed and unstressed conditions with
the wild-type. Such an approach has only been
made possible by the recent development of whole
genome microarrays for M. tuberculosis and also
by the acquisition of techniques to manipulate the
genetics of the bacterium.

The microarray we are using consists of 3924
PCR amplicons (size range 60—1000 bp) derived
from regions of all the predicted coding sequences
of the sequenced strain of M. tuberculosis
H37Rv [11], spotted onto poly-L-lysine-coated
glass slides. RNA was extracted from bacteria
grown in different conditions or from different
strains, and cDNA was labelled with Cy3 or CyS5
dCTP during reverse transcription and competi-
tively hybridized to the microarray. The analysis
of microarray data is of critical importance and,
like the technology itself, remains a largely devel-
oping science. We utilized two methods to anal-
yse the data comparisons (e.g. wild-type vs. mutant
strain or heat-shocked vs. non-heat-shocked cells).
Firstly we used an ANOVA analysis, which took
into account three main effects — the array effect,
the gene effect and the variety (strain or environmen-
tal condition) effect, along with the pairwise inter-
actions between these effects. The second method
utilized was significance analysis of microarrays
(SAM) [31], which is based on generating pseudo-
datasets and assimilating sets of gene-specific ¢-tests
in order to assign each gene a score on the basis
of its change in expression relative to its own stan-
dard deviation. We are fortunate that heat shock is
one of the best-studied prokaryote gene expression
responses, as this endowed us with at least some
biological knowledge to assess the performance
of these analysis methods. In the wild-type heat
shock vs. non-heat shock comparison, both analysis
methods were able to identify all the known heat-
inducible HSP genes as upregulated. There were
other genes identified as upregulated and, although
ANOVA and SAM largely concurred, there were
a number of differences. Further experiments will
be required to finally determine which analysis best
reflects the true changes in gene expression.

Heat shock proteins as part of a wider
stress response

To date we have examined the transcriptional
response of M. tuberculosis to heat shock at 45°C
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for 30 min. Of course, heat shock is a complex
response which varies with both time and temper-
ature, but this snapshot of the response provides
a reference with which to compare transcriptomic
changes in defined regulatory mutants. One general
observation on the heat shock transcriptional pro-
file is that the response is not simply the elevated
transcription of the known HSPs but encompasses
genome-wide changes in gene expression. Our first
experiments to dissect this response involved gene
knockout of two likely heat shock repressor pro-
teins in M. tuberculosis, HspR and HrcA, which
were identified by homology to regulators in Strep-
tomyces and Bacillus [6,15]. We made mutants
of both of these regulators using the pSMTI100
gene replacement system [28]. Comparison of the
expression profiles of strains lacking these regula-
tors with wild-type, combined with identification of
repressor binding sites in promoter regions, estab-
lished the HspR and HrcA regulons. All members
of these regulons were also found to be upregu-
lated during heat shock and amongst them were
many of the classical heat shock chaperones. Com-
parison of our results with those obtained in stud-
ies examining the regulation of other arms of the
mycobacterial stress response reveals a high degree
of crosstalk and overlap between the different stress
regulons For example, the Hsp70 regulon forms a
central element of the heat shock response and is
under negative regulation by HspR in complex with
Hsp70 itself [5,28]. However, the Hsp70 operon is
also under control of the heat-inducible alternative
sigma factor o H [12], which in addition promotes
transcription at the stress response sigma factors
oB and oE [25]. Further to this, the functional
activity of these sigma factors is under the control
of anti-sigma factor pathways [16].

Future work and conclusions

Thus, while we have identified how many of the
major HSPs are regulated under heat shock, we
have, in the process, revealed a greater complex-
ity and extensiveness of the heat shock response
than originally expected. Further disassembly of
the response will require more extensive transcrip-
tional profiling at different temperatures for dif-
ferent lengths of time and the generation of other
regulatory mutants. It will also require the use
of techniques to analyse post-transcriptional and
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post-translational control mechanisms of expres-
sion. It also remains to investigate the different
types of stresses, such as reactive oxygen and nitro-
gen, which may stimulate HSP expression. Fur-
ther identification of when during infection and in
which tissues these proteins are expressed should
enlighten us about what physiological stresses the
bacteria are exposed to in these situations. HSPs
make excellent candidates for such a study because
they are extremely responsive to changes in stimuli,
producing transcriptional changes of great ampli-
tude. In addition, their qualities of high immuno-
genicity allow the possibility of using host immune
recognition of different HSPs as a surrogate marker
of HSP expression and in turn the physiological
stresses imposed on the bacteria. Such knowledge
could inform whether an infection was predomi-
nantly under aerobic or anaerobic conditions and
would help greatly in the choice of treatment. Most
importantly, we envisage that understanding the
regulatory mechanisms behind mycobacterial HSP
expression may allow the development of novel
strategies for the treatment of tuberculosis. We
have already demonstrated that dysregulation of
the M. tuberculosis Hsp70 response allows the host
to mount a more effective immunological response
against the bacterium [28]. Thus, drugs that disrupt
HSP regulation by interfering with specific regu-
lators make an attractive mechanism by which to
enhance host immunity.
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