
European Journal of Radiology Open 9 (2022) 100429

2352-0477/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Usefulness of MRI-based radiomic features for distinguishing Warthin 
tumor from pleomorphic adenoma: performance assessment using 
T2-weighted and post-contrast T1-weighted MR images 

Lorenzo Faggioni a, Michela Gabelloni a,*, Fabrizio De Vietro a, Jessica Frey a, 
Vincenzo Mendola a, Diletta Cavallero a, Rita Borgheresi a, Lorenzo Tumminello a, 
Jorge Shortrede a, Riccardo Morganti b, Veronica Seccia c, Francesca Coppola d,e, Dania Cioni a,e, 
Emanuele Neri a,e 

a Academic Radiology, Department of Translational Research, University of Pisa, Via Roma 67, 56126, Pisa, Italy 
b Department of Clinical and Experimental Medicine, Section of Statistics, University of Pisa, Via Roma 67, 56126, Pisa, Italy 
c Otolaryngology, Audiology, and Phoniatric Operative Unit, Department of Surgical, Medical, Molecular Pathology, and Critical Care Medicine, Azienda Ospedaliero 
Universitaria Pisana, University of Pisa, 56124 Pisa, Italy 
d Department of Radiology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138, Bologna, Italy 
e Italian Society of Medical and Interventional Radiology, SIRM Foundation, Via della Signora 2, 20122, Milano, Italy   

A R T I C L E  I N F O   

Keywords: 
Warthin tumor 
Pleomorphic adenoma 
Head and neck cancer 
Parotid neoplasm 
Radiomics 
Magnetic resonance imaging 

A B S T R A C T   

Purpose: Differentiating Warthin tumor (WT) from pleomorphic adenoma (PA) is of primary importance due to 
differences in patient management, treatment and outcome. We sought to evaluate the performance of MRI- 
based radiomic features in discriminating PA from WT in the preoperative setting. 
Methods: We retrospectively evaluated 81 parotid gland lesions (48 PA and 33 WT) on T2-weighted (T2w) images 
and 52 of them on post-contrast fat-suppressed T1-weighted (pcfsT1w) images. All MRI examinations were 
carried out on a 1.5-Tesla MRI scanner, and images were segmented manually using the software ITK-SNAP 
(www.itk-snap.org). 
Results: The most discriminative feature on pcfsT1w images was GLCM_InverseVariance, yielding area under the 
curve (AUC), sensitivity and specificity of 0.9, 86 % and 87 %, respectively. Skewness was the feature extracted 
from T2w images with the highest specificity (88 %) in discriminating WT from PA. 
Conclusion: Radiomic analysis could be an important tool to improve diagnostic accuracy in differentiating PA 
from WT.   

1. Introduction 

Salivary gland tumors make up approximately 3–6 % of all head-and- 
neck neoplasms, the majority of them being benign and predominantly 
affecting the parotid glands. Among them, pleomorphic adenoma (PA) is 
the most common type, followed by Warthin tumor (WT) [1]. A reliable 
preoperative differentiation between WT and PA is important for several 
reasons. In fact, PA can grow , recur easily after surgery, and is 

associated with a small, but not negligible risk of malignant trans-
formation [1]. In addition, although superficial or partial parotidectomy 
has long been the most common treatment for WT, in recent years active 
surveillance has been proposed as an alternative or first choice approach 
to preserve patients from risk of transient or permanent facial nerve 
damage, bleeding, and other surgery complications [2,3]. 

Clinical signs and symptoms are usually non-specific, with WT usu-
ally presenting as a slowly growing, painless mass in people aged over 50 
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years with a smoking history. Around 15 % of WT are multifocal in the 
same gland, and approximately 10 % of cases are bilateral [4–6]. 

Fine needle aspiration cytology (FNAC) is considered the gold stan-
dard for parotid tumor diagnosis, yet it has some limitations (such as 
tumor location in the deep parotid lobe) and shows highly variable 
levels of diagnostic accuracy. In this context, variant mucoepidermoid 
carcinoma (so-called Warthin-like mucoepidermoid carcinoma) may be 
particularly problematic, highlighting the need for a reliable preopera-
tive differential diagnosis against WT [2]. 

Regarding preoperative imaging examination, magnetic resonance 
imaging (MRI) is the preferred imaging modality for patients with a 
suspected parotid mass, and contrast-enhanced head-and-neck MRI is 
essential for the initial diagnosis and an accurate assessment of the 
location and locoregional extension of salivary gland tumors [7]. 
However, while conventional MRI can provide some diagnostic clues, it 
is often inconclusive in differentiating benign from malignant parotid 
gland lesions, and between various types of benign lesions [8,9]. 

Radiomics is an emerging approach that allows the extraction of 
quantitative data from medical images (including MRI) which, corre-
lated with genomic and clinical parameters, are able to improve 

diagnostic accuracy and aid individualized patient treatment and 
outcome prediction [10]. Over the last years, some articles have been 
published trying to differentiate benign from malignant salivary gland 
tumors, but only some of them have addressed the discrimination of WT 
from PA, yielding mixed results [11–17]. 

Our purpose is to evaluate the role of MRI-based radiomic features in 
differentiating WT from PA using both T2-weighted (T2w) and post- 
contrast fat suppressed T1-weighted (pcfsT1w) images. 

2. Materials and methods 

2.1. Patient selection and histopathological findings 

This was a retrospective study involving 81 patients (44 male, 37 
female, median age 56.9 years) with parotid gland lesions, who under-
went a head-and-neck MRI examination at our referral center between 
March 2010 and July 2018. Written informed consent to MRI was ob-
tained from all patients, and institutional review board approval was 
waived due to the retrospective nature of the study. 

All patients were surgically treated at our Institution with partial 

Table 1 
Statistically significant radiomic features extracted on pcfsT1w images (univariate analysis, p < 0.0001). The most discriminative featureis highlighted in gray.  
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parotidectomy; histopathological analysis showed 48 PAs and 33 WTs. 
Pre-operatively, of the 81 patients enrolled, only 52 (29 male, 23 female, 
median age 58.1 years) underwent MRI with intravenous administration 
of paramagnetic contrast material, whereas in the remaining 29 patients 
a noncontrast MRI examination had been performed. Among patients 
who underwent contrast-enhanced MRI, histopathological analysis 
revealed that 30 parotid mass were PA and 22 WT. 

All MRI examinations were carried out on a commercial 1.5-Tesla 
whole body MR scanner (Signa HDxt, General Electric, Milwaukee, 
WI, USA) using a dedicated 16-channel neurovascular coil. The software 
ITK-SNAP (www.itk-snap.org) was used for manual segmentation of MR 
images. 

2.2. Image processing and statistical analysis 

One radiologist with 9 years of experience in head-and-neck imaging 
manually contoured the outer edge of the entire tumor slice by slice, so 
as to cover the maximum extent of the tumor without exceeding the 
lesion border in both T2w and pcfsT1w images, where available. 

Prior to feature extraction, the N4 bias correction method [18] was 
applied to source MR images to correct for low frequency in-
homogeneity. Images were then normalized, and a quantization of 
image intensities inside the ROI was done using a fixed number of 60 
bins [19–21]. This intensity discretization method was used according to 
the Image Biomarker Standardization Initiative (IBSI) recommendation 
[22]. 

The dataset was composed of images with different voxel size, so the 
images were resampled to a uniform voxel size of 0.5 mm × 0.5 mm ×
4.8 mm using the BSpline interpolation algorithm. The features assessed 
in this study were obtained by performing 2D interpolation within the 
image slice plane, in compliance with the IBSI recommendation in case 
of slice thickness significantly larger than pixel spacing [22]. 

For each patient, a total of 105 radiomic features were extracted 
using the PyRadiomics v3.0.1 software package [23,24]. Specifically, 7 
main classes of radiomic features were considered, including the 
following: shape-based (14 features), first-order statistics (18 features), 
gray level co-occurrence matrix (GLCM, 22 features), gray level 
dependence matrix (GLDM, 14 features), gray level run length matrix 
(GLRLM, 16 features), gray level size zone matrix (GLSZM, 16 features) 
and neighboring gray tone difference matrix (NGTDM, 5 features). 

The Mann–Whitney test was used to seek which features allowed 

differentiating PA from WT. During this process, a p-value less than 
0.001 was chosen in order to select the most discriminative features, 
whereas the threshold for statistical significance was set at p < 0.05 for 
the remaining analysis. Multivariate stepwise logistic regression was 
applied to determine independent features and eliminate redundant 
ones. Logistic binary models were considered reliable when they had 
both sensitivity and specificity of at least 70 %. A receiver operating 
characteristics (ROC) curve analysis was performed to find cutoff values 
for the selected features and to determine area under the ROC curve 
(AUC), sensitivity and specificity values related to those cutoffs. 

3. Results 

3.1. Differentiation of PA versus WT on post-contrast T1-weighted images 

Among the 105 distinctive features extracted from pcfsT1w images, 
15 were statistically significant in the univariate analysis (p < 0.0001) in 
differentiating PA from WT (Table 1). 

The most discriminative feature selected using multivariate stepwise 
logistic regression was GLCM_InverseVariance. Based on this model, the 
following results were obtained: constant = − 12.754, B = 40.793 (p =
0.001). The accuracy of the model was 83 %. 

ROC curve analysis (Fig. 1) shows AUC, sensitivity and specificity of 
0.9 (95 % CI 0.82–0.98), 86 % and 87 %, respectively. 

3.2. Differentiation of PA versus WT on T2-weighted images 

Several features extracted from T2w images were able to differen-
tiate PA from WT (p < 0.0001) (Table 2). 

As a result of the selection process, three features were identified as 
yielding the most significant discrimination information, i.e., first-
order_Skewness, GLCM MaximumProbability and GLDM_SmallDe-
pendenceHighGrayLevelEmphasis. Table 3 shows regression coefficients 
and their statistical significance. The accuracy of the model was 86 %. 

The results of the ROC curve analysis are shown for each feature 
selected in Fig. 2, along with AUC, sensitivity and specificity values. The 
GLDM SmallDependenceHighGrayLevelEmphasis feature obtained the best 
performance in classifying PA versus WT, with an AUC, sensitivity and 
specificity of 0.87 (95 % CI 0.79–0.95), 83 % and 82 %, respectively. The 
highest specificity (88 %, reflecting the ability in correctly identifying 
WT) was obtained from the FIRSTORDER_skewness feature. 

Fig. 1. ROC curve analysis and box plot for PA versus WT.  

L. Faggioni et al.                                                                                                                                                                                                                                



European Journal of Radiology Open 9 (2022) 100429

4

4. Discussion 

Distinguishing WT from PA is of paramount importance due to im-
plications in patient management, treatment and outcome. The accuracy 
of the diagnosis is based on three steps: clinical data, imaging, and 
cytology evaluation. When there is discordance regarding WT diagnosis, 
surgery should be performed to reach the final diagnosis by histopath-
ological examination of the resected specimen [2]. 

Radiomics is an emerging method that could improve diagnostic 
accuracy through the quantitative analysis of data from images, and 
offers advantages over conventional biopsy including noninvasiveness, 
virtually unlimited repeatability, and possibility to assess the whole 
tumor tissue and to perform longitudinal follow-up testing [25–28]. 
While several articles have been published trying to differentiate benign 
from malignant salivary gland tumors based on radiomics features 
extracted from head-and-neck MRI examinations, there is still no 
consensus on which image sequences should be analyzed, with some 
studies using T2w images [11] and other ones DWI [15] or a combina-
tion of sequences (such as post-contrast T1w, T2w, DCE or apparent 
diffusion coefficient [ADC] images) [13,14,17,29]. In our study we 
selected to analyze T2w and pcfsT1w images, because these sequences 
are an essential part of MRI examinations aimed to the evaluation of a 
parotid mass, providing key information for the differential diagnosis. 
Additionally, DWI was not performed in most studies. 

As a general concept, radiomics features extracted from T2w images 
reflect the heterogeneity of the water composition of the tumor, whereas 
features extracted from pcfsT1w images reflect the heterogeneity of 
tumor vascularity [30]. 

Skewness was the feature extracted from T2w images with the 
highest specificity (88 %) in discriminating WT from PA. Some previous 
articles [11,12,14] reported skewness to allow discriminating WT from 
PA. In particular, Sarioglu et al. [12] found that WT showed significantly 
higher skewness on T2w images (p < 0.001) than PA, and that skewness 
was the feature with the largest AUC (0.789; 95 % CI, 0.694–0.885), 
with a cutoff lower than − 0.6895 being associated with PA diagnosis 
with a sensitivity of 84.4 % and specificity of 62.5 %. Also, Gabelloni 
et al. [11] found that higher skewness values correlated with the diag-
nosis of WT, but with lower specificity (78.13 %) and sensitivity (73.91 
%). In the current study we found that a higher skewness value (cut-off 
0.153) is indicative of WT, possibly related either to the presence of 
cystic components inside WT or a higher grade of vascularity of WT 
compared to PA. 

Another finding is that the most discriminative feature on pcfsT1w 
images was GLCM_InverseVariance. Variance is a measure of heteroge-
neity, with higher values reflecting greater differences in gray level 
values from their mean. On this basis, a lower GLCM_inverse variance 
can be associated with higher tissue heterogeneity, in keeping with the 
literature [31]. Among benign parotid tumors, WT tends to be more 
heterogeneous than PA [11], so our finding of a higher GLCM_inverse 
variance in WT would seem contradictory. This finding is in line with 
those by Piludu et al., who hypothesized that larger lesions had lower 
dissimilarity and higher energy (hence, higher homogeneity and uni-
formity) than smaller ones [14], and the WT lesions assessed in our 
study were larger than PA (9.476 vs 5.570 cm3, p = 0.001). 

Fruehwald-Pallamar et al. [13] and Sarioglu et al. [12] found that 
texture analysis features derived from pcfsT1w images provided the 
most significant textural information in the discrimination between PA 

Table 2 
Statistically significant radiomic features extracted on T2w images (univariate 
analysis, p < 0.0001). The most discriminative features are highlighted in gray.  

Table 3 
Results of logistic regression analysis.  

Radiomic features B p-value 

FIRSTORDER_Skewness  1.945  0.014 
GLCM_MaximumProbability  208.796  0.003 
GLDM_SmallDependenceHighGrayLevelEmphasis  –0.004  0.125 
Constant  –1.617  0.388  
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and WT. Conversely, Vernuccio et al. [29] demonstrated that an 
MRI-based predictive radiomics model based on texture analysis of T2w 
images improved the diagnostic performance of non-subspecialized ra-
diologists for the differential diagnosis between PA and WT. Our find-
ings revealed that texture features obtained from T2w and pcfsT1w 
images can have good discriminatory performance, with skewness 
derived from T2-weighted images yielding highest specificity. 

Our study has some limitations. Firstly, our findings were based on a 
relatively small patient sample (related to the relatively low prevalence 
of parotid tumors in the general population), which may have prevented 
us from obtaining more robust and generalizable data. A second limi-
tation is the lack of external validation using a test set, given the low 
numerosity of our patient sample. 

5. Conclusion 

Our findings reveal that radiomics analysis of conventional parotid 
MRI examinations can have a good performance in the preoperative 
differentiation between WT and PA, with skewness obtained from T2w 
images showing a specificity as high as 88 %. Further investigations on a 
larger patient sample with a test set for external validation are war-
ranted to corroborate such findings, which could provide an additional 
tool for the preoperative diagnostic management of patients with pa-
rotid masses. 

Fig. 2. ROC curve analysis and box plots for the three non-redundant features differentiating PA from WT.  
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