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Abstract

By drawing analogies with independent research areas, we propose an unorthodox frame-
work for mapping microfinance credit risk—a major obstacle to the sustainability of lenders
outreaching to the poor. Specifically, using the elements of network theory, we constructed
an agent-based model that obeys the stylized rules of microfinance industry. We found that
in a deteriorating economic environment confounded with adverse selection, a form of latent
moral hazard may cause a regime shift from a high to a low loan payment probability. An
after-the-fact recovery, when possible, required the economic environment to improve be-
yond that which led to the shift in the first place. These findings suggest a small set of mea-
surable quantities for mapping microfinance credit risk and, consequently, for balancing the
requirements to reasonably price loans and to operate on a fully self-financed basis. We il-
lustrate how the proposed mapping works using a 10-year monthly data set from one of the
best-known microfinance representatives, Grameen Bank in Bangladesh. Finally, we dis-
cuss an entirely new perspective for managing microfinance credit risk based on enticing
spontaneous cooperation by building social capital.

Introduction

Contradictory evidence of the impact of microfinance [1-4] has simultaneously been the root
of high praise and harsh criticism. Proponents argue that the benefit from the access to credit
makes microfinance an effective tool for improving the welfare of the poor [5]. Conversely, op-
ponents accuse microfinance institutions (MFIs) of creating even more poverty [6], while some
have gone so far as to claim that MFIs may harbor private groups with vested interest in perpet-
uating the current situation in many poor regions of the world [7]. Both sides, despite ideologi-
cal differences, have devoted a great deal of debate to the sustainability of microfinance,
particularly the reduction of information asymmetries [1, 8-10] and the non-profit versus for-
profit dilemma [1, 4, 8-11].

If an MFI is to operate sustainably, the need to balance reasonable pricing of loans (the so-
cial mission) with self-financing through profits (the financial objective) appears to be of ut-
most importance [9, 12]. Achieving the desired balance rests on the successful control of credit
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risk, which is a task complicated by the fact that MFIs often serve a network of borrowers with-
out credit histories. To address the issues involved, we build upon a recent argument that by
drawing analogies with independent research areas it is possible to unravel the complexities of
financial risks [13-17]. Specifically, we treated the network of borrowers served by an MFI as a
dynamical network, a versatile concept that has proven relevant in studies of many real-world
phenomena, including finance [18-24]. The dynamical network was set up to obey the stylized
rules of microfinance, where the operations of one of the best established representatives of the
industry, Grameen Bank in Bangladesh [1], constituted a working template.

Microfinance in a nutshell

The distinctive idea of microfinance is outreach to the poor. Every loan manager, accordingly,
has the task to recruit customers by visiting their villages and subsequently to organize man-
agement units, where each unit covers several villages located near one another. A few units
make up a branch under a single manager (i.e. a loan officer in a more traditional context). The
importance of such a setup arises from the limited mobility of the potential customers who
usually reside away from dense city centers, lack access to credit facilities, and occasionally fall
prey to loan sharks.

Another key idea behind microfinance is that the intended purpose for the loans is not con-
sumption. Instead, borrowers are supposed to invest into small businesses that can help boost
their income. Each borrower is thus expected to justify the loan with a rudimentary business
plan. The potential customers typically earn low incomes, less than $5 US per person or about
$2 to $30 US per household daily. A representative loan amount is around $100 US, to be re-
paid in weekly installments over a period of 52 weeks (one year) with a 20% nominal interest
rate [1]. To overcome the above-mentioned mobility problem, the manager visits each unit
once a week to collect the installments.

Given that MFIs cannot rely on elaborate credit history calculations, it was necessary to es-
tablish microfinance-specific mechanisms for securing the regular payment of installments.
Originally, six customers constituted a group, chose a leader from among themselves, and
shared liability for loans to the individual members. Because of the shared liability, individual
members were subject to peer monitoring and pressure, further reinforced by loan access for
other group members being restricted in the case of a default (dynamic incentive). Currently,
borrowing implies only individual liability, yet the group structure still exists, presumably to re-
tain some of the benefits of group lending [1, 8, 9, 25]. Furthermore, all borrowers belonging to
a unit (i.e. about 10 groups) are supposed to attend the weekly meeting with the manager and
pay their installments publicly.

Other aspects of microfinance intended to encourage borrowers to comply include compul-
sory savings, dividends, and access to higher loans subject to an exemplary past performance.
When borrowers open an account with the bank, they are supposed to save a certain percentage
of the loan amount. Although access to these savings is limited, the borrower does obtain cer-
tain shareholder rights and is entitled to a dividend. Moreover, borrowers are motivated to
stick to the payment schedule because an exemplary performance qualifies them for a progres-
sively higher loan amount in the future. For successful MFIs such as Grameen bank, these
mechanisms are sufficient to ensure a payment probability of around 95% [1, 12].

Overview of the modeling framework

Several assumptions, motivated by Grameen’s operations, regulate the network dynamics.
First, borrowers are represented as agents (i.e. equal-sized nodes of the network) that can be in
an active (paying installments) or an inactive (defaulted) state. The total fraction of active
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agents, f, indicates the overall state of the network. Second, agents can switch from an active to
an inactive state with the probability p;,,, to account for the possibility that some borrowers
may default due to owning unsuccessful small enterprises. These events are called intrinsic fail-
ures. Third, agents are connected (i.e. posses information on each other’s state) in the sense of
network theory because MFIs entice peer monitoring [1, 8, 9, 25] by forming groups of borrow-
ers. Several groups make a unit whose members meet weekly with a loan manager to pay their
installments publicly. One manager controls a branch comprised of multiple units from within
a geographically limited area. The size of the network is determined by the number of manag-
ers employed by a particular MFL To account for such a structure, we set up a hierarchical net-
work (Fig 1) in a way that n; < n, < n3 < n, agents corresponding to a group, a unit, a branch,
and the whole MFI, respectively, are connected with the probabilities q; > g, > g3 > g4, respec-
tively. Agents connected to each other are referred to as neighbors. Fourth, if a certain critical
fraction of neighbors, t;, turns inactive, an agent is tempted—with the small probability p,.,—
to purposely do the same [22, 23, 26]. Such an extrinsic failure accounts for the latent moral
hazard of strategic default when borrowers become wary of the willingness of other borrowers
to continue honoring their loan agreements [6, 27, 28]. The last, fifth assumption of the net-
work dynamics is that the inactive agents in the network, irrespective of whether they failed in-
trinsically or extrinsically, recover after a time 7 because unsuccessful borrowers may have
their payments rescheduled or may be issued new loans to jump-start their businesses. The re-
covery time has two components, 7 = 7y + A7, where Ty is a certain minimum time needed for
loan managers to address the problems of borrowers in default and At is an exponentially dis-
tributed random variable [23] with the standard deviation ¢, measuring the diverse abilities of
the managers. A complete description of the model can be found in the Methods section, in-
cluding the derivation of a deterministic analogue. For reference, a summary of mathematical
symbols is given in Table 1. In what follows, our main interest is in applying the introduced dy-
namical network to identify the effect of the key parameters (¢;, p.xs» 7o, and o) on the fraction
of active agents (f) given the outside forcing (p;,).

Results

To sustainably provide loans to borrowers not served by the traditional financial system, MFIs
are critically dependent on a high loan payment probability, itself largely driven by the eco-
nomic environment in which a given MFI operates. We therefore examined the performance
of the network of borrowers within a deteriorating economic environment by using the de-
scribed dynamical framework (Fig 2). For fixed values of t;, p.y» To, and o, the results showed
that the performance as measured by the fraction of active agents (f) responds linearly to the
probability of intrinsic failure (p;,,,) up to a certain point. When the value of p;,,, increases suffi-
ciently, the high rate of intrinsic failures drives the fraction of inactive neighbors of some agents
close to the critical value, t;, causing extrinsic failures to occur for the first time. The dynamical
network thereafter undergoes a regime shift evident from a highly nonlinear decline in f

(Fig 2). Additionally, the recovery of the network can be delayed, meaning that p;,,, must be
lower than the value that caused the downward regime shift before the fraction of active agents
undergoes the reverse shift. In some cases, recovery is altogether absent. To understand these
patterns better, we proceeded with a systematic analysis of the dynamics.

We began the analysis by observing how the fraction of active agents changes with time
when the probability of intrinsic failure, p;,, is kept constant (Fig 3a). Several important as-
pects of the dynamical network are revealed this way. The performance as measured by the
fraction of active agents, f, converges to an equilibrium, f*. There are two types of equilibria,
one with a high and one with a low fraction of active agents, denoted f; and f*, respectively.
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Fig 1. Visualization of the network structure. Blue dots represent agents. Black, orange, and red lines represent the connections within groups, units, and
branches, respectively, whereas the gray lines represent the connections across branches. The parameter values are n, =6, n, =60, n3=420,and ns =
2100, with the connectedness probabilities g4 = 1, g» = 0.05, g5 = 0.001, and g, = 10~*. Five distinct branches are recognizable at a glance, while a closer
inspection reveals seven units per branch. Individual groups are more difficult to distinguish. For clarity, the displayed network is much smaller than the ones
used in simulations.

doi:10.1371/journal.pone.0126447.g001

Convergence to a high-f or a low-f equilibrium depends on the value of p;,,, and, somewhat sur-
prisingly, on the initial state, in which all inactive agents are assumed to have failed intrinsically
and have had their recovery time drawn from the exponential distribution with the parameter
0. The dependence on the initial state is exemplified by the two dashed curves in Fig 3a, which,
although generated with the same value of p;,,,, converge to equilibria of different types. Before
turning to the implications of these outcomes, we first explore the origin of the two types
of equilibria.

In the equilibrium state, by definition, rates at which agents fail and recover are the same.
As long as the overall equilibrium fraction of active agents in the network, f*, is sufficiently
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Table 1. List of mathematical symbols in alphabetical order.

Symbol Description

E probability of having critically inactive neighborhood
F() DFA auto-correlation function

Feoxt(t) number of agents failing extrinsically at ¢
Fint(t) number of agents failing intrinsically at ¢
Fior(t) total number of agents failing at ¢

Rex:(t) number of extrinsically failed agents recovering at t
Rine() number of intrinsically failed agents recovering at t
Riox(t) total number of agents recovering at t

c proportionality constant

f fraction of active agents

f* equilibrium fraction of active agents

f: high-f equilibrium

f* low-f equilibrium

/i scale or lag

m; empirical moments

Next(t) fraction of extrinsically failed agents at t
n; network size parameters

Nine(t) fraction of intrinsically failed agents at t
Pext extrinsic failure probability

Dint intrinsic failure probability

Pint empirical average of pj;

qi connectedness probabilities

s(t) smoothing spline

s average of s(t)

ty fractional threshold

Aping(t) zero-mean smooth forcing function

At random component of 7

a scaling exponent of F(/)

g standard deviation of Ap;(t)

T recovery time

average recovery time

Bl

To minimum recovery time

doi:10.1371/journal.pone.0126447.t001

high, the majority of agents will be aware of a fraction of inactive neighbors below the critical
value t;,. In this case, all failures are intrinsic and the equilibrium failure rate is simply f* p;,.
Worsening performance of the network complicates matters because it increases the probabili-
ty (denoted E) of having a critically inactive neighborhood, i.e. the probability that a randomly
chosen agent has a fraction of inactive neighbors higher than t;,. Therefore, in addition to in-
trinsic failures, the remaining active agents in the equilibrium state, f*(1 — p;,,,), can fail extrin-
sically, increasing the total failure rate by f*(1 — p;,;) Epexr. The recovery rate is determined by
the reciprocal of the average time to recovery, T = 1, + 0, and the fraction of inactive agents, 1
— f*, producing the term (1 — f*) /7. By balancing failure and recovery rates, and solving for f*,
we get

1
B 1 + (.pint + Epext - ‘I':"pintpext)f '

f (1)
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Fig 2. Time evolution of the dynamical network in a stylized economic downturn. The probability of intrinsic failure, p;,;, steadily increases (decreases)
throughout the first (second) half of the simulation at a rate 3.854 x 107° per time-step, symbolizing a deteriorating (recovering) economic environment. The
network is seen switching between regimes with high and low fractions of active agents, f. Depending on the probability of extrinsic failure, pex:, the network
performance may lag behind that of the economy (red curve) or it may never return to the high-f regime (blue curve). Other parameter values are t, = 0.2, 7o =
7,and o = 30. In all simulations, ny = 6, n, = 60, Nz = 420, with the total number of agents set to n, ~ 10* for computational reasons. The connectedness
probabilities are g4 =1, go = 0.7, and g3 = 0.05, and g, is constrained so that the total average number of connections is 100 [31]. The scale for pj; is
reversed and magnified 32 times for easier visual comparison.

doi:10.1371/journal.pone.0126447.9002

From this equation, in the limits E — 0 and E — 1, we obtain high-f (f;) and low-f (f*) equilib-
ria, respectively. When the conditions p,,7 < 1 and Ep, T < 1 are satisfied, a series expansion
of Eq (1) yields f* =~ 1 — (p,,, + Ep,.;, — Ep,.Po)T> Which is the result reported by Ref. [22]
after assuming independent intrinsic and extrinsic failures. This mean-field approximation
works much better for regular, as opposed to Erdés-Rényi, networks [22], and the larger the
system the more appropriate it becomes. The other terms in the series (not shown) originate
from the fact that intrinsic and extrinsic failures in our model are dependent. The insight
gained from Eq (1) and its limits puts us in a better position to understand the implications of
the previously described outcomes, but before discussing these implications, we first present an
additional visual aid.

The visual aid in question (Fig 3b) is a plot that shows how the equilibrium state (f*) de-
pends on the probability of intrinsic failure (p;,,;). The most prominent feature of the plot is
that the equilibrium states of the dynamical network form a hysteresis loop. Namely, the criti-
cal value of p,,,; causing the shift from a high-fto a low-f equilibrium is larger than the corre-
sponding critical value at which the opposite shift is possible. An immediate consequence is
that the convergence depends on the initial state, as demonstrated in Fig 3a, or, more generally,
on the path traversed by the fraction of active agents over time. Another consequence is the de-
layed recovery illustrated in Fig 2. In fact, when the parameter values are such that the return-
ing branch of the hysteresis loop (dashed curve in Fig 3b) gets pushed beyond the range of
possible forcings (i.e. below p;,,; = 0, which is accomplished, for instance, by increasing p..;), a
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Fig 3. Two types of equilibria and the regime shift. (a) The performance of the dynamical network as measured by f converges either to a high-f or a low-f
equilibrium, depending on the probability of intrinsic failure, p;;, and the initial state. The parameter p;,; ranges from 0.001 (triangles) to 0.005 (stars) in
increments of 0.001. The dependence on the initial state is exemplified by the dashed curves, which converge to different equilibria although both were
generated with the same p;;. (b) The equilibrium states (f*) of the dynamical network form a hysteresis loop. Numerical results (black) compare favorably
with the analytically derived high-f and low-f equilibria (red and blue curves, respectively; see Eq (1) and its limits in the text). A major consequence of
hysteresis is that the recovery of the network lags that of the economy because the probability of intrinsic failure, p;,;, causing a shift from a high-f to a low-f
regime is larger than the corresponding probability permitting the opposite regime shift. Parameter values are t, = 0.2, peyx: = 0.009, 75 = 7, and o = 30.

doi:10.1371/journal.pone.0126447.9003

recovery is no longer observed. We next argue that important insights into microfinance credit
risk management follow from these results and extensions thereof, shown in the form of the
phase diagrams.

When estimating risk, it is crucial to find out how far the parameters of a given dynamical
system are from the regions of the parameter space characterized by high instability. We there-
fore use phase diagrams to present a comprehensive overview of the dynamics as a function of
the parameter values. These diagrams are referred to as risk maps because of the assumed link
between the dynamics and credit risk. For a given value of the probability of intrinsic failure
(pins)> which is, as stated before, beyond the control of MFIs, we can produce three two-dimen-
sional risk maps (Fig 4), one in the t;, — p,, plane (constant T = 1, + o), anotherin thet, — 7
plane (constant p,,,), and the last one in the p,, — 7 plane (constant t;). Each of the three risk
maps shows three distinct regimes of the network dynamics. Regime I is characterized by a
high equilibrium fraction of active agents, f;', thus carrying little credit risk for the MFI. In con-
trast, regime III has a low equilibrium fraction of active agents, f*, such that the network can
never re-enter regime I even if the probability of intrinsic failure improves to p;,; = 0. Regime
III, consequently, implies a high credit risk for an MFI and needs to be avoided at all cost. In-
termediate regime II generally leads to the low-f equilibrium, f*, from which it is always possi-
ble to recover provided the probability p;,, improves sufficiently. In addition, for small values
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Fig 4. Risk maps for credit risk evaluation. We are interested in where the real-world lender’s parameters are situated relative to the region of the phase
space characterized by high instability. Our model depends on three parameters, but instead of a three-dimensional phase space, we plot risk maps in three
separate two-dimensional phase planes. The model exhibits three distinct behaviors depending on the parameter values: a high-f regime (1), a low-f regime
with recovery (l1), and a low-f regime without recovery (lll). (a) Phase diagram in the t,-pey plane with constant © = 7, 4 o, where 7o = 7 and o = 30. (b) Phase
diagram in the t,-7 plane with constant pey: = 0.009. (c) Phase diagram in the pe«-T plane with constant t, = 0.2. The probability of intrinsic failure is pj,: =
0.004. Shown are the numerical results and curves of best fit.

doi:10.1371/journal.pone.0126447.9004
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of p., (roughly < 0.005; not shown), some paths satisfy f* < f < f; for an indeterminate peri-
od of time because the fraction of failed neighbors ends up distributed around the critical frac-
tion, t,. Mathematically, we have 0 < E < 1. These paths always permit a recovery and hence
qualitatively belong to regime II In the context of managing microfinance credit risk, regime II
implies a necessity for caution and it should prompt actions aimed at restoring better perfor-
mance. By classifying the network dynamics into three distinct regimes and identifying their
respective implications for credit risk management, we have made the connection between the
dynamics and risk more apparent, but we have yet to specify the factors controlling the preva-
lence of each regime.

The risk maps (Fig 4) reveal the factors that promote the prevalence of each of the network
dynamics regimes. Here, it is useful to recall that the smaller the value of t; and the larger the
value of p,.,, the more an agent depends on its neighbors. When the average time to agent re-
covery, T = T, + 0, is constant (Fig 4a), a high enough value of t;, always keeps the network in
regime I. This result is understandable given that the probability of extrinsic failure, p,,, plays
arole in the dynamics only if the intrinsic failure rate is sufficient by itself to raise the fraction
of failed neighbors of an agent to the level of t,. If #;, is high enough, we may never observe such
an outcome. Conversely, a decreasing value of t;, generally forces the network to jump from re-
gime I to II, unless p,,, is sufficiently high to force a direct transition to regime III. Qualitatively
different behavior is observed when p,,, is held constant and 7 is allowed to change (Fig 4b). In
this case, for any value of t;, recoveries from failures can be sufficiently slow (i.e. T sufficiently
high) that the network transitions first from regime I to II and then from regime II to III. How-
ever, direct transitions from regime I to III are impossible. Finally, when #;, is held constant (Fig
4c¢), an increasing 7 first drives the network from regime I to II and then from regime II to III,
unless again p,,, is sufficiently high for a direct transition to regime III to be possible. In addi-
tion to mapping microfinance credit risk in the described manner, we can also consider the
question if there are any early-warning signs that could be exploited to mitigate or even avoid
the negative impact of a regime shift.

As a critical point is approached, complex dynamical systems often become less attracted to
the equilibrium state, experiencing bigger displacements and slower recoveries from perturba-
tions [29]. This phenomenon—dubbed critical slowing down—should, therefore, reveal itself
through a larger standard deviation and longer correlation of the state variables. In Fig 5a, we
show that a gradual increase in the probability parameter p.,; causes the standard deviations of
the fractions of active and extrinsically failed agents to spike when the dynamical network ap-
proaches a critical point during the shift from regime I to regime II. Because spiking begins no-
ticeably before the regime shift, this critical slowing down may be used as an early-warning
indicator of a network breakdown [29]. We also conducted a detrended fluctuations analysis
(DFA) [30] to analyze auto-correlation in the model outputs (Fig 5b). The DFA auto-correla-
tion function is of the form F(I) o I, where ! is the scale (lag) and & is an exponent measuring
the strength of the correlation. When o < } (& > 1) two consecutive displacements of the net-
work state—e.g. of the fraction of active agents f—are more likely to be in the opposite (same)
direction. The exponent o = 1 indicates no correlation. In our dynamical network, for small
Dext» We observe (Fig 5b) a finite-range auto-correlation of the random-walk type (o = 1.5), but
its strength gradually diminishes at larger scales [23]. However, as the network undergoes the
regime shift at p,,, = 0.006, the auto-correlation exhibits considerable strength even at large
scales. Once p,,, takes the network decisively into regime II, the strength of the auto-correlation
is again similar to that observed in the case of small p,,;. Accordingly, we identified two poten-
tial early-warning indicators complementary to the microfinance credit risk mapping, both of
which could help mitigate the negative impact of a regime shift.
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Fig 5. Early-warning indicators of a regime shift. (a) Standard deviations of the fractions of active and extrinsically failed agents spike as the dynamical
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comparison. Parameter values are t;, = 0.2, 7o = 7, and o = 30. The probability of intrinsic failure is p;,;: = 0.004.

doi:10.1371/journal.pone.0126447.9005

Empirical analysis

To interpret the real-world microfinance data (Fig 6a) in the context of our modeling frame-
work, we performed an empirical analysis by estimating the model parameters from the avail-
able data set using the method of moments (see the Methods section). Upon obtaining the
parameter estimates, we conducted simulations to visually compare the data set and the model
outputs (Fig 6b). The results of the empirical analysis indicate a very small probability of intrin-
sic failure, p,,, = 3.7 x 10™* per day, which is equivalent to saying that each month about 1.1%
of the Grameen’s network of active borrowers is at risk of default. Such a low percentage is
quite reasonable given that Grameen Bank is a successful MFI that has been maintaining a
high loan payment probability for over three decades. The estimated critical fraction, t;, =
0.0695, is also small, pointing to two plausible interpretations. First, aside from a very general
rationale [31], we had no evidence for letting the number of neighbors saturate at around 100,
and therefore may have chosen a level that is too high to reflect reality. If so, the estimate of the
threshold #; should be rather low. Second, because the estimated critical fraction of the average
number of neighbors (i.e. 7% of 100) is about the same as the size of borrowing groups (6 peo-
ple), it would seem that financial decisions of borrowers are determined by the status of their
most immediate neighbors. For a borrower in a critically inactive neighborhood, the probabili-
ty of extrinsic failure, p,,, = 0.0019 per day, suggests that there is a less than 5.8% chance for a
strategic default to occur in the next month. If the borrower defaults, the average time to recov-
ery consistent with the data is T = 39.85 days. The obtained parameter values put Grameen
Bank rather firmly into the domain of regime I (Fig 6¢), as could be expected from the
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Fig 6. Data set, comparison with model runs, and the risk map for Grameen bank. (a) The data set contains monthly information on amounts due that
were actually paid to Grameen bank between June 2002 and Jan 2013. A long-term trend observable in the data is extracted using a smoothing spline, s(t).
The trend suggests that the model forcing is of the form p,,,(t) = P, + Ap,,(t), where p,,, is a constant and Ap;(t) a zero-mean smooth function of time. (b)
Comparison of the data set with typical model runs reveals satisfactory agreement between the two. For the forcing term, we assume Ap,,,(t) = c[s(t) — §],
where ¢ = —{ and s is the average of s(t). (c) Estimated model parameters place Grameen bank in regime | (x-mark) as could be expected from one of the
most successful microfinance representatives. Even in the wake of 2007—2008 financial crisis, Grameen Bank continues to operate in the low risk regime
(star) despite the more challenging economic environment.

doi:10.1371/journal.pone.0126447.g006
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successful operations of this MFI. However, the low value of t, is a reason for some concern
should the economic environment deteriorate.

Discussion

Reducing the major credit risks of MFIs to just a few parameters, as we have done herein, offers
practical pathways to risk mapping and management, similar in spirit to the approach used by
Ref. [15]. To illustrate this idea, consider that the parameters ¢, and p.,, describe the risk arising
from the latent moral hazard of a strategic default [6, 27, 28]. In particular, ¢, is the critical
point at which borrowers start doubting the positive value of further cooperation with the lend-
ing program. The value of cooperation may be perceived differently by different individual bor-
rowers, but the important question is how MFIs can strengthen that perception in a general
manner. Here we refer to new ideas, independent of the established mechanisms of strict group
liability with peer selection and monitoring. The latter mechanisms certainly play an effective
role in reducing information asymmetries, but they also transfer the costs of screening and
identifying delinquents from lenders to borrowers [25, 32] without guaranteeing lower interest
rates in return (especially in the case of a for-profit lender). By contrast, improving the percep-
tion of the value of cooperation tends to raise social capital by lowering the transaction costs of
working towards common goals [33, 34]. A good example might be educational activities,
which, although primarily aimed at raising human capital, also have the capacity to “engender
goodwill and sentiments of reciprocity” [35]. Furthermore, emphasis on building social capital
may have an additional positive effect of lowering the probability of extrinsic failure, p,,,. This
presumed effect is because social capital is based on relations of trust, reciprocity, and connect-
edness in networks [33], all of which help not only to establish but also maintain spontaneous
cooperation [34].

Concerning the generality of the present work, we admit that in some aspects our model is
more like “a proof of concept” than the general solution that fits the specifics of each and every
MFI in existence. However, most real-world cases can be cast into a form analyzable within the
proposed modeling framework because of its great flexibility and extendability. For instance,
decaying networks could be used to model permanent defaults [6] by excluding intrinsically
failed agents with infinite recovery times. Dynamical networks could also be used to imitate
mechanisms of moral hazard complementary to the one we have already described. An exam-
ple would be failed connections between agents [23] when the information exchange is inter-
rupted as a consequence of lax peer monitoring [6, 9]. Additionally, new agents could be
allowed to enter the network, leading to a class of models that explicitly incorporates outreach
as a vital component of microfinance industry [4, 9]. Finally, competition between two or more
MFIs [10] could be modeled in a setting where networks of borrowers overlap, allowing more
robust networks to take over parts of more fragile ones. We therefore conclude that the concept
of dynamical networks makes a promising new tool for analyzing open questions in microfi-
nance with the potential for greatly improving, if not revolutionizing, the perception of sustain-
ability in this industry.

Methods

We constructed an agent-based model mimicking the characteristics of an MFI by surmising
that network theory is a natural framework for such a construct. Agents (i.e. equal-sized nodes
of the network) represent borrowers, who can be in an active or an inactive state. The active
state signifies that the borrower is regularly paying installments, whereas the inactive state indi-
cates that the borrower is currently unable to pay or refusing to continue with the payments.
The overall success of the MFI is indicated by the fraction of active agents, f, which serves as a
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proxy for the loan payment probability. An agent can fail intrinsically (i.e. switch from an ac-
tive to an inactive state) as the involuntary consequence of owning an unsuccessful small enter-
prise. The probability of intrinsic failure, p;,,,, is small because at any moment most enterprises
are expected to continue doing business as usual. However, p;,,, increases in a deteriorating eco-
nomic environment or if the lender is unable to discriminate against risky borrowers with lim-
ited collateral (adverse selection). The described formalism is similar to that in Ref. [22] with
the exception that here p;,,, is conditional on agents being in the active state. Otherwise, agents
in the inactive state could fail again, which would correspond to multiple defaults of a single
borrower. We assume that such multiple defaults are impossible. Finally, because the probabili-
ty of intrinsic failure is beyond the control of MFIs, this variable can be considered as a forcing
for the model.

In contrast to intrinsic failure, an owner of a successful small enterprise may be hesitant to
pay scheduled installments for extrinsically motivated considerations. These considerations are
based on the availability of information on how regularly other borrowers service their loan ob-
ligations. We assume that two agents are connected in the usual sense of network theory if each
of them knows whether the other one is currently active. Given the way microfinance opera-
tions are set up, it is quite certain that such knowledge is common among the members of the
same group. The situation becomes progressively more opaque as the geographical reach ex-
tends from the group to a management unit, a branch, and, ultimately, the whole MFI. Thus,
we set up a hierarchical network (Fig 1) in a way that n; < n, < n3 < n4 agents corresponding
to a group, a unit, a branch, and the whole institution, respectively, are connected with the
probabilities q; > g, > g5 > qu, respectively. The size parameters (#;) can be constrained by ob-
serving Grameen’s operations with roughly 6 persons per group, 10 groups per unit, and 7
units per branch. The connectedness probabilities (q;) are more loosely constrained by the facts
that the group structure and weekly unit meetings guarantee information exchange, a branch
covers a limited geographic area, and the average total number of connections per agent should
saturate at around 100 [31]. We assume that, as suggested by the Watts model [26] and addi-
tionally explored by Refs. [22, 23], if a certain critical fraction of neighbors, £}, turns inactive,
an agent is tempted—with the small probability p,.,—to purposely do the same. Such an as-
sumption accounts for the latent moral hazard of strategic default when borrowers no longer
believe that other borrowers will continue honoring their loan agreements [6, 27, 28]. Note
that the larger the value of t;, and the smaller the value of p,,,, the less an agent depends on its
neighbors. The parameter p,,, is, similarly to the forcing p;,,, conditional on agents being in the
active state. Furthermore, the failure is said to be extrinsic because the available information on
the state of the other agents prompts a voluntary reaction.

In microfinance every failure is addressed by a branch manager. Unsuccessful borrowers
may have their payments rescheduled or may be issued new loans to jump-start their busi-
nesses. Accordingly, we assume that the inactive agents in the network, irrespective of whether
they failed intrinsically or extrinsically, recover after a time 7. Because the manager cannot re-
solve issues immediately, the time to recovery is greater than a certain minimum time, 7,. Man-
agers may also vary in their ability to handle the problems that led to the failure, which is why
the recovery time has a random component [23], A7, so that 7 = 75 + A7. The random variable
At is assumed to be exponentially distributed with the standard deviation g, a measure of the
diverse abilities of the managers. One of the properties of the exponential distribution is that ¢
also serves as the expectation of the random variable Az, thus giving the expected time to recov-
ery T = 1, + 0. With these specifications, we are finally in a position to define that an agent is
in the inactive state if it has failed either intrinsically or extrinsically, and if the time since fail-
ure is less than the time to recovery. Otherwise, the agent is in the active state. A reader keen
on better understanding the intricacies of the described model may benefit from the derivation
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of a deterministic analogue below. Mathematical symbols appearing throughout are given in
Table 1.

Deterministic model

We derive deterministic equations that govern the time evolution of the average number of ac-
tive, intrinsically failed, and extrinsically failed agents. Let us denote these quantities by f(¢),
(1), and n,,(t), respectively. The change in f(t) is given by the difference in the total number
of recovering, R,,(t), and failing, F,,(t), agents at an arbitrary moment ¢. For recoveries, we
have R, ,(t) = [1 — f(t — 7)]/7 because out of 1 — f(t — 7) agents that are in the failed state at
t — 7, only the fraction 1/7 can recover at ¢. For failures, we have F,,,(t) = F;,,/() + F.(t) = f(t)
Dint + fIO(1 = pint) E(t)pex: because (i) only active agents can fail, (ii) intrinsic failures have prior-
ity over extrinsic ones (i.e. the latter are conditional on the former not happening at the same
time), and (iii) the probability of an agent having a critically inactive neighborhood is E(t). Fur-
thermore, it holds by definition that R, ,(t + 7) = F,,(¢) which yields

1
B 1 + [pint + E(t)(pext _pintpe)(t)}‘f .

f(t) (2)
It is now apparent that the equilibrium fraction of active agents, f*—given in Eq (1)—follows
from Eq (2) as the time dependence of the probability E(¢) wanes. Next, looking at the number
of recoveries from intrinsic, R;,,(t), and extrinsic, R,,(t), failures separately, the same logic as
before dictates R,,(¢t) = n,,(t —7)/T and R,,(¢) = n,,(t — T) /7. The definitions imply

Ry (t+7) =F,(t)and R, (t +7) = F,

ext

My (8) = T ()P (32)

(t), resulting in

Mo (£) = T () (1 = P ) E(£)Poss- (3b)

Using Eqs (2, 3a, and 3b) a quick check gives f(t) + 1;,,(f) + n.(f) = 1 as it should be. We thus
see that the underlying dynamics of our model are relatively simple, yet able to generate rather
complex dynamical phenomena owing to the stochasticity and a small set of rules that deter-
mine how E(f) depends on time.

Empirical analysis

Real-world microfinance data can be interpreted in the context of our modeling framework by
estimating the model parameters from the data. An appropriate method for doing so is the
method of moments. We apply this method to a 10-year monthly data set, consisting of loan
collection probabilities recorded by Grameen Bank from June 2002 to January 2013. Stated
more precisely, “loan collection probabilities” mean the percentage of the amounts due that
were actually paid, which is compatible with the model output f. One difficulty in estimating
the model parameters is the apparent trend in the data (Fig 6a), suggesting a time-dependent
forcing of the form p, ,(t) = p,,, + Ap,,(t), where p,, is a constant and Ap;,,(t) a zero-mean
smooth function of time. We therefore use a smoothing spline, s(f), to extract the trend and
then, during the estimation, treat p,,, as just another parameter. To keep the total number of
parameters at a computationally manageable level, we assume without a major loss of generali-
ty that the minimum time to recovery, 1o, is seven days. Altogether we aim at reproducing the

first four moments of the available data set, i.e. the mean (m,), the standard deviation (m]Q/ ),

the standardized skewness (1m,/m}/*), and the standardized kurtosis (1, / mj). At the point of
best fit, the empirical moments compare favorably with the model-generated ones (mean + s.d.
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from 500 runs): 0.9805 vs. 0.9833+0.0004, 0.0023 vs. 0.0023%0.0002, —0.9133 vs. —0.2907
+0.2705, and 4.0024 vs. 3.0238+0.5994 for the mean, the standard deviation, the standardized
skewness, and the standardized kurtosis, respectively. A comparison of the original data set
with three typical model runs is shown in Fig 6b. In these simulations, we assume that the
time-dependent forcing is Ap,,,(t) = c[s(t) — 5], where c is a proportionality constant set to — 1
and s is the average of s(t). Such an assumption is justifiable in regime I (Fig 2). Finally, with
reasonable agreement between the data and the model results, we construct a risk map for
Grameen bank analogous to those shown in Fig 4. In this case, however, we use a p.-pins
phase diagram (Fig 6¢), where the probability of intrinsic failure should be interpreted as the
average forcing, p,, .
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