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Abstract: On-line sensors for the detection of crucial process parameters are desirable for 

the monitoring, control and automation of processes in the biotechnology, food and pharma 

industry. Fluorescence spectroscopy as a highly developed and non-invasive technique that 

enables the on-line measurements of substrate and product concentrations or the 

identification of characteristic process states. During a cultivation process significant 

changes occur in the fluorescence spectra. By means of chemometric modeling, prediction 

models can be calculated and applied for process supervision and control to provide 

increased quality and the productivity of bioprocesses. A range of applications for different 

microorganisms and analytes has been proposed during the last years. This contribution 

provides an overview of different analysis methods for the measured fluorescence spectra 

and the model-building chemometric methods used for various microbial cultivations. Most 

of these processes are observed using the BioView® Sensor, thanks to its robustness and 

insensitivity to adverse process conditions. Beyond that, the PLS-method is the most 

frequently used chemometric method for the calculation of process models and prediction of 

process variables. 
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1. Introduction 

On-line measurements of substrate, products, intermediate products and other physicochemical 

process variables during bioreactor cultivation are becoming increasingly important. For the process 

analytical technology (PAT) initiative of the US Food and Drug Administration (FDA) and for quality by 

design (QbD) approaches, software sensors support the ambition to establish on-line monitoring methods 

to ensure high quality of manufacture of pharmaceutical products and batch-to-batch reproducibility [1–4]. 

For the on-line monitoring of critical bioprocess variables in bioreactors software sensors based on 

off-gas analyzers, dissolved oxygen (DO) or pH-electrodes are used. Because of the complexity of the 

biological matrix, the access to important process variables is limited or the sensors are not robust enough 

for the required conditions in bioreactors [1]. Beyond that, the application of on-line measurements, for 

example on-line HPLC, allows for the measurement of substrate and product concentrations during 

cultivation [1,5]. One disadvantage of on-line HPLC is the time delay between sampling and 

determination of the concentration of the observed process variable. As an alternative to on-line HPLC, 

the control of bioprocesses by using FIA measurements is described in [6,7], but there is also a time 

delay for the detection of the concentration of certain process variables. A frequently announced 

improvement of the detection of crucial process states can be achieved by using sensitive on-line 

software sensors in combination with mechanistic models for the estimation of process variables [8–10]. 

Therefore, the combination of soft-sensors with multivariate data analysis enables process supervision 

and control [3,11]. Recently, NIR-spectroscopy has been used for bioprocess monitoring [12–14], as 

well as Raman spectroscopy [15,16]. Both are techniques based on vibrational effects. In small molecule 

applications chemical compounds can be identified better using Raman than NIR-spectroscopy, but  

NIR-spectroscopy prevails for bioprocess fingerprinting [17]. However, both methods are not as sensitive 

compared to fluorescence-spectroscopy. 

For more than 30 years fluorescence sensors have been applied for the monitoring of various biological 

processes. In biotechnology, pharma and food process engineering they are used for biomass and product 

prediction, process or media characterization. Fluorescence spectroscopy enables a highly developed 

and non-invasive technique the on-line monitoring and supervision of these processes. The maintenance 

of optimal process parameters is ensured by this approach. In 1970 Harrison and Chance already reported 

the use of the fluorescence technique for the monitoring of continuous cultures of microorganisms by 

recording the intensity of light emitted by reduced nicotinamide adenine dinucleotide (NADH), where a 

single wavelength combination of one excitation and one emission wavelength was measured [18]. What 

has also been known for decades is the linear correlation of culture fluorescence and the biomass 

concentration [19,20]. The fluorescence method is improved further by using more than only one single 

excitation and emission wavelength pair. For this, the fluorescence of a culture broth can be measured 

by a range of excitation wavelengths and a single emission wavelength or vice versa a single excitation 

wavelength and an emission spectrum or using an excitation-emission matrix (EEM) that consists of 

different combinations of excitation and emission wavelengths. Nowadays, EEM fluorescence 

spectroscopy or so-called 2-dimensional (2D-) fluorescence spectroscopy has been widely established. 

Here, a combination of multiple excitation and emission wavelengths is taken to observe different 

biological processes [21]. During microbial cultivation there are observable significant changes within 
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the 2D-fluorescence spectra caused by variations in the concentration of biogenic fluorophores, such as 

aromatic amino acids, vitamins and co-enzymes [22]. 

A 2D-fluorescence spectrum consists of a high number of intensity values because of the different 

excitation and emission wavelength combinations. This leads to large data sets that require methods for 

data reduction and evaluation. The important process variables are only accessible by complex analysis 

methods that are able to detect the information hidden in the fluorescence spectra. Common approaches to 

get this information out of the 2D-fluorescence spectra are chemometric models, such as multiple linear 

regression (MLR), principal component regression (PCR) and partial least square regression (PLS) [23,24]. 

In addition to these linear methods, there are a number of applications of non-linear techniques, 

including, for example, artificial neural networks (ANN) and further machine learning methods [9,25,26]. 

In addition, there are a lot of attempts to reduce the high number of variables by selecting the 

wavelengths combinations out of the whole 2D-spectra that are important for the description and 

estimation of certain process variables. For this task also artificial intelligence algorithms containing for 

example self-organizing maps, genetic algorithm and ant colony algorithm are described [9,27–30]. 

The reduction of the large data sets by using an ant colony optimization (ACO)-based methodology 

is reported for the analysis of near infrared (NIR) spectra [31]. This method is also applicable for the 

evaluation and wavelength selection of 2D-fluorescence spectra.  

There are a high number of different attempts for the usage of fluorescence spectroscopy. Following, 

the fluorescence spectroscopy is set up for different types of cultivations of microorganisms and feeding 

procedures in the biotechnology, pharma and food process engineering. In this contribution, recent 

applications with its evaluation methods are discussed.  

Table 1. Applications of fluorescence spectroscopy for cultivation processes. 

Organism Type Cultivation Fluorescence  Reference 

Escherichia coli 

Bacteria 

Batch, Fed-Batch  
Continuous 

2D-Fluorescence,  
NAD(P)H fluorescence 

[9,27,32–40] 

Wautersia eutropha Batch NAD(P)H fluorescence [41] 
Bacillus polymyxa Batch 2D-Fluorescence [42] 
Klebsiella pneumonia Batch 2D-Fluorescence [43] 
Aspergillus oryzae Batch, Fed-Batch 2D-Fluorescence [44] 
Alcaligenes eutrophus Fed-Batch 2D-Fluorescence [25] 
Aspergillus niger Fed-Batch 2D-Fluorescence [45] 
Pseudomonas aeruginosa Batch 2D-Fluorescence [38,46] 
Azohydromonas australica Batch NAD(P)H fluorescence [20] 
Bacillus Fed-Batch 2D-Fluorescence [47] 
Streptomyces coelicolor Fed-Batch, Continuous 2D-Fluorescence [28,29] 

Pichia pastoris 

Fungi 

Batch 2D-Fluorescence [48–51] 
Saccharomyces cerevisiae Batch, Fed-Batch 2D-Fluorescence [10,11,27,37,52–55] 
Claviceps purpurea  
Hansenula polymorpha 

Batch Batch 
2D-Fluorescence  
NAD(P)H fluorescence 

[8,40] 

NSO Cells 
Mammalian 

Batch 2D-Fluorescence [50] 
Baby Hamster Kidney Cells Batch, Fed-Batch 2D-Fluorescence [56] 
Chinese Hamster Ovar Cells Batch, Fed-Batch 2D-Fluorescence [30,57,58] 

Azadirachta indica 
Plant 

Batch NAD(P)H fluorescence [59] 
Eschscholtzia California Batch 2D-Fluorescence [60] 
Catharantuhus roseus Batch 2D-Fluorescence [60] 
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2. Fluorescence Spectroscopy  

2.1. Principles and Fluorophores 

Sensors based on fluorescence spectroscopy are widely used for different applications in bioprocess 

monitoring (Table 1). However, just three of these cultivation processes [26,43,54] are carried out on an 

industrial scale. All other applications were only executed on a laboratory scale. 

Fluorescence spectra can be measured in situ and on-line in real-time. The principle of this 

measurement method is the interaction of light and matter. For this reason, a fast and non-invasive 

measurement technique is used as a requirement for on-line and real-time supervision and control for 

bioprocesses [61]. 

The fluorescent activity of the analyte occurs from certain molecules that emitted light after 

absorption. These so-called fluorophores contain an aromatic system. The emission wavelength is 

greater than the excitation wavelength, caused by an energy loss. The process of the fluorescence is 

illustrated by the Jablonski diagram shown in Figure 1. 

 

Figure 1. Energy level diagram (Jablonski diagram) for visualization of fluorescence 

phenomena (see explanation in the text). 

A light quantum of energy hvA supplied by an external source is absorbed by the fluorophore, creating 

an excited electronic singlet state (S1 or S2). On these energy levels the fluorophores can exist in different 

vibrational energy levels (v) corresponding to the Franck-Condon-principle. From the higher vibrational 

level of S1 or S2 the fluorophore is rapidly relaxing to the lowest vibrational level due to internal 

conversion. A photon with energy hvF is emitted when the fluorophore is returning to its electronic ground 

state S0. The energy of this emission photon is lower, and therefore of a longer wavelength than the 

excitation photon. This behavior can be seen in Figure 2, where in the upper left triangle of the spectrum 
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no fluorescence signal can be seen. This so-called Stoke’s shift enables the high sensitivity of the 

fluorescence technique because it allows the detection of emission photons against a low background, 

isolated from excitation photons [62]. Characteristic features of fluorophores are the quantum yield and 

the lifetime. The ratio of the number of excited and emitted photons is the quantum yield, and the lifetime 

is defined by the average time the molecule spends in the excited state before it returns to its ground 

state [63]. However, the fluorescence yield can be influenced by different effects which involve energy 

transfer and absorption. For example, the so-called inner filter effects reduce the intensity of the 

fluorescence measurements when non-fluorescent components of the medium absorb excitation or 

emission radiation while reducing the fluorescence yield of an observed fluorophore [64]. The excited 

state fluorescence lifetime also changes with changes in the environment. Furthermore, the culture 

fluorescence depends on bioprocess variables, such as the optical density (OD), viscosity, pH, the aeration 

of the bioreactor and a lot of further the fluorescence measurements affecting variables [22]. 

 

Figure 2. Contour plot of an excitation-emission matrix measured with the BioView® sensor 

from S. cerevisiae cultivation with fluorescence maxima of flavin (1); riboflavin (2);  

NADH (3); NADPH (4); pyrodoxin (5); tryptophan (6) and tyrosine (7). 

In biotechnological processes the fluorescence measurements are based on fluorescent proteins and 

biological molecules which show endogenous fluorescence. Examples of fluorescent proteins and 

molecules with biogenic fluorescence are presented In Table 2 molecules that show biogenic fluorescence 

include the amino acids and vitamins as well as the co-enzymes flavin adenine dinucleotide (FAD), NADH 

and reduced nicotineamide dinucleotide phosphate NAD(P)H [63]. 
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Table 2. Excitation and emission wavelengths for some fluorophores used in biotechnology. 

Fluorophore  Max Excitation Wavelength (nm) Max Emission Wavelength (nm) Reference 

GFP 
fluorescence 

proteins 

400, 470 505, 540 [62] 

EYFP 514 527 [62] 

mCherry 587 610 [65] 

Tryptophan 

amino acids 

280, 290 350 [63,66] 

Tyrosine 275/278 280, 300/330–350 [63,66,67] 

Phenylalanine 260 280, 282 [63,68] 

FAD, Flavins 

co-enzymes 

450 535 [63] 

NADH 290, 351 440, 460 [63] 

NAD(P)H 336 464 [63] 

Pyrodoxin 

vitamins 

332, 340 400 [63] 

Vitamin A 327 510 [63] 

Riboflavin 365 520 [66] 

The typical excitation ranges from the ultraviolet to the visible range of electromagnetic waves and 

the red shifted emission light spans the ultraviolet and visible spectral range. By applying 2D-fluorescence 

technique to cultivations of microorganisms one is able to detect changes in the spectra occurring during 

the cultivation caused by biogenic fluorophores (Figure 2). 

2.2. Fluorescence Spectrometer 

Further development of early fluorescence sensors, based on only a single wavelength combination for 

monitoring NADH or tryptophan emission [18,61], establish the 2D-fluorescence sensors as a commonly 

used method. Table 3 presents different fluorescence sensors and their specified measuring range.  

Table 3. Fluorescence sensors applied for bioprocess monitoring. 

Type Wavelength Selector Wavelength Resolution Reference 

BioView® Filter 
Excitation: 260–560 nm  

Emission: 300–600 nm 
20 nm 

[8–11,28,29,32,33,42–

44,47,48,50–53,57,60,69] 

FLUOstar® Filter NADH Signal - [34,39,40] 

Hitachi F4500 Grating 
Excitation 200–890 nm  

Emission 200–900 nm 
10 nm [11,27,35–37,45,46] 

Perkin Elmer  

LS 50 B /55  
Grating 

Excitation: 200–800 nm  

Emission: 200–650/900 nm 
1 nm [26,49,56] 

Varian Cary Eclipse Grating up to 900 nm  1.5 nm [25,30] 

Varian VIPL 3120 Filter NADH Signal - [41,59] 

Ingold Type Fluorosensor Filter 
Excitation: 360 nm  

Emission: 450 nm 
- [20] 

USB2000 spectrometer Grating 200-1100 nm 10 nm [55] 

FL3095  Grating 
Excitation: 260–680 nm  

Emission: 320–950 nm 
- [54] 

A small number of research groups still uses fluorescence sensors to monitor only the NADH signal. 

The BioView® sensor has clearly turned out to be the most frequently employed fluorescence spectrometer. 
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The wavelength selection is done by filter systems or by monochromators when grating technology is 

used. The BioView® sensor selects the different wavelength combinations by using two filter wheels 

(Figure 3). 

 

Figure 3. Overview of the BioView® set up. 

Each filter wheel has 16 slots for adding filters of specific emission and excitation wavelengths as 

well as no filter for the measurement of scattered light. These filter wheels can be controlled individually. 

The default setting of the step size is 20 nm. The fluorescence spectrometer is combined with the 

bioprocess via optical light guides. The measuring time for the scanning of a complete 2D-fluorescence 

spectrum taking all filters is roughly 1 min, which allows almost continuous measurements, resulting in 

large data sets for a whole fermentation. However, not all of the data contain relevant information about 

the process. The analysis and evaluation of bioprocesses by using continuous fluorescence 

measurements are done by different chemometric methods, such as the principal component analysis 

(PCA), partial least squares regression (PLS) or neural networks (NN). These methods filter the 

significant information out of the data sets. 

3. Extracting Information Out of Fluorescence Spectra 

The fluorescence spectra contain a lot of useful information about the observed biological processes. 

The extraction of this information is done by different approaches. In general, the following processing 

steps have to be done: the first step during evaluation is a preprocessing step that in some way 

normalizes, centers or filters the raw data to avoid effects such as noise or differences caused by different 

intensity maxima of the fluorescence values. The preprocessing is followed by a data reduction, 

decomposition or wavelength selection step, where large data sets are reduced by transforming the data 

or by using just a selection of all variables of the data set. Afterwards a chemometric model is calculated 

according to the measured process variables and the preprocessed fluorescence spectra. The quality of 

the models is assessed with different evaluation methods. Chemometric models of a process can then be 

used for the monitoring and supervision of these processes. 
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3.1. Preprocessing 

As also typical of other measurement techniques, measurement noise can mask the information 

hidden in a spectrum. Furthermore, the information is not necessarily only contained in the high intensity 

values in the spectra but may be in the low shoulders intensity values too. Hence, to avoid these effects 

a preprocessing is recommendable. The batch-to-batch variability can be reduced by calculating a 

difference spectrum. The first spectrum after inoculation or an average of three to five spectra from the 

beginning of the cultivation is subtracted from all following spectra to get the difference spectra [8–10]. 

Therefore, just the changes in the fluorescence intensity values during a fermentation are considered. 

Additionally, to reduce the influence of noise the fluorescence signals can be smoothened by using the 

average values over a few spectra [42,69] or using the Savitzky-Golay-filter [70]. A subsequent 

normalization is performed on a spectrum by dividing each value by the spectra average. Beside this, one 

can divide each data point in a spectrum by the corresponding data point in the first spectrum which will 

generate a kind of normalized spectrum [56]. As the last preprocessing step, the data can be centered 

and weighted to unit variance as well as normalized. The normalization can be done by using different 

methods. For fluorescence data some of the methods used are, for example, the normalization of the data 

by dividing each value by the spectrum average value or by subtracting the spectrum mean from each 

value followed by a division of the standard deviation of the spectrum, which is called  

SNV-transformation [71]. All these preprocessing steps enhance the quality of the continuous evaluation 

and analysis of fluorescence data. However, there is no common rule indicating which preprocessing 

procedure is the best one. 

3.2. Data Reduction, Decomposition and Wavelength Selection 

Various types of methods for data reduction, selection of relevant wavelength combination and data 

decomposition are recommended for the evaluation of fluorescence spectra from biotechnological 

processes (Table 4). 

Using 2D-fluorescence spectra leads to large data sets caused by the simultaneous measurements of 

different excitation and emission wavelengths. One spectrum consists of a high number of fluorescence 

intensities, but not all of them contain important information according to the requested process variable. 

Different strategies are known to handle this problem. Commonly used are methods that transform the data 

to variables with high variance and variables with low variance, containing just background noise of the 

measurement, such as the principal component analysis (PCA) [72]. The high dimensional data sets of 

the multivariate data are reduced using PCA. 

The original data matrix X decomposes into the product of two smaller matrices—the score T and loading 

matrix P—plus a residual matrix E, containing just noise. ܺ = ܶܲ௧ + ܧ (1)
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Table 4. Methods for data reduction, decomposition and wavelength selection. 

Method Application Software Reference 

PCA Data evaluation, Data reduction Unscrambler®, MATLAB® [10,25,26,29,33,42,56,69] 

SWR Wavelength selection MATLAB® [53,55] 

MROBPCA Data quality and outlier detection MATLAB® [58] 

MCR-ALS Data decomposition Unscrambler®, MATLAB® [30,54] 

SIMPLISMA Data decomposition Unscrambler®, MATLAB® [54] 

SOM Data reduction, Classify spectra MATLAB® ViscoverySOMine [9,27,35–37] 

PARAFAC 
Data decomposition,  

Data evaluation/selection 
MATLAB® [10,29,47,48] 

GA Wavelength selection MATLAB® [28,29,53] 

ES Wavelength selection MATLAB® [53] 

iPLS Wavelength selection MATLAB® [28] 

PV Wavelength selection MATLAB® [28] 

ACO Wavelength selection MATLAB® [30] 

CARS Wavelength selection MATLAB® [30] 

The score matrix T provides information about the actual state of the process, while the loading matrix 

P includes information regarding the extraction of knowledge from the intensity values of a spectrum. 

The original data matrix is transformed into a new matrix with principal components (PC), sorted by 

their variance. Most of the variance is contained in the first PC, in the second there is less variance than in 

the first and more variance than in the third and so on. By taking the first principal components, holding 

almost the whole variance of the data, the dimension of the original data matrix X is reduced dramatically. 

Because often one, two or three PCs contain approximately all the variance of the data—the others 

representing only noise—the data can be visualized by plotting a so-called score plot, where further 

interpretations become possible, for example the identification of different process states.  

Parallel factor analysis (PARAFAC) decomposes data into high important factors and areas by taking 

the emission-excitation-matrix in its original three-way array structure [73–75]. As already described for 

the PCA, the PARAFAC transforms the data array into sets of loading matrices and a residual matrix by 

mostly reducing the dimension of the data. The PARAFAC models are a straightforward extension from 

the two-way PCA to multi-way data. The fluorescence data is arranged in a three-way array (measurement 

time × excitation wavelength × emission wavelength). The PARAFAC model can be described with the 

following equation, where F is the number of PARAFAC components which are considered here: 

௜௝௞ݔ = ෍ܽ௜௙ ௝ܾ௙ܿ௞௙ி
௙ୀଵ + ݁௜௝௞ (2)

xijk is the intensity of ith spectrum at the jth emission wavelength and at the kth excitation wavelength. 

The contribution of the spectrum to each component is represented by the parameters aif, bjf, ckf, and the 

residuals eijf containing the noise. The values of aif, bjf, and ckf are calculated by minimizing the sum of squared 

eijf. The spectra are decomposed into F PARAFAC components which represent the concentrations of 

hypothetical substances. For fluorescence excitation-emission data the loadings constructed out of aif, also 

referred as scores, may be interpreted as the relative concentration of process variable f in sample i, the 
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loading vector of bif elements as the estimated emission spectrum and the cif loading vector is the estimated 

excitation spectrum of this process variable. 

As presented in Figure 4 the components of the PARAFAC model have a direct chemical 

interpretation, e.g. concentration of certain process variables, in a valid model. In the case of 

fluorescence spectra the single components with their emission and excitation loadings correspond to 

certain fluorophores. The scores of the model are estimates of the relative concentrations of the 

fluorophores identified by the loadings [76]. Different fluorophores are described by the calculated 

components and can be used as a reduced data set for further analysis. The PARAFAC analysis results 

in a model with a reduced set of variables to a few components model that describes almost the whole 

variance of the data set. One obvious advantage of the PARAFAC method is the unique solution of the 

model. An estimated PARAFAC model cannot be rotated without a loss of fit. Both PARAFAC and PCA 

belong to linear decomposition methods. PARAFAC decomposition is more robust, because it uses less 

parameters than PCA decomposition. For some examples PCA models might exist, however no 

PARAFAC model. 

 

Figure 4. PARAFAC model with three components (F = 3) for the modeling of three  

process variables. 

In contrast to this, the self-organizing map (SOM) is an unsupervised neural network approach for 

data decomposition [77]. By using SOM fluorescence data can be classified without any external 

supervision. This non-linear algorithm enables the mapping of the three-way fluorescence spectra with 

identifying those combinations of excitation and emission spectra with useful information of the process 

variables. The SOM projects high-dimensional data onto lower dimensional data, onto a structured set of 

neurons, while retaining the data topology [77]. The neural network consists of only two layers, an input 

and an output (SOM) layer. Therefore, the 2D-fluorescence spectrum is transformed from the matrix 

format into one-dimensional vectors following normalization. Every element in the input vector is 

connected to every neuron in the output layer. The weight vectors wj of the feature map have the same 

dimension as the input vector xi. The neurons of the feature map compete for the input with their internal 

parameters. The neuron with the nearest matching parameters wins. For every iteration during the training 

of the SOM, a distance of d(xi, wi) is calculated and used for their measures of similarity where different 

distance metrics can be used, for example the Euclidean distance. The closest neuron to the input vector 

is chosen with its corresponding weight vector. The results of the SOM are classified spectral data 

presented by a feature map where the topological relationships hidden in the large input data sets are 

retained (Figure 5) [27,37]. Afterwards, a wavelength selection while reducing the whole data set can be 
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done by choosing representative data of each of those groups. For example, by the calculation of Euclidean 

distances within each class, representative wavelength combinations are found. 

The optimal number of classes in a given feature map can be determined by estimating the degree of 

scattering of the fluorescence intensities of all spectral components in the corresponding class by 

computing the time-dependent variance of fluorescence intensities of all of the spectral components in the 

class [27]. The large data set containing all combinations of excitation and emission wavelengths can be 

reduced by selecting just a few wavelengths containing the process information by using SOM. 

Other methods for the selecting of single wavelength combinations are machine learning methods 

inspired by Nature, such as evolutionary algorithms like the genetic algorithm (GA) [78,79] or swarm 

algorithms, including the ant-colony algorithm (ACO) [80]. Both algorithms mimic principles of Nature 

to find a subset of wavelength combinations that are able to describe the observed biological process. 

Further data decomposition and wavelength selection methods are described elsewhere (see Table 4). 

The decomposition of the large data set or the reduction by wavelength selection can improve the models 

while decreasing the computational effort. 

 

Figure 5. Illustrated overview using SOM for fluorescence spectra.  

3.3. Modeling for Variable Prediction  

With the help of fluorescence spectroscopy measurements, meaningful information about the 

physiological state of a microorganism or process states can be obtained. Thus, to convert the 

information contained in the fluorescence spectra, modeling approaches must be applied. As an input to 

the modeling procedure the reduced data are used (such as the principal components of PCA, the 

PARAFAC components and the selected wavelength combinations of SOM). The procedure of 

calibrating a model and applying it for prediction is performed in two steps. Starting with the on-line 

measurements of 2D-fluoresscence spectra	ݔ௜	and the corresponding off-line values ݕ௜  of the process 

variables of interest from one or more initial cultivations, a process model will be calculated (step one). 

Afterwards, the values of the process variables ݕ௜  of a new cultivation can be predicted from the  

2D-fluorescence spectra using the calculated model (step two). 

A lot of different approaches are described in literature, including linear and non-linear methods as well 

as supervised and non-supervised learning procedures (see Table 5). Beside the different methods for the 

calculation of the chemometric models, there are a lot of various evaluation techniques for the prediction 

of quality. The models are calculated by using the whole 2D-fluorescence spectra or by taking reduced 

data as described above (Section 3.2). Most of the models for monitoring microbial cultivations are 
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based on linear modeling, especially the partial least squares (PLS) regression method [23,75,81]. PLS 

enables the identification of the factors that not only show the largest amount of variance, but also allows 

a linear correlation between the fluorescence spectra and process variables via the covariance of the two 

data sets. Besides PLS, some other linear techniques are mentioned, including principal component 

regression (PCR) [36,69], linear weighted regression (LWR) [20,28,41,49,59] or multi-linear method, 

such as n-way partial least squares regression (NPLS) [10,28,47,58]. All these methods build models by 

identifying at least bi-linear correlations between the process variables and the fluorescence  

spectra [82,83]. 

Because of the inherently nonlinear nature of biological processes, the applications of different kinds 

of artificial neural networks (ANN) are described by some research groups [35,69,84], using different 

architectures. Different algorithms are implemented to handle cultivation data with neural networks [85,86], 

for example using feed-forward neural networks (FFNN) [21] with back-propagation neural networks 

(BPNN) [31]. By applying these models important bioprocess variables can be predicted on-line and in 

real-time, such as biomass, substrates and products as can be seen in Table 5. There is just one example 

where a closed loop for substrate feeding is described [10]. They implemented a control algorithm by 

predicting the metabolic state of the yeast cells by using fluorescence spectra. With this control 

procedure the yield of biomass was much higher due to a pure oxidative growth of the cells. For the 

implementation of the models different software is used. As can be seen in Table 5, Matlab® has most of 

all applications. Different special toolboxes for building chemometric modeling are available in Matlab®, 

for example the PLS-toolbox or the neural-network-toolbox. Altogether, there is a broad range of different 

applications for fluorescence spectroscopy, chemometric models, implementation software and various 

validation techniques (details in Table 5). 

When a process model is used for the prediction of process variables, the quality of that prediction 

must be judged. The evaluation of the predicted values ݕො௜	can be done by using, for example, the root 

mean square error of prediction (RMSEP), or the goodness of the fitted model can be assessed by using 

the coefficient of determination (R2). 

ܲܧܵܯܴ = ඩ1݊෍(ݕ௜௡
௜ୀଵ − ො௜)ଶ (3)ݕ

ܴଶ = 1 − ∑ (y୧ − yො୧)୬୧ୀଵ∑ (y୧ − yത୧)୬୧ୀଵ  (4)

4. Conclusions and Future Trends 

The application of fluorescence spectroscopy, especially 2D-fluoresence, is becoming more and more 

interesting for the analysis of processes in the biotechnology, food and pharma industry. This fact is also 

pushed by PAT and QbD efforts. The batch-to-batch reproducibility, the control and automation get 

improved by using chemometric models based on fluorescence spectroscopy. The fast analysis enables the 

identification of critical process states in time and increases the efficiency of biotechnological processes. 
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Table 5. Process models and applications. 

Method Application Evaluation Software Ref. 

PLS 

Glycoprotein yield prediction Relative errors: 2.3%–4.6% MATLAB® [30] 

Glycerol/methanol prediction Mean prediction errors: 7%–10% Unscrambler® [51] 

Biomass/polymixin prediction RMSECV: biomass 0.4 g/L, polymixin 35 mg/L Unscrambler® [42] 

Biomass, glucose, ethanol and product prediction R2: biomass 0.53, glucose: 0.88 MATLAB® [55] 

OD, glycerol and 1,3-propanediol prediction ethanol 0.01, product 0.73   

Biomass, glucose, CPR RMSEP: OD 0.78 units, MATLAB® [43] 

 glycerol 10 g/L, 1,3-PD 2.6 g/L   

Cell density and glycoprotein RMSEP: biomass (three conditions) 3.9%–40.7%, glucose 6.8%, CPR 9.1% Unscrambler® [33] 

 in 95% confidence interval, R2 = 0.91 cell density, 0.99 glycoprotein   

Biomass and glycerol RMSEP: biomass 0.67/0.729 glycerol 1.52/0.911 - [56] 

Total amino acids, biomass RMSECV: CDW 1.02 g/L , AA 1.06 g/L   

Cell count (CC), OD, po2% RMSECV: CC 1.029, OD 0.046, pO2% 5.358 R2: CC 0.936, OD 0.988, pO2% 0.977 MATLAB® [48] 

 RMSEP: ALA 38.512 mg/L DO 5.1506% MATLAB® [28] 

Extracellular 5-aminolevulinic acid (ALA), disolved oxygen (DO), 

CO2 
CO2 0.756% MATLAB® [54] 

Biomass, protein, alkaloid RMSEP: biomass 7.26%, proteins 5.74%, Unscrambler®  

 alkaloids 3.37% MATLAB® [36] 

Glucose, lactate, glutamine RMSEP: glucose 0.524 g/L, lactate 0.494 g/L   

 glutamate 0.0155 g/L R2: glucose 0.967, Unscrambler® [8] 

 lactate 0.972, glutamate 0.983   

Cellmass, lipase activity R2: cellmass 0.73–0.97, lipase activity 0.93 Unscrambler® [57] 

 RMSECV cellmass 0.77–1.48 g/kg   

Biomass RMSEP: 4.6 g/L   

Biomass, ethanol, glucose RMSEP: 4%, 2%–8%, 4% MATLAB® [44] 

Regulation of optimal feed -   

Biomass, glucose - MATLAB® [29] 

Biomass RMSEP: 0.19 g/L (PLS), MATLAB® [10] 

pH-value, acidity RMSEP: 2.36%–4.84%, 6.04%–8.08% Unscrambler® [11] 

Enzyme activity RMSEP: 0.08–0.12 MATLAB® [25] 

  MATLAB® [52] 

  MATLAB® [69] 

  MATLAB® [47] 
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Table 5. Cont. 

Method Application Evaluation Software Ref. 

PCA 

Plasmid containing strain stability - SIMCA-P 8.0 [32] 

Medium wash steps, cell growth  - Mathematica [46] 

Cultivation description with scores  - MATLAB® [36,37] 

PCR 

Extracellular 5-aminolevulinic acid (ALA), disolved oxygen (DO), 

CO2 
RMSEP: ALA 38.344 mg/L DO 5.296% MATLAB® [36] 

 CO2 1.225%    

pH-value, acidity RMSEP: 3.60%–5.10%, 6.45%–9.97% MATLAB® [69] 

Linear regression  

Linear regression 

Biomass prediction R2 = 0.9869  - [41] 

Biomass and PHB prediction linear correlation to NADH signal - [20] 

Biomass MARE = 0.12 MATLAB® [49] 

Biomass R2 = 0.91 - [59] 

Total amino acids, biomass RMSECV: CDW 1.18 g/L, AA 0.80 g/L MATLAB® [28] 

NPLS 

Estimation of product yield RMSEV: 0.13 g/L MATLAB® [58] 

Enzyme activity RMSEP: 0.08–0.12 MATLAB® [47] 

Total amino acids, biomass RMSECV: CDW 1.39 g/L, AA 2.17 g/L MATLAB® [28] 

Biomass RMSEP: 5%–7% MATLAB® [10] 

PARAFAC 
Cultivation description - MATLAB® [44] 

Biomass RMSEP: 0.20 g/L MATLAB® [52] 

Luedeking-Piret-based 

equation 
Biomass MARE = 0.06 MATLAB® [49] 

ANN 
3-Chloro-4-methylaniline R2 > 0.7  microCortex  [26] 

pH value, acidity RMSEP: 2.44%–3.42% , 6.89–12.11 MATLAB® [69] 

FFNN Biomass, glucose 
R2: glucose 0.88, biomass 0.93  

Largest observed error: biomass 1 g/L, glucose 8 g/L 
MATLAB® [25] 

BPNN 
Biomass, glucose, CO2, DO, O2,  evaluation of BPNN topology all Rxy > 0.97 

MATLAB® [35] 
Total amino acids RMSEP 0.112–0.165 g/L 

RBF 
Biomass (BDM), total cell number (TCN),  

dead cells (DC), product, plasmid copy number (PCN) 

BDM 0.5 g/L, TCN 17 1/mL, DC 1% 
MATLAB® [9] 

Product 7 mg/g BDM, PCN 8 units 
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For this, the monitoring and prediction of the biomass concentration is the most described process 

variable. The applicability of fluorescence sensors for microbial cultivation, especially for E. coli and S. 

cerevisiae cultivations, is reported by a lot of research groups (Table 1). In addition there are further 

applications to more microorganisms and fungi as well as plant and mammalian cell lines. The comparison 

of the results, published by different research groups, is hindered by the different established quality 

criterions. The RMSEP is sometimes given in relative concentration or in percent. However, it is not 

mentioned what the reference is, the maximum or the average of each individual value of the observed 

process variable, which can make a big difference. In other cases the R2 is provided, but without any related 

estimation errors for the evaluation of the prediction quality. Standardized quality criterions are desirable 

for further investigations so that results can be compared. 

Nevertheless, all these approaches demonstrate that the process monitoring and automation can be 

highly improved by using fluorescence spectroscopy in combination with chemometric modeling. As 

evaluation technique PLS methods are dominating. However, also other approaches including ANN, GA 

and ACO show great potential to increase the analysis quality of fluorescence-based process control. While 

analyzing fluorescence-based data it should be taken into account that medium fluorescence or other 

effects as the mentioned inner filter or cascade effects can reduce the applications of fluorescence sensors. 

The quality and performance of processes in biotechnology, food and pharma industry can be carried out 

with methods for quality control, such as the “golden batch”, where an optimal batch becomes the starting 

point for all following batches. An ideal process control strategy can be implemented with the help of 

process knowledge from using fluorescence sensors and process models. Altogether, the establishment of 

process sensors based on fluorescence spectroscopy should continue for further improvement of 

biotechnical processes in the future. 

Off all published applications of fluorescence spectroscopy for bioprocess monitoring just three came 

out of an industrial environment, indicating that there is a big gap between the academic (laboratory scale) 

and the industrial application. One reason for this might be the fact that just for new implemented processes 

new measurement methods have a chance to be installed. Therefore, there will be always a kind of lag-phase 

between academic and industrial applications. But this lag-phase can be long because, as Max Planck 

mentioned [87]: “A new scientific truth does not triumph by convincing its opponents and making them 

see the light, but rather because its opponents eventually die, and a new generation grows up that is familiar 

with it.” However, another reason for the gap might be the overall costs, which include the investment 

costs, the (re-)calibration cost as well as the maintenance cost. Although no reagents are necessary, the 

measurement method is mostly indirect. Furthermore, today just multipurpose fluorescence spectrometer 

are around. A fluorescence sensor which uses just specific wavelength combinations for a specific 

application will be of low-cost for the hardware. Therefore, using such sensors fluorescence applications 

even in an industrial environment might increase in the future. 
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