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Introduction
DNA copy number variations (CNVs) have been shown to be 
associated with cancer development and progression.1 Somatic 
CNVs can lead to tumorigenesis. For example, loss of copy 
numbers for tumor suppressor genes or amplification for onco-
genes both lead to cancer. The detection of these CNVs has the 
potential to impact the basic knowledge and treatment of many 
types of cancers, and can play a role in the discovery and devel-
opment of molecular-based personalized cancer therapies.2

In early years, cytogeneticists have been limited to tradi-
tionally visually examining whole genomes with a microscope, 

a technique known as karyotyping or chromosome analysis. 
In the mid-70 s and 80s, the development and application 
of molecular diagnostic methods such as Southern blots, 
polymerase chain reaction (PCR), and fluorescence in situ 
hybridization (FISH) allowed clinical researchers to make 
many important advances in genetics, including clinical cyto-
genetics. However, these techniques have several limitations. 
First, they are very time consuming and labor intensive, and 
only a limited number and regions of the chromosome can 
be tested simultaneously. Further, because the probes are tar-
geted to specific chromosome regions, the analysis requires 
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prior knowledge of an abnormality and is of limited use for 
screening complex karyotypes. More recently, scientists have 
developed techniques that integrate aspects of both traditional 
and molecular cytogenetic techniques called chromosomal mic-
orarrays.3 These high-throughput high-resolution microar-
rays have allowed researchers to diagnose numerous subtle 
genome-wide chromosomal abnormalities that were previ-
ously undetectable and find many cytogenetic abnormalities 
in part or all of a single gene. Such information is useful for 
biologists to detect new genetic disorders and also provide a 
better understanding of the pathogenetic mechanisms of many 
chromosomal aberrations.

One of the most common types of high-resolution chro-
mosomal microarrays are array-based comparative genomic 
hybridization (aCGH) methods that assay DNA CNVs across 
the whole genomic landscape in a single experiment.4 With 
aCGH, differentially labeled test and reference samples’ 
genomic DNAs are cohybridized to normal chromosomes, 
and fluorescence intensities/ratios along the length of chro-
mosomes provide a cytogenetic representation of the relative 
DNA CNV across the whole genome. Whereas early aCGH 
arrays were mainly used in research settings, recent improve-
ments in algorithms for aCGH data analysis as well as rap-
idly reducing costs now enable clinical applications of aCGH 
arrays, particularly in the study of cancer genomic as a diag-
nostic tool.2

In this article, we propose methods to use aCGH pro-
files to predict disease states. We employ a Bayesian classifica-
tion model, and treat disease states as outcome and aCGH 
profiles as covariates – to identify significant regions of the 
genome associated with disease subclasses. Statistical chal-
lenges for aCGH classification include not only high dimen-
sionality ie, large number (tens of thousands) of probes but 
also relatively small number of samples, more importantly, 
the presence of serial correlation among the features – nearby 
probes (by genomic location) tend to be highly correlated. 
Classical methods usually used for multivariate classification 
of high-dimensional genomic data, eg, penalized approaches 
(Zhu and Hastie5 and the references there-in), do not account 
for the specific structure of aCGH data, as they ignore the 
serial dependence in the probes. To exploit the serial genomic 
information, typical approaches first segment the data6 and 
then conduct downstream classification. Alternative methods 
are based on kernel-based techniques such as support vector 
machine (SVM),7 and its variants exploit genomic continuity.8 
While incorporating excellent prediction capabilities, these 
methods do not explicitly utilize the inherent discrete nature 
of the latent copy number states (gain/loss/normal) in their 
variable selection procedures, which serves as one of the pri-
mary aims in this article.

In the Bayesian framework, several innovative variable 
selection strategies have been developed in various contexts, 
with reasonable degrees of success. Some of these approaches 
can be regarded as linear variable selection methods. These 

include stepwise selection,9 penalized regression approaches 
such as lasso (and its variants),10 and non-concave penalized 
likelihood approaches.11 The technique applied in this paper is 
based on Bayesian linear variable selection approaches, includ-
ing spike and slab mixture priors,12 stochastic search variable 
selection,13 Gibbs-based variable selection,14 Bayesian model 
averaging,15,16 and indicator priors.17 The stochastic search 
variable selection approach of George and McCulloch13 has 
been extended to multivariate settings by Brown et al.18 and to 
generalized linear mixed models by Cai and Dunson.19 Effec-
tive variable selection methods have also been developed for 
multinomial probit models by Sha et al.20 and for microarray 
data with censored outcomes by Lee and Mallick21 and Sha 
et al.22 However, none of these approaches account for natural 
spatial/serial dependency in the covariates (as in our case) – 
which might lead to biased estimates.

In this article we propose a principled two-stage method 
for disease classification using covariates exhibiting serial 
dependence. In general, the technique is applicable to datasets 
having the following structure. For individuals i = 1, …, n, we 
have (i) two disease categories coded as the binary response yi  
and (ii) aCGH emissions ei1, …, eip corresponding to p probes, 
with p typically being much larger than n. The analysis 
broadly consists of two stages. In Stage 1, we make inferences 
on underlying copy number states associated with the aCGH 
emissions based on hidden Markov model (HMM) formu-
lations23 to account for serial dependencies. Subsequently in 
Stage 2, we analyze the model parameters associated with the 
binary responses, conditional on the parameters discovered in 
Stage 1, using Bayesian linear variable selection procedures. In 
particular, we select the aCGH probes having a linear regres-
sion relationship with the disease categories. The selected 
probes and their effects are parameters that are useful for 
predicting the disease categories of any additional individuals 
on the basis of their aCGH emissions. Our methodology is 
motivated by and applied to a dataset consisting of 111 breast 
cancer patients24 and falling into two disease subgroups, ER+ 
and triple negative (TN). There are 56 TN patients and 55 
ER+ patients. For each patient, DNA copy number data were 
generated using Agilent 4x44K CGH arrays (available at 
ArrayExpress accession number E-TABM-484).

The remainder of the paper is organized as follows. 
Section 2 provides details of the model for the two-stage 
analysis. Section 3 develops the posterior inference and pre-
diction technique based on Markov chain Monte Carlo 
(MCMC) methods. In Section 4, using simulated datasets, 
we investigate the method’s accuracy in detecting disease 
category. Finally, Section 5 analyzes the motivating breast 
cancer dataset and makes test case predictions.

Model
Our modeling framework consists of two stages: In Stage 1, 
we model the aCGH emissions, relying on HMMs to 
account for the serial correlations among the emissions. Then, 
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in Stage 2, the relationship between the HMM parameters 
and the subject-specific binary responses is specified using 
a probit regression model and the latent indicator variables 
using the approaches proposed by George and McCulloch,13 
Kuo and Mallick,17 and Brown et al.18 We expound on each 
of these below.

stage 1: relationship between acGH emissions and 
latent copy number states. For subjects i = 1, …, n and probes 
j = 1, …, p, we have the binary responses y1, …, yn representing 
the two disease subcategories and the set of real-valued aCGH 
emissions {eij}. Let sij ∈ {–1, 0, +1} be a latent variable called 
the copy number state, representing a loss, no change, and gain 
in copy number for individual i at probe j. The copy number 
state is inferred using a Bayesian HMM that accounts for the 
serial correlations of the aCGH emissions.

Similarly to Guha et al.23 conditional on sij, the aCGH 
emissions are assumed to be normally distributed:

 
2

indep
| ( , ),~

ij ijij ij s se s N µ σ

where, because of the specific biological interpretations asso-
ciated with the HMM states, we assume that µ–1 , µ0 , µ+1. 
This assumption also prevents label switching, a well-known 
problem with mixture models, thereby making inferences even 
more efficient. The latent states si1, …, sip are assumed to follow a 
three-state HMM with stationary transition probability matrix 
A = ((aut))3×3 having row sums ∑t = 1,2,3aut = 1 for u = 1, 2, 3.  
That is, P[si,j+1 = t | sij = u] = aut for j = 1, …, (n − 1). To further 
facilitate inferences of the state-specific parameters, informative 
conjugate priors are assigned to the parameters of the normal 
distribution ie, µs and σs for s ∈ {–1, 0, +1}. Refer to Guha et al.23 
for further details about MCMC inference of the underlying 
copy number states of the probes for the individuals. The tech-
nique developed in that paper is applied to infer the latent copy 
number states (gain/loss/normal) si1, …, sip for subjects i = 1, …, n  
that are subsequently used in the below Stage 2.

stage 2: relationship between disease classification and 
latent copy number states. In the second stage of the analy-
sis, we model the relationship between the disease category 
and latent copy number states of the genomic probes for each 
individual. These values are copy number states inferred from 
analysis in Section 2.1.

Let u I sij ij
( ) ( )− = = −1  and u I sij ij

( ) ( )+ = = +1  be indicator 
functions of loss and gain. To simplify the notation, for sub-
jects i = 1, …, n, we collectively represent the vector of 2p 
covariates as w u u u ui i i ip ip= − + − +( , , , , , )( ) ( ) ( ) ( )1 1 1 … ′. For covariate j = 1, 
…, 2p, averaging over the individuals, let w w nj i

n
ij⋅ == ∑ 1 / .  

Centering and scaling over the n individuals, we transform 
the covariates as follows:

2 2
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Let Q be the set of covariates j for which { }wij i
n
=1 assumes at 

least two distinct values. That is, 2
1 0{ | ( – . ) }.n

i ij jQ j w w== ∑ >  
Because the variables vij are centered, j ∉ Q if and only if 
v1j = … = vnj = 0.

A key assumption of our model is that probes that do not 
belong to Q ie for which { }wij i

n
=1 do not assume at least 2 dis-

tinct values, are not predictive of disease subcategory, although 
the probes could possibly be predictive of the disease. For this 
reason, we identify Q as the set of potential predictors of dis-
ease subcategory and write q = |Q| # 2p. We discard all probes 
j ∉ Q, relabeling the variables {vij: j ∈ Q} as {xij: j = 1, …, q}.

For individuals i = 1, …, n, we assume the probit regres-
sion model proposed by Albert and Chib25:
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 (1)

For the intercept β0, we assume the prior N ( , ).0 0
2τ  Let 

γ = (γ1, …, γq)’ be i.i.d. Bernoulli variables with P[γj = ω], 
where ω is expected to be relatively small and is assigned the 
uniform prior on (0,0.1). The remaining coefficients in (1) are 
independently distributed as

 

0
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τ γ
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where δ0 denotes the point mass at 0. In other words, each 
probe is predictive of disease classification with probability ω. 
We assume independent exponential priors with mean 1 for 
τ 0

2−  and τ −2.

Gibbs sampling Procedure
Let ρ γ= + ∑ =1 1j

q
j  be the random number of variables (includ-

ing the intercept β0) that participate in the disease classification. 
Let rij = zi − ∑k≠jxikβk for i = 1, …, n. For a set of numbers {θij: 
i = 1, …, n, j = 1, …, q}, let θj represent the vector (θ1j, …, θnj)′  
for probe j = 1, …, q.

Although the Gibbs sampler is conceptually straight-
forward, updating of γ can be computationally intensive for 
large q. The step is described as follows. For probe j = 1, …, q,  
let β–j represent the set of regression coefficients exclud-
ing βj . With In denoting the identity matrix of order n and 
B I x xj n j j

T= + τ 2 , the posterior probability P[γj |β−j, ω, rj] is 
proportional to (1 − ω) ⋅ Nn(rj | 0,In) when γj = 0 and is pro-
portional to ω Nn(rj | 0,Bj) when γj = 1. The density Nn(rj | 0,In)  
can be quickly computed even in large problems. However, 
the density Nn(rj | 0,Bj) involves the inversion and determinant 
calculation for the non-diagonal matrix Bj . Because it must be 

CanCer InformatICs 2014:13(s2) 85

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10


Guha et al

iteratively performed for every probe j, it can be computationally 
expensive or can at least involve large amounts of memory, 
when q is large. Theorem 7.1 of the Appendix exploits the 
structure of Bj to drastically simplify the computation. For 
probe j = 1, …, q, let
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Applying Theorem 7.1, we have det(Bj) = 1 + τ2, and 
Nn(rj|0,Bj) is proportional to 2

10 5 1exp(– . ) / .jL τ+  The cal-
culation is feasible even for large q.

Outline of procedure
Let F⋅I(c, d) denote the distribution F restricted to the inter-

val (c, d). The Gibbs sampler consists of the following steps:
•	 Applying Theorem 7.1, the binary indicators for probes 

j = 1, …, q are updated as follows:

    

0
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where L rj i
n

ij0 1
2= ∑ =  and Lj1 is as defined in (2).

•	 Writing xi = (1, xi1, …, xiq)T for individuals i = 1, …, n, 
the subject-specific latent variables z are independently 
distributed as
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•	 Let βI be the elements of β corresponding to the intercept 
and to the set of probes j for which γj = 1. Then βI c = 0. 
Vector βI is jointly updated as

 | , ( , )T
I I Iz U zΙ ρβ γ ∼ Ν Σ Σ

where UI is an n × ρ matrix with the first column equal to a vec-
tor of n 1’s and the remaining columns equal to the vectors xj 
for which γj = 1. The variance matrix Σ I I

T
IU U I= + − −( ) .τ ρ

2 1

•	 2
0 0|τ β−  is distributed as gamma ( / ,( ) / ).3 2 1 20

2+ β
•	 τ –2|β–0 is distributed as gamma (( ) / ,( ) / ).1 2 1 21

2+ + ∑ =ρ βj
q

j
•	 ω | γ is distributed as beta (ρ, q − ρ + 1) ⋅ 1 (0, 0.1).

Test case predictions
Suppose we have the aCGH profiles of n* additional test 

case individuals from the same hypothetical disease popula-
tion. Using the within-variable means and variances of the 
training sample, we transformed the aCGH profiles to 
obtain the covariates x x xi i i q

T
∗ ∗ ∗= ( , , , )1 1…  for individuals 

i* = 1, …, n* belonging to the test sample. Let D represent the 
training set data. The posterior probability that individual i* 
belongs to disease category 1 is

 

1 1
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A consistent (in simulation size) estimate of this prob-
ability is then

 1

1 1 0 1( )ˆ [ | ] ( | , ) /
M

T t
i i

t
P y D x Mβ∗ ∗

=
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where β = β(t) is the value generated at the Mth MCMC iter-
ate. We declare the disease category of the test case individual 
labeled i* as
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 (3)

simulation study
We generated a training sample consisting of p = 2000 
aCGH profiles for n = 100 individuals. The individuals were 
regarded as random draws from a disease population where 
100 × (1 − p*) = 25% of the individuals had “disease 0” and the 
remaining 100 × p* = 75% individuals had “disease 1,” so that 
p* = 0.75 represented the prior probability of disease 1 in the 
population.

Disease 0 was assumed to be characterized by losses 
(s = −1) from probes 201 to 400 and gains (s = 1) from probes 
1401 to 1800. Disease 1 was characterized by losses from probes 
301 to 500 and also from probes 1601 to 1800. The remaining 
probes were assigned a copy number state of 0. For each disease 
subcategory, we randomly selected 10% of the probes that were 
associated with the disease and randomly set their copy number 
states to be copy neutral, gains, or losses with equal probability. 
Additionally, random noise at the probe level was then added to 
the profiles by selecting 2% (ie, 4000) of the remaining probes 
and randomly changing their copy number states. These values 
constituted the variables sij in Stage 2 of the Section 2 model, 
and were assumed to be known in the simulation.

As described in Section 2, the variables were then trans-
formed to obtain the covariates wij and vij for i = 1, …, n and 
j = 1, …, 2p. The set 2

1 0{ | ( ) }n
i ij jQ j w w= ⋅= ∑ − >  was evalu-

ated to identify q = 2571 probes for which the individuals had 
at least two distinct values. These variables were relabeled as 
{xij:j = 1, …, q}, and the remaining variables were discarded. The 
model was fit using the Gibbs sampler of Section 3. An initial 
set of 10,000 samples was run to allow the MCMC chain to 
forget its starting values. A 1-in-10 subsample of M = 100,000 
additional draws was stored for posterior inferences. Figure 1 
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presents histograms for the marginal posteriors of the 
intercept β0, standard deviations τ0 and τ, and Bernoulli prob-
ability ω, which are used in the sequel to make predictions for 
the disease categories of the test case individuals.

We evaluated the success of the predictive ability of 
our approach by drawing 50 independent test samples of 
n* = 200 individuals from the same hypothetical disease 
population and generating their aCGH profiles based on their 
disease categories. Exactly 50 of these 200 test case individuals 
had disease 0, and the remaining 150 individuals had disease 
1. Using the within-variable means and variances of each 
training sample, we transformed the aCGH profiles to obtain 
the covariates x x x qi i i

T
∗ ∗ ∗= ( , , , )1 1…  for individuals i* = 1, … , n*  

belonging to the test sample of each of the 50 datasets.
For each dataset, using the stored MCMC sample of 

size M = 100,000 and as described in Section 3, we computed 
the posterior probability of disease 1, 1ˆ[ | ],iP y D∗ =  for the 
n* = 200 individuals. The estimated ˆiy ∗ for the n* = 200 indi-
viduals were computed as in (3). These values versus the true 
disease categories yi∗ are summarized in Table 1. The graph 
reveals the remarkable accuracy of the proposed methodology 
in detecting disease category. Specifically, for all 50 datasets, 
the technique resulted in perfect disease prediction with no 
false classification.

breast cancer data Analysis
We analyzed the breast cancer dataset from Andre et al.24 
which consists of n = 111 individuals with either disease 
subcategory ER+ (label “1”) or TN (label “0”). There are 56 
TN and 55 ER+ patients. aCGH emissions for these individu-
als were available on the same set of p = 42,416 probes along 
with the probes’ locations. Specifically, the chromosome and 
the distance in megabases (MB) from a telomere are available 
for every probe.

As described in Section 2.1, we used this information to 
first infer the latent copy number states eij of the probes using a 
Bayesian HMM, where i = 1, …, 111 and j = 1, …, 42,416. Then, 
as described in Section 2.2, we obtained the indicator func-
tions, uij

+ and uij
− , of gain and loss. These indicator variables were 

transformed to obtain the covariates wij and vij for i = 1, …, n  
and j = 1, …, 84,832. The set 2

1 0{ | ( ) }n
i ij jQ j w w= ⋅= ∑ − >  was 

evaluated to identify q = 5,543 covariates having at least two 
distinct values for the 111 individuals. These variables were 
relabeled as {xij: j = 1, …, 5,543} and retained as potential 
regressors. The remaining variables were discarded because 
they were unlikely to be associated with the subcategory 
classification.

To investigate the reliability of the proposed method 
of these actual datasets, we performed 50 independent 
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figure 1. Histogram of selected model parameters for the simulation study.
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replications of the following steps. (i) We randomly split the 
data into training and test sets in a 4:1 ratio. (ii) We analyzed 
the disease subcategories and the q = 5,543 covariates of the 89 
training set individuals using the Bayesian probit regression 
model with likelihood function (1). The model was fit using 
the Gibbs sampler of Section 3. An initial set of 10,000 sam-
ples was run to allow the MCMC chain to overcome its ini-
tial values. A 1-in-10 subsample of M = 100,000 additional 
draws was stored for posterior inferences. (iii) As described 
in Section 3, we used the q = 5,543 covariates of the 22 test 
case individuals to predict their disease subcategories. These 
predictions were compared with the actual disease subcat-
egories of these 22 individuals to compute the classification 
error rate for the specific training–test case random split. An 
average of the 50 independent estimates in Step (iii) yielded 
a simulation-based estimate of the classification error rate for 
the proposed method. This was estimated to be 22.55% with a 
standard error of 1.16%.

The significant probes (covariates) that were found to 
be predictive of disease subtype are plotted in Figures 2–4. 
We assumed a posterior probability threshold of δ = 0.15 that 
yielded 500 markers along the entire genome predictive of the 
disease classification. Figure 2 plots a bar graph of the chro-
mosomal breakdown of these markers. As can be seen, most of 
the significant markers are located on chromosomes 5, 12, 16, 
and 17. The corresponding karyograms Figures 3 and 4 show 
the breakdown on the markers by chromosomal locations for 
negative (red) and positive (green) associations with the dis-
ease states, respectively.

Our results are promising based on the locations of 
selected markers. As noted, most markers are on chromo-
somes 5, 12, 16, and 17. It has been shown that chromosome 
5q deletions are the most frequent aberration in breast tumors 
from BRCA1 mutation carriers. The deletions in 5q occur at 
high frequencies on putative tumor suppressor genes such as 
XRCC4, RAD50, RASA1, APC, and PPP2R2B.26 Chromo-
some 16q has been a target region for the detection of biomark-
ers for breast cancer.24 We identified a high concentration of 
biomarkers in 16q as well. In addition, our flagged biomarkers 
on chromosome 17 are also convincing, since chromosome 17 

is the host for the most famous breast cancer gene BRCA1 as 
well as ER. Interestingly, little is known about the association 
of CNVs on chromosome 12 with subgroups of breast cancer. 
Our findings on chromosome 12 could be potentially new 
discoveries that might warrant further functional validation.

conclusions and discussion
The detection of CNVs in aCGH methods is important for 
the treatment of many types of cancers, especially in the 
development of molecular-based personalized cancer thera-
pies. We propose a framework for the prediction of disease 
types using aCGH profiles. We employ a Bayesian classifi-
cation model and treat disease states as outcome and aCGH 
profiles as covariates in order to identify significant regions 
of the genome associated with disease subclasses. Specifically, 
we propose a principled two-stage method using the covari-
ates exhibiting serial dependence. Stage 1 makes inferences on 
the underlying copy number states associated with the aCGH 
emissions based on HMM formulation. Using Bayesian lin-
ear variable selection procedures, Stage 2 detects the model 
parameters associated with the binary responses, conditional 
on the parameters of Stage 1.

The selected probes and their effects are parameters that 
are useful for predicting the disease categories of any addi-
tional individuals on the basis of their copy number profiles.  
A simulation study demonstrates the method’s remarkable 
accuracy in detecting disease category. The methodology is 
applied to a breast cancer dataset, and we find several mark-
ers that are associated with disease subtype using the copy 
number profiles. Some of these discoveries confirm existing 
literature, and novel associations could be potential targets for 
future validation studies.

Our methods are general and could be potentially applied 
to SNP arrays as well that yield copy number profiles. A nice 
generalization of the method would be to incorporate geno-
type information (eg, allelic frequencies) in the models (espe-
cially, Stage 1) that could lead to more refined estimation of 
the latent copy number states. Furthermore, current tech-
nologies enable collection of multiplatform data on matched 
patient samples such as mRNA expression (eg, The Cancer 
Genome Atlas (TCGA)) that can be leveraged to provide a 
more detailed understanding of the biological mechanisms 
involved in cancer development and progression. We leave 
these tasks for future consideration.

Appendix
Theorem 7.1: Let x = (x1, …, xn)′ be a vector such that xTx = 1. 
Define the matrices A = xxT and B = In + τ 2A. Then the deter-
minant of matrix B is 1 + τ 2. Given r ∈ Rn, define the vector 
h = (h1, …, hn)T= φ x + r and scalar φ τ= (1/ )1 12+ − x rT . Let 
L hi

n
i= ∑ =1
2 . Then the n-variate normal density

 2

1 1
0

22 1/ 2
( | , ) exp( ).

( )n n
N r B L

π τ
= −

+

Table 1. For the 200 individuals belonging to the 50 test samples of 
the simulation study, the estimated disease category versus the true 
category averaged over the 50 test samples. Perfect classification 
was obtained for each dataset. As a result, the standard errors 
shown in parenthesis are all zero.

ESTIMATED

0ˆiy ∗ = 1ˆiy ∗ =
Truth

yi∗ = 0 50 (0) 0 (0)

yi∗ = 1 0 (0) 150 (0)
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figure 2. Number of significant markers broken down for each chromosome.
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figure 3. Human karyogram with significant locations. This figure is a karyogram that depicts the significant probes identified using our approach. The 
red color corresponds to negative regression coefficients.
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Proof. Since A = xxT has rank 1 and xTx = 1, the 
eigenvalues of A consist of a single 1 and (n − 1) number of 
0’s. Furthermore, the eigenvector corresponding to eigenvalue 
1 must be x. Let ΛA be the diagonal matrix of the eigenvalues, 
and P be the matrix of eigenvectors of A. Then A = P ΛA PT.

Since PPT = In and B = In + τ 2A, B has the same eigen-
vectors as A and its eigenvalues are 1 + τ 2 and (n − 1) number 
of 1’s. The product of these eigenvalues is

 1 2det( ) .B τ= +  (4)

Matrix B–1/2 has the same eigenvectors as B and its 
eigenvalues are 1 1 2/ τ+  and (n − 1) number of 1’s. Thus, 
ΛΛ ΛΛB A n− = + − +1 2 1 1 12

/ ( / )τ I  and
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Given r ∈ Rn, we have

 
B A− =

+ −




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+1 2
2

1

1 1
/ .r r r

τ
 (5)

We obtain the result on substituting (4) and (5) in the 
n-variate normal density.
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