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Diabetic cardiomyopathy (DCM) is one of the most essential cardiovascular complications in
diabetic patients associated with glucose and lipid metabolism disorder, fibrosis, oxidative
stress, and inflammation in cardiomyocytes. Despite increasing research on the molecular
pathogenesis of DCM, it is still unclear whether metabolic pathways and alterations are
probably involved in the development of DCM. This study aims to characterize the
metabolites of DCM and to identify the relationship between metabolites and their
biological processes or biological states through untargeted metabolic profiling. UPLC-
MS/MS was applied to profile plasma metabolites from 78 patients with diabetes (39
diabetes with DCM and 39 diabetes without DCM as controls). A total of 2,806 biochemical
were detected. Compared to those of DMpatients, 78 differential metabolites in the positive-
ionmodewere identified in DCMpatients, including 33 up-regulated and 45 down-regulated
metabolites; however, there were only six differential metabolites identified in the negative
mode including four up-regulated and two down-regulated metabolites. Alterations of
several serum metabolites, including lipids and lipid-like molecules, organic acids and
derivatives, organic oxygen compounds, benzenoids, phenylpropanoids and polyketides,
and organoheterocyclic compounds, were associatedwith the development of DCM. KEGG
enrichment analysis showed that there were three signaling pathways (metabolic pathways,
porphyrin, chlorophyll metabolism, and lysine degradation) that were changed in both
negative- and positive-ion modes. Our results demonstrated that differential metabolites
and lipids have specific effects on DCM. These results expanded our understanding of the
metabolic characteristics of DCM and may provide a clue in the future investigation of
reducing the incidence of DCM. Furthermore, the metabolites identified here may provide
clues for clinical management and the development of effective drugs.
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INTRODUCTION

Heart failure (HF) is associated with high mortality and
morbidity. About 20% of HF patients are diagnosed with
complications of type 2 diabetes mellitus (T2DM) (Formiga
et al., 2020). In 1972, Rubber et al. proposed that diabetic
patients could experience cardiomyopathy without coronary
artery ischemia (Rubler et al., 1972). People now have a
better knowledge of this particular cardiac ailment, thanks to
decades of research. Diabetic cardiomyopathy (DCM) is
defined by the European Society of Cardiology as
cardiomyopathy with myocardial structural changes and
ventricular systolic and diastolic dysfunction in patients
with diabetes, excluding hypertensive heart disease,
coronary heart disease, and cardiovascular disease
(Authors/Task Force et al., 2013). DCM is one of the most
common cardiovascular complications in patients with
diabetes. According to epidemiological statistics, the
prevalence rate of diabetes and diabetic cardiomyopathy
in the general population is 16.9 and 1.1%, respectively.
The mortality rate of patients with diabetic
cardiomyopathy is 31% (Dandamudi et al., 2014). In the
early stages, DCM is characterized by left ventricular
hypertrophy, increased myocardial stiffness, increased
ventricular filling pressure, and impaired diastolic
function. In the late stage, cardiac fibrosis is aggravated,
the diastolic function is further damaged, and secondary is
accompanied by systolic dysfunction (Westermeier et al.,
2016; Gilca et al., 2017). DCM progresses slowly and can only
be diagnosed when the heart shows some degree of
dysfunction, one of the important causes of death in
patients with diabetes (Dandamudi et al., 2014).
Therefore, HF with preserved ejection fraction (HFpEF) is
regarded as the clinical feature of DCM. The disturbance of
cardiomyocyte active relaxation can cause a decrease in
coronary blood perfusion, induce myocardial fibrosis and
myocardial remodeling, make the ventricle stiff, decrease
compliance and further aggravate the diastolic cardiac
dysfunction, and develop into left ventricular ejection
fraction preserved HF (Park, 2021). At present, the
clinical diagnosis of DCM is still challenging because its
pathogenesis is not well understood, and there is a lack of
reliable and specific clinical diagnostic markers in the early
stages of the disease. It is urgently needed to explore further
biomarkers that can be used to recognize early DCM.

At present, some serum biomarkers are considered to have a
certain predictive value in diagnosing DCM. Natriuretic
peptides can be used to identify the changes in early
diastolic function, which can predict the risk of
cardiovascular complications in people with poor blood
glucose control. Still, its positive predictive value is poor
(Romano et al., 2010). Shaver et al. found that the level of
serum adiponectin in patients with uncomplicated diabetes
was lower than that in normal subjects, and the level of
adiponectin in patients with DCM was further decreased,
suggesting that monitoring serum adiponectin may help
with the diagnosis of early cardiomyopathy in patients with

diabetes (Shaver et al., 2016). Ana Lorenzo-Almorós et al.
found that Galectin-3 is associated with an increased risk of
cardiovascular events in diabetic patients with stable CAD;
galectin-3 may work as a diagnostic and prognostic biomarker
(Lorenzo-Almoros et al., 2020). Another study reported that
NT-proBNP is consistently related with reducing cardiac
function in euglycemia. The prospective value of NT-
proBNP was superior to galectin-3 in assessing reduced
systolic and diastolic function in patients without T2DM
(Schmitt et al., 2021). Cardiac troponin I (cTnI) is a
clinically sensitive and particular marker of myocardial
injury (Liu et al., 2015). In diabetic patients, the level of
serum cTnI in the DCM group is higher than that in the
diabetic group, which is consistent with those of the
experimental animal model of DCM, where the level of
cTnI in the plasma of T2DM mice with heart failure is
significantly increased (Korkmaz-Icoz et al., 2016).
However, cTnI as a biological indicator of DCM lacks
enough experimental evidence, so it can only be used as an
auxiliary indicator. Akbal et al. found elevated heart-type fatty
acid-binding protein (H-FABP) levels in T2DM patients with
early myocardial injury suggesting that this factor may
contribute to the recognition of early DCM (Akbal et al.,
2009). TGF-β can promote myocardial fibrosis and
myocardial hypertrophy. Tan et al. used a TGF-β inhibitor
in the T2DM mouse model and found that the ventricular
diastolic disturbance in mice was improved (Tan et al., 2012).
TGF-β is expected to become an important marker for the
diagnosis and treatment of DCM. Ihm et al. studied the
correlation between the increase of type I procollagen
N-terminal peptide (PINP) and the echocardiographic
evidence of myocardial diastolic dysfunction (Ihm et al.,
2007). They revealed that the left ventricular diastolic
function was related to serum PINP in patients with early
T2DM. However, there is a lack of clear diagnostic criteria for
DCM, and the inclusion criteria for DCM patients were not the
same in these clinical studies. At the same time, related serum
biomarkers often involve a variety of pathophysiological
mechanisms and often appear in other diseases and other
complications of diabetes at the same time. It is still urgent
to further explore the disease mechanism and find more
specific biomarkers for the early diagnosis of DCM.

Metabolomics provides a way to analyze all metabolites in
organisms quantitatively and determine the relative relationship
between metabolites and their physiological and pathological
changes (Mishra et al., 2017). The untargeted metabolomics
compares the experimental and control groups to detect all
metabolites in a sample and discover statistically significant
differences in metabolites between different groups which may
explain the relationship between metabolites and biological
process states (Tan et al., 2020).

T2DM patients were recruited from the Department of
Endocrinology at the First Affiliated Hospital of Shenzhen
University for this study. The metabolites of T2DM patients
with cardiac diastolic dysfunction were quantitatively analyzed by
metabolomics, and bioinformatic and statistical methods
screened the differential metabolites. A total of 2,806
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biochemicals were detected, including lipids and lipid-like
molecules, organic acids and derivatives, organic oxygen
compounds, benzenoids, phenylpropanoids, polyketides, and
organoheterocyclic compounds, were associated with the
development of DCM. Our findings contributed to a better
understanding of the metabolic characteristics of DCM. They
may provide a clue in future research to reduce the incidence of
DCM and its progression to HFpEF.

MATERIALS AND METHODS

Subjects and Grouping
This research explores the differences in metabolites between
T2DM patients with or without diastolic dysfunction, and the
diagnosis of T2DM according to 2021ADA-Standards of Medical
Care in Diabetes: FPG ≥126 mg/dl (7.0 mmol/L) or 2-h PG ≥
200 mg/dl (11.1 mmol/L) during OGTT or A1C ≥ 6.5%
(48 mmol/mol) or in a patient with classic symptoms of
hyperglycemia or hyperglycemic crisis, random plasma glucose
≥200 mg/dl (11.1 mmol/L). This study enrolled T2DM inpatients
at the Department of Endocrinology, the First Affiliated Hospital
of Shenzhen University, from January 2021 to May 2021,
excluding other types of diabetes. The patients diagnosed with
a combination of hypertension, coronary heart disease, thyroid
disease, chronic kidney disease, rheumatic heart disease, primary
cardiomyopathy, and congestive heart failure were excluded.
According to Doppler echocardiography, LVEF ≥50% was
defined as patients with preserved ejection fraction. The
patients in the control group had normal diastolic function.
The age (46.49 ± 1.63 vs. 59.41 ± 1.74) and the disease course
(8.18 ± 1.08 vs. 12.77 ± 1.18), the male to female ratio is 2:1. The
procedure followed in this study is in line with the standards
established by the Human Trial Committee of Shenzhen Second
People’s Hospital, approved by the ethics committee, ethics
number is 20220210001, and signed informed consent for
clinical research with all subjects.

Biochemical Index Detection
The patient’s age, body mass index (BMI), height, and other
clinical information were obtained through medical history
inquiry and physical examination. Early in the morning,
fasting venous blood was collected. An automatic biochemical
analyzer was used to detect fasting blood glucose (FBG), 2-h
postprandial blood glucose (PBG), and glycosylated hemoglobin
(HbA1c). Serum triglycerides (TG), total cholesterol (TC), low-
density lipoprotein (LDL-C), high-density lipoprotein (HDL-C),
and other blood lipid parameters were all measured.

Doppler Echocardiography
Determining left ventricular functional parameters: Doppler
echocardiography was performed by color ultrasound, and left
ventricular ejection fraction (LVEF) was obtained by M-mode
echocardiography and apical four-chamber view. The following
parameters were measured: early diastolic peak velocity (E), late
diastolic peak velocity (A), and early diastolic mitral annulus
velocity (e’). And the values of E/A were calculated as the

ultrasonic diagnostic criteria of diastolic cardiac dysfunction,
while the values of E/e’ were used to assess systolic and
diastolic myocardium and for the estimation of left ventricular
filling pressure.

Serum Sample Preparation for Metabolic
Profiling
The samples were thawed on ice before three volumes of ice-cold
methanol were added to 1 volume of plasma/serum, which was
then whirled for 2 min and incubated at −20°C for 0.5 h. The
mixture was then whirled for 2 min before being centrifuged at
12,000 rpm for 10 min at 4°C. The supernatant was collected and
incubated for 0.5 h at −20°C. Finally, it was centrifuged for 15 min
at 12,000 rpm at 4°C, and the supernatant was collected for LC-
MS/MS analysis.

UPLC-MS/MS Analysis
The analytical conditions of UPLC-MS/MS were as follows:
UPLC column, Waters ACQUITY UPLC HSS T3 C18
(1.8 µm, 2.1 mm × 100 mm); column temperature, 40°C; flow
rate, 0.4 ml/min; injection volume, 2 μL; solvent system, water
(0.1% formic acid): acetonitrile (0.1% formic acid); gradient
program, 95:5 V/V at 0 min, 10:90 V/V at 11.0 min, 10:90 V/V
at 12.0 min, 95:5 V/V at 12.1 min, 95 : 5 V/V at 14.0 min.

Multivariate Data Processing and Data
Analysis
The original data file obtained by UPLC-MS analysis was firstly
converted into mzML format by ProteoWizard software. Peak
extraction, alignment, and retention time correction were
performed by the XCMS program. The “SVR” method was
used to correct the peak area. Peaks with deletion rate >50%
in each group of samples were filtered out. After that, metabolic
identification information was obtained by searching the
laboratory’s self-built database and integrating the public
database and metDNA. Finally, a statistical analysis was
carried out by the R package. The statistical analysis included
univariate analyses and multivariate analyses. Univariate
statistical analyses included the Student’s t-test and variance
multiple analysis. Multivariate statistical analyses included
principal component analysis (PCA), partial least squares
discriminant analysis (PLS-DA), and orthogonal partial least
squares discriminant analysis (OPLS-DA). All experimental
data were presented as the mean ± standard error. p < 0.05
was considered statistically significant.

RESULTS

Research Population for Non-Targeted
Metabonomic Analysis
A total of 78 patients with T2DM were sampled in this study,
including group I (DCM group) containing 39 type 2 diabetes
patients with myocardial diastolic dysfunction and group II (DM
group), including 39 type 2 diabetes patients without myocardial
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diastolic dysfunction. No significant difference in clinical
characteristics was observed between the two groups, as shown
inTable 1. The non-targetedmetabonomic screening data set was
obtained from 78 patients with mass spectrometric analysis.

Heart Function Assessment With Doppler
Echocardiography
Conventional echocardiographic parameters related to LV
structure and function are described in Table 2. The E
(70.59 ± 3.01 vs. 84.10 ± 2.59, p < 0.01) and e’ (6.61 ± 0.23
vs. 9.40 ± 0.38, p < 0.001), represent the maximum blood flow in
the early diastolic left ventricle and are significantly reduced in
the DCM group compared to that of the DM group. The A-peak,
which reflects left atrial systolic hemodynamics, was significantly
elevated in the DCM group compared to that of the DM group
(86.79 ± 3.24 vs. 68.21 ± 2.80, p < 0.001). As a result, the E/A and
E/e’ ratios in the DCM were significantly lower than that in the
DM group. There was no significant difference between the two
groups regarding resting LV dimension, LV mass index, and LV
ejection fraction.

Orthogonal Partial Least Square
Discriminant Analysis (OPLS-DA)
The metabolome group data were subjected to data quality
control (QC) analysis. As shown in Figure 1, all the QC
sample’s peaks overlapped well, and there was little difference
in peak intensity fluctuation, indicating that the data were reliable
and qualified for the subsequent analysis.

To understand the general differences of metabolites in all
samples, the principal component analysis (PCA) on the
abundances of metabolites was conducted. A clear trend of
partial separation of metabolites between groups was observed
in PCA. The PCA score in positive and negative ion modes was
shown as follows: the PC1s of DCM and DM in positive and
negative ion modes were 8.12 and 9.97%, respectively (Figure 2),
indicating metabolic differences between these two patient
groups.

The metabolic datasets were further analyzed with the
orthogonal partial least squares’ discriminant analysis
(OPLS-DA) model. The components of independent
variable X and dependent variable Y were extracted,
respectively, and the correlation between the components
was calculated. R2X and OPLS-DA score maps were used to

TABLE 1 | Description of the sample population in this study.

Clinical parameters DM (n = 39) DCM (n = 39) p Value

BMI 24.19 ± 0.44 23.77 ± 0.40 0.48
WHR 0.93 ± 0.01 0.94 ± 0.01 0.49
HbA1c 9.25 ± 0.41 8.39 ± 0.31 0.10
FBG 7.50 ± 0.54 6.93 ± 0.37 0.39
PBG 14.96 ± 0.85 16.11 ± 0.87 0.35
TG 1.71 ± 0.29 1.33 ± 0.15 0.25
TC 4.56 ± 0.23 4.43 ± 0.18 0.66
LDL 2.80 ± 0.17 2.76 ± 0.16 0.87
HDL 1.09 ± 0.07 1.14 ± 0.03 0.51

BMI, body mass index; HbA1c, glycated hemoglobin; WHR, waist-to-hip ratio; FBG,
fasting blood glucose; TG, triglyceride; TC, total cholesterol; LDL, low-density lipoprotein
cholesterol; HDL, high-density lipoprotein cholesterol.

TABLE 2 | Description of the heart function of the patients in two groups.

DM DCM

E 84.10 ± 2.59 70.59 ± 3.01**
e’ 9.40 ± 0.38 6.61 ± 0.23***
A 68.21 ± 2.80 86.79 ± 3.24***
LVEF 67.51 ± 0.76 66.05 ± 0.84
E/A 1.29 ± 0.05 0.83 ± 0.03**
E/e’ 9.28 ± 0.43 11.10 ± 0.60***
FS 37.56 ± 0.62 36.36 ± 0.64
ROVT 26.64 ± 0.65 27.62 ± 0.68
AO 28.38 ± 0.48 29.33 ± 0.54
LA 30.59 ± 0.56 31.42 ± 0.60
IVS 9.86 ± 0.22 9.77 ± 0.19
LVPW 9.40 ± 0.16 9.28 ± 0.20
LVD 45.97 ± 0.52 45.62 ± 0.68
LVS 28.49 ± 0.45 29.03 ± 0.56
PA 21.23 ± 0.28 21.59 ± 0.21
V-PA 89.92 ± 2.81 88.61 ± 2.07
V-LOVT 106.97 ±2.83 104.56 ± 2.82

**p < 0.01 vs DM; ***p < 0.001 vs DCM.

FIGURE 1 | Mass spectrometric analysis of TIC overlap map of mixed
samples. (A) Detection of TIC overlap map of QC samples in positive ion
mode; (B) detection of TIC overlap map of QC samples in negative ion mode.

Frontiers in Physiology | www.frontiersin.org May 2022 | Volume 13 | Article 8633474

Hao et al. Diabetic Cardiomyopathy Metabolomics

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


evaluate the classification effect of the model, and the score
maps of OPLS-DA groups were drawn (Figure 3). The closer
the three indexes were to 1, the more stable and reliable the
model was. For the metabolites from the positive ion mode, the
T-score was 7.08%, and the Magi Orthogonal T-score was
4.25%. For the metabolites from the negative-ion mode, the

T-score was 8.8%, and the Magi Orthogonal T-score was
4.94%. The OPLS-DA score map reflected the better data
separation between DCM and DM in the positive and
negative ion mode. There was a significant difference
between the two groups, which confirmed the reliability of
our model.

FIGURE 2 | Principal component analysis diagrams. (A) PCA diagram of corresponding groups in the positive ion mode; (B) three-dimensional diagram of
corresponding groups in the positive ion mode; (C) corresponding grouping PCA diagram in the negative ion mode; (D) three-dimensional diagram of corresponding
grouping PCA in the negative ion mode.

FIGURE 3 | OPLS-DA score chart. (A) OPLSDA score diagram of corresponding groups in the positive ion mode; (B) OPLSDA score diagram of corresponding
groups in the negative ion mode.
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To further verify the OPLS-DA model, a verification
Permutation test analysis was conducted (Figure 4). In
positive ion mode, Q2 0.866 indicated that the prediction
ability of 173 random grouping models in this permutation
detection was better than that of the OPLS-DA model, and
R2Y was 0.968, indicating that the interpretation rate of the Y
matrix of 193 random grouping models in this permutation
detection was better than that of the OPLS-DA model. In the
negative ion mode, Q2 0.829 indicated that the prediction
ability of 165 random grouping models in this permutation
detection was better than that of the OPLS-DA model; R2Y
was 0.935, indicating that the explanation rate of the Y matrix
of 187 random grouping models in this permutation detection
was better than that of the OPLS-DA model. In both ion
modes, p-values < 0.05 was statistically significant. The
abovementioned results verified the effectiveness of
the model.

DIFFERENTIAL METABOLITE SCREENING

Based on the OPLS-DA results, the metabolites of different groups
could be preliminarily screened from the variable importance
projection (VIP) of the multivariate analysis OPLS-DA model.
The VIP value indicates the influence intensity of the difference of
the corresponding metabolites between groups, and it is generally
believed that the difference of the metabolites with VIP ≥1 is
significant. Here, the differential metabolites were screened by
combining the p-value of univariate analysis, the multiple of
difference (fold change), and the VIP value of the OPLS-DA
model. The log FC ≥ 2, VIP ≥1 and p-value < 0.05 were
classified as differential metabolite. According to this criterion,
there were 78 differential metabolites in the positive ion mode,
including 33 upregulated and 45 downregulated metabolites
(shown in Supplementary Table 3). However, there were only 6
differential metabolites identified in the negative mode, including
4 up-regulated and 2 down-regulated differential metabolites.
Differential metabolites include terpenoids, phenylpropanoids

and polyketides, vitamins, organoheterocyclic compounds, organic
oxygen compounds, organic nitrogen compounds, organic acids and
derivatives, nucleotide and its metabolomics, lipids and lipid-like
molecules, heterocyclic compounds, carboxylic acids and derivatives,
benzenoids, amino acids and derivatives, alkaloids and derivatives,
and alcohol and amines (Figure 5).

ANALYSIS OF DIFFERENTIAL
METABOLITES

The difference in the abundance level of metabolites between the
DCM and DM group was examined and plotted on a volcanic
map (Figure 6), where a statistically significant cutoff was at p <
0.05. In the positive ion mode, 33 up-regulated differentially
expressed metabolites, and 45 down-regulated differentially
expressed metabolites were obtained. In the negative ion
mode, four up-regulated differentially expressed metabolites,
and two down-regulated differentially expressed metabolites
were obtained (Table 3).

Cluster analysis was conducted for differential metabolites and
the significant changes of these metabolites were visualized with
heat maps (Figure 7). Based on the cluster analysis of the
differential metabolites in positive and negative ion modes, the
differential metabolites in DM and DCM patients were utterly
divided into two categories. Most of the metabolites were
increased in all serum samples of DCM patients.

According to the correlation analysis of differential
metabolites, the significant difference in metabolites was
analyzed by the Pearson correlation coefficient (PCC). The
differential metabolite correlation heat map was drawn
(Figure 8). In the positive ion mode, there was a high
correlation between many differential metabolites. While in
the negative ion mode, the correlation between the differential
metabolites was not significant. This difference may be due to the
small number of differential metabolites in the negative ionmode.

The Z-score analysis was used to normalize the differential
metabolites in different samples (Figure 9). The visualization of

FIGURE4 |OPLS-DAmodel verification. (A) Verification diagram of the corresponding groupingOPLSDAmodel in the positive ionmode; (B) verification diagram of
the corresponding grouping OPLSDA model in the negative ion mode.
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the distribution showed that in the positive ion mode, the
expression of differential metabolites in serum samples of
DCM patients was relatively stable, while the expression of
differential metabolites in serum samples of DM patients
varied greatly; In the negative ion mode, the levels of
differential metabolites in serum samples of both DCM and
DM patients were significantly changed.

KEGG ENRICHMENT ANALYSIS OF
DIFFERENTIAL METABOLITES

Differential metabolites interact with each other to form
different pathways in organisms. The differential metabolites
were annotated and displayed with KEGG (Kyoto Encyclopedia
of Genes andGenomes). KEGG pathway enrichment of differential

metabolites was carried out (Figure 10), and the results were as
follows: in the positive ion mode, the differential metabolites were
significantly enriched in 16 pathways (Table 4), while in the
negative ion mode; the differential metabolites were significantly
enriched in 3 pathways (Table 4). These signaling pathways
included porphyrin and chlorophyll metabolism, metabolism of
xenobiotics by cytochrome P450, chemical carcinogenesis,
D-Glutamine, and D-glutamate metabolism, lysine degradation,
biotin metabolism, β-alanine metabolism, phosphonate and
phosphinate metabolism, steroid hormone biosynthesis, vitamin
digestion, absorption, pantothenate and CoA biosynthesis, drug
metabolism-cytochrome P450, fructose and mannose metabolism,
arginine, proline metabolism, and bile secretion (Figure 10). These
pathways were related to glucose and lipid metabolism, amino acid
metabolism, oxidative energy supply, and inflammation, which
were closely related to the pathogenesis of DCM.

FIGURE 5 | Violin diagram. (A) The violin diagram of the top known differential metabolites in the positive ion mode; (B) the violin diagram of the top known
differential metabolites in the negative ion mode.
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DISCUSSION

Diabetic cardiomyopathy is the main complication of diabetes
and the leading cause of death in patients with diabetes

(Dandamudi et al., 2014). Myocardial diastolic dysfunction
occurs in the early stages of DCM and is easily ignored, so the
early cognition of DCM diastolic dysfunction is essential. In this
study, differential metabolites in serum were identified between

FIGURE 6 | Volcanic map. (A) Volcanic diagram of the corresponding grouping under positive ionmode; (B) volcanic diagram of the corresponding grouping under
negative ion mode; the red for the significant upregulation of the metabolite, the green for the significant (p < 0.05) downregulation of the metabolite, and the gray for the
non-significant metabolite.

TABLE 3 | Identification results of the top 20 differential regulated metabolites.

Index Compounds Log2FC VIP Regulation

MW0104790 2-Imino-1-imidazolidineacetic acid −1.1 3.51 Down
MW0114873 Metyrapone −1.26 3.45 Down
MW0006549 Chlorothalonil −1.67 2.92 Down
MW0143690 5-Oxo-d-bilirubin −1.81 2.66 Down
MW0146182 Asp Lys Arg Glu Lys −1.33 2.63 Down
MEDL01949 Gossypol −2.08 2.6 Down
MW0155178 Phe Glu His Asp −2.49 2.52 Down
MW0015214 7-Keto-8-aminopelargonic acid 2.5 2.48 Up
MEDP1493 N6-methyladenosine −1.45 2.48 Down
MW0132617 3′,4′-Methylenedioxyorobol −2.02 2.44 Down
MW0108879 N-omega-Hydroxy-L-arginine −1.87 2.38 Down
MW0005047 4-Hydroxy-3-(3-methylbut-2-en-1-yl)benzoic acid −1.92 2.37 Down
MW0138798 Linarin −2.76 2.37 Down
MW0116518 1-(Piperidin-2-yl)propan-1-one 1.74 2.35 Up
MW0009245 O-Desmethylmycophenolic acid −2.16 2.33 Down
MW0142817 3b-(1-Pyrrolidinyl)-5α-pregnane-11,20-dione −1.07 2.32 Down
MW0127058 δ-Undecalactone 2.12 2.32 Up
MW0150122 Glu Pro Gly Tyr Ser 2.77 2.31 Up
MW0138757 Leucoside −2.68 2.3 Down
MW0106393 D-Glutamine −1.23 2.29 Down
MEDN0523 Indole-3-lactic acid 1.66 3.12 Up
MW0103994 (S)-2-Hydroxyglutaric acid −1.54 2.33 Down
MW0151553 Ile Phe Val Lys 1.26 1.73 Up
MW0142981 3-Hydroxyethylchlorophyllide a; 3-devinyl-3-(1-hydroxyethyl)chlorophyllide a 1.47 1.5 Up
MEDN1310 5-Hydroxymethyl-2-furancarboxylic acid −1.2 1.48 Down
MW0125002 Methohexital 1.66 1.33 Up

VIP for variable importance in projection, log2FC for log2 transformation of folder change.
The top 20 differential metabolites with the highest VIP value were selected to draw the violin map (Figure 5) and listed in Table 4.
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DCM and DM, and significantly enriched in metabolism
pathways for 37 up-regulated differential metabolites and
47 down-regulated differential metabolites in both ion modes.

Of those differential metabolites, terpenoids have been reported
to have an anti-inflammatory effect and can regulate blood lipid
and cardiotonic activity (Barsby et al., 1993; Kim et al., 2020).

FIGURE 7 | Heat maps of differential metabolites from serum. Rows: metabolites; columns: samples. (A) Cluster analysis heat map of differential metabolites
known in corresponding groups in positive ion mode; (B) cluster analysis heat map of differential metabolites known in related groups in negative ion mode.
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Here their expression in DCM was downregulated.
Phenylpropanoids and polyketides have anti-inflammatory
effects, and most of these metabolites are downregulated in
DCM (Fiorito et al., 2019). Organoheterocyclic compounds,
organic oxygen compounds, and organic nitrogen compounds
are involved in a redox reaction and these metabolites were also
changed in DCM. Lipids and lipid-like molecules affect the
glucose and lipid metabolism of DCM, and most of these
metabolites are downregulated in DCM (Cohain et al., 2021).
These differential metabolites are closely related to the
pathogenesis, occurrence, and development of DCM. Thus,
these differential metabolites should be potentially valuable
biomarkers to guide clinical diagnosis and treatment in the
pathophysiological process of DCM (Figure 11).

The disorder of cardiac glucose and lipid metabolism and the
imbalance of energy supply plays an essential role in the
occurrence and development of DCM. Excess-free fatty acids
will be released in diabetic patients, resulting in lipid toxicity in
cardiomyocytes (Jia et al., 2016; Jia et al., 2018). Excessive
intracellular lipid metabolic intermediates, such as
diacylglycerol and ceramide, will promote the damage of
insulin metabolic signal, apoptosis, and fibrosis of
cardiomyocytes and aggravate the occurrence and
development of DCM (Sharma et al., 2008; Li et al., 2020). A
recent study suggests that these alterations in cardiac energy
metabolism precede the development of glucose intolerance and
cardiac hypertrophy and that therapeutically modulating cardiac
energy metabolism by reducing fatty acid oxidation and
increasing glucose oxidation may improve cardiac function in
DCM (Buchanan et al., 2005). This study found that some lipid-
associated compounds accumulated while some were down-
regulated, including steroids and steroid derivatives, prenol
lipids, and glycerol phospholipids. The eight down-regulated
lipids and lipid metabolites may be used for energy oxidation,
and one up-regulated lipid metabolite may be the accumulated

intermediates. Our results further confirmed that the ability of the
myocardium to utilize glucose is declined, and its energy supply
may mainly be dependent on fatty acid oxidation.

Growing evidence points to the potential involvement of
oxidative stress in the pathophysiology of DCM. Abnormal
lipid metabolism (Qi et al., 2013) and mitochondrial
dysfunction (Pal et al., 2017) can stimulate cardiomyocytes to
produce ROS and induce oxidative stresses. The accumulation of
ROS can induce the formation of advanced glycation end
products (advanced glycation end products, AGEs), stimulate
the expression of AGEs receptor, and inhibit the activity of NO
synthase (nitric oxide synthase, NOS) and prostacyclin synthase
(prostacyclin synthetase, PGIS), which will promote myocardial
fibrosis, diastolic dysfunction and even heart failure in patients
with diabetes (Quan et al., 2020). This study obtained four down-
regulated organic oxygen compounds, one up-regulated organic
oxygen compound and one up-regulated organic nitrogen
compound, eight down-regulated organic acids and derivatives,
and seven up-regulated organic acids and derivatives in DCM.
This is consistent with previous findings (Yin et al., 2019),
showing that the ROS is also a good candidate marker.

Inflammatory factors are involved in DCM development
leading to cardiac remodeling, fibrosis, and diastolic
dysfunction (Li et al., 2020). Hyperglycemia and high free
fatty acid levels also activate NLRP3 inflammatory bodies that
activate reactive oxygen species pathways (Deery et al., 2012). In
diabetic heart tissue, the polarization of pro-inflammatory
macrophages M1 is upregulated, while the anti-inflammatory
response of macrophage M2 is inhibited (Hansen et al., 2017).
This study obtained five down-regulated phenylpropane and
polyketone compounds, including macrocyclic lactam,
coumarin and derivatives, flavonoids, and up-regulated
phenylpropane and polyketone isoflavones. A series of studies
reported that phenylpropane and polyketone compounds have
significant anti-inflammatory and antioxidant effects (Wang

FIGURE 8 | Differential metabolite correlation map. (A) Grouping in the positive ion mode; (B) grouping in the negative ion mode; red indicates strong positive
correlation, and green indicates strong negative correlation.

Frontiers in Physiology | www.frontiersin.org May 2022 | Volume 13 | Article 86334710

Hao et al. Diabetic Cardiomyopathy Metabolomics

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


FIGURE 9 | Z-value map of differential metabolite. (A) Z-value diagram of the known differential metabolites in corresponding groups in the positive ion mode; (B)
Z-value diagram of known differential metabolites in corresponding groups in the negative ion mode; different colors of the points represent different groups of samples
DM or DCM.
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et al., 2012; Gasparrini et al., 2016; Wang et al., 2016; Ju et al.,
2017). Their downregulation in DCM serum indicates that the
anti-inflammatory and antioxidant effects are weakened in DCM
patients, while oxidation and inflammation occur in DCM.

Many pathways are closely related to the pathogenesis of
DCM. The identified 19 pathways in our results were associated
with many aspects of metabolisms, including glucose, energy,
lipid, amino acid, inflammation, and other biological processes.

FIGURE 10 | KEGG enrichment map of differential metabolites. (A) KEGG differential enrichment bubble diagram in the positive ion mode; (B) KEGG differential
enrichment bubble diagram in the negative ion mode.

TABLE 4 | KEGG pathways involved by differentially regulated metabolites.

Pathway(POS) ID Unique compound Compound p-value

Steroid hormone biosynthesis ko00140 1 5 0.190
Metabolic pathways ko01100 11 323 0.947
Metabolism of xenobiotics by cytochrome P450 ko00980 2 5 0.015
Chemical carcinogenesis ko05204 2 7 0.030
b-Alanine metabolism ko00410 1 5 0.190
Pantothenate and CoA biosynthesis ko00770 1 7 0.257
Vitamin digestion and absorption ko04977 1 6 0.224
Lysine degradation ko00310 2 13 0.095
Porphyrin and chlorophyll metabolism ko00860 3 14 0.016
Phosphonate and phosphinate metabolism ko00440 1 5 0.190
Fructose and mannose metabolism ko00051 1 9 0.318
D-Glutamine and D-glutamate metabolism ko00471 1 2 0.080
Biotin metabolism ko00780 1 3 0.119
Drug metabolism—cytochrome P450 ko00982 1 8 0.288
Bile secretion ko04976 1 21 0.596
Arginine and proline metabolism ko00330 1 18 0.538

Pathway(NEG) ID Unique compound Compound p-value

Lysine degradation ko00310 1 4 0.048
Metabolic pathways ko01100 1 130 0.956
Porphyrin and chlorophyll metabolism ko00860 1 3 0.036
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These pathways contain 18 kinds of unique compounds,
including 12 kinds of unique compounds in the metabolic
pathway. They are five kinds of organic acids and derivatives,
one lipid and lipid-like molecule, which are steroids and steroid
derivatives, one kind of pantothenate, chlorophyllide, and four
kinds of amino acids. They jointly affect the function of metabolic
pathways. Our findings are consistent with previous works.
Chlorophyllin alleviates hyperglycemia-induced oxidative stress
and apoptosis in the liver of streptozotocin-administered mice
(Patar et al., 2018). The enrichment of the rich factor in the
lysine degradation pathway is significant and reliable, including
three kinds of unique compounds, all of which are organic acids and
derivatives. The porphyrin and chlorophyll metabolism pathway
contains four types of unique compounds, all of which are
organoheterocyclic compounds. Among them, the porphyrin
and chlorophyll metabolism signal pathway is involved in
vitamin B12 metabolism (Bolton et al., 2000), while vitamin B12
deficiency is related to cardiovascular autonomic neuropathy in
patients with type 2 diabetes mellitus (Hansen et al., 2017).
Metabolism of xenobiotics by cytochrome P450 pathways rich
factor enrichment is significant and reliable, including two unique
compounds, organoheterocyclic compounds, and organooxygen
compounds. The study provides evidence that diabetes initiates
cardiomyopathy by increasing sEH, reducing cytochrome P450
2J, and decreasing cardioprotective EETs, finally attenuating
cardiotoxicity mediated by the reduction of high glucose in
cardiac cells (Alaeddine et al., 2021). In addition, cytochrome
P450 has a close relationship with inflammation in T2DM
thought to decrease P450 isoenzymes and rise in plasma levels of
these enzymes, finally resulting in high expression of interleukin-6

(IL-6) and the tumor necrosis factor-alpha (TNF-α) (Darakjian et al.,
2021). These results above confirm that the signaling pathway of
cytochrome P450 plays a vital role in diabetic cardiomyopathy, and
our results provide another evidence. In addition, some previously
known metabolisms were also identified in this study, for example,
D-glutamine and D-glutamate metabolism pathway, biotin
metabolism pathway, chemical carcinogenesis pathway, rich factor
enrichment is significant and reliable, which suggests the common
and key pathways for some diseases.

To summarize, this study provides important clues for the
study of the regulation of metabolites and metabolites pathways
in DCM. In future research, we still need more studies to verify
their regulation and narrow down the key metabolite
candidates in the relevant cell experiments and animal
models, and explore the mechanism of metabolites
affecting DCM.
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