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Chondroitinase ABC (ChABC) is an enzyme that degrades glycosaminoglycan side-
chains of chondroitin sulfate (CS-GAG) from the chondroitin sulfate proteoglycan (CSPG)
core protein. Previous studies demonstrated that the administration of ChABC after
spinal cord injury promotes nerve regeneration by removing CS-GAGs from the lesion
site and promotes the plasticity of spinal neurons by removing CS-GAGs from the
perineuronal nets (PNNs). These effects of ChABC might enhance the regeneration and
sprouting of descending axons, leading to the recovery of motor function. Anatomical
evidence, indicating that the regenerated axons innervate spinal motoneurons caudal
to the lesion site, however, has been lacking. In the present study, we investigated
whether descending axons pass through the lesion site and innervate the lumbar
motoneurons after ChABC administration in rats with complete spinal cord transection
(CST) at the thoracic level. At 3 weeks after CST, 5-hydroxytryptamine (5-HT) fibers
were observed to enter the lesion in ChABC-treated rats, but not saline-treated rats.
In addition, 92% of motoneurons in the ventral horn of the fifth lumbar segment (L5)
in saline-treated rats, and 38% of those in ChABC-treated rats were surrounded by
chondroitin sulfate-A (CS-A) positive structures. At 8 weeks after CST, many 5-HT fibers
were observed in the ventral horn of the L5, where they terminated in the motoneurons in
ChABC-treated rats, but not in saline-treated rats. In total, 54% of motoneurons in the
L5 ventral horn in saline-treated rats and 39% of those in ChABC-treated rats were
surrounded by CS-A-positive structures. ChABC-treated rats had a Basso, Beattie,
and Bresnahan (BBB) motor score of 3.8 at 2 weeks, 7.1 at 3 weeks, and 10.3 at
8 weeks after CST. These observations suggest that ChABC administration to the
lesion site immediately after CST may promote the regeneration of descending 5-
HT axons through the lesion site and their termination on motoneurons at the level
of caudal to the lesion site. ChABC administration might facilitate reinnervation by
degrading CS-GAGs around motoneurons. Motor function of the lower limbs was
significantly improved in ChABC-treated rats even before the 5-HT axons terminated
on the motoneurons, suggesting that other mechanisms may also contribute to the
motor function recovery.
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INTRODUCTION

Traumatic brain injury and spinal cord injury (SCI) lead
to the formation of scar tissue at the lesion site in the
central nervous system. The scar that develops after stab
injury in mammals comprises fibrous tissue in the lesion core
and glial tissue in the surrounding parenchyma (Klapka and
Müller, 2006; Kawano et al., 2012). Glial tissue represents
severe reactive astrogliosis, which creates a chemical barrier
containing various extracellular matrix (ECM) molecules that
entrap axons and limit their ability to regrow over long
distances. Among these ECM molecules, chondroitin sulfate
proteoglycans (CSPGs) are considered major growth-inhibitory
factors (Snow et al., 1990; McKeon et al., 1991, 1995; Silver
and Miller, 2004). CSPGs are a subset of proteoglycans made
up of core proteins and glycosaminoglycan side-chains of
chondroitin sulfate (CS-GAG) that covalently bind to core
proteins. The CS-GAGs are largely responsible for inhibiting
axonal regeneration (Dou and Levine, 1995; Bradbury et al., 2002;
Laabs et al., 2007). CS-GAGs directly interact with receptors
expressed on the surface of injured axons to activate signal
pathways for growth inhibition. These receptors include protein
tyrosine phosphatases, such as protein tyrosine phosphatase σ

and leukocyte common antigen-related phosphatase, and Nogo
receptors (Miller and Hsieh-Wilson, 2015).

Chondroitinase ABC (ChABC) is a bacterial enzyme that
degrades CS-GAGs from the CSPG core protein. Previous studies
revealed that the administration of ChABC after SCI removed
CS-GAGs at the lesion site and promoted nerve regeneration in
long tracts entering the lesion site (Bradbury et al., 2002; Yick
et al., 2004; Barritt et al., 2006; Huang et al., 2006; García-Alías
et al., 2008; Bradbury and Carter, 2011). ChABC administration
restores motor function provided by the spinal cord at levels
below the lesion (Bradbury et al., 2002; Caggiano et al., 2005;
Barritt et al., 2006; Huang et al., 2006; García-Alías et al., 2008;
Tester and Howland, 2008; Bradbury and Carter, 2011). Many
pre-clinical studies have demonstrated the efficiency of ChABC
as a treatment for SCI (Muir et al., 2019). The mechanisms of
functional recovery, however, are not known. The regeneration
of descending tracts might not be involved in functional recovery.
In cases of partial injury, hemisection, or contusion of the spinal
cord, spared axons of descending tracts may maintain their
projections to the caudal motor areas and contribute to the
recovery of motor functions. Furthermore, the administration
of ChABC degrades CSPGs in the perineuronal nets (PNNs)
to promote the plasticity of spinal neurons and the sprouting
of spared long tract axons (Massey et al., 2006; Tom et al.,
2009; Starkey et al., 2012). Therefore, complete spinal cord
transection (CST) is the only model that allows us to evaluate
whether regenerating axons passing through the lesion site are
involved in the recovery of motor function. Previous studies have
revealed that ChABC administered after CST promotes axonal
regeneration across the lesion site and significantly improves
functional recovery (Huang et al., 2006; Cheng et al., 2015). How
the motor function recovered, however, remains unclear because
the projections of the regenerated axons to spinal neurons in the
motor area were not evaluated.

In the present study, therefore, we investigated whether
ChABC administration would promote the passage of
regenerating axons through the lesion site and their termination
on motoneurons at the lumbar level in rats with CST at the
midthoracic level. We evaluated the regeneration of serotonergic
fibers by immunohistochemistry using a 5-hydroxytryptamine
(5-HT) antibody and the synaptic contacts of the regenerated
fibers on motoneurons by immunohistochemistry using a
synapsin I antibody. In addition, we investigated the effects
of ChABC to degrade CSPGs in PNNs surrounding the
motoneurons in the ventral horn at the lumbar level and the
relationship between PNNs around motoneurons and the
terminals of 5-HT nerves.

Glycosaminoglycan side-chains of chondroitin sulfate, a
major inhibitory factor in CSPGs, are composed of repeating
chondroitin sulfate (CS) disaccharide units formed by N-acetyl
galactosamine (GalNAc) and glucuronic acid (GlcA) and
modified by regional sulfation. CS disaccharides monosulfated
in the four positions of the GalNAc residue are referred to as
CS-A. Previous studies suggest that CS-A has negative effects
on axonal outgrowth in rodent neurons (Dou and Levine, 1995;
Wang et al., 2008). Therefore, we evaluated the effect of ChABC
administration on CS-A degradation in PNNs.

MATERIALS AND METHODS

Materials
Both male and female Wistar rats (n = 50, Japan SLC,
Hamamatsu, Japan) were used in the present study. All
experimental procedures were performed according to the
standards established by the NIH Health Guide for the Care
and Use of Laboratory Animals and the Policies on the Use of
Animals and Humans in Research. The protocols were approved
by the Institutional Animal Care and Use Committee of the
Animal Research Center of Yokohama City University Graduate
School of Medicine.

Complete Spinal Cord Transection
The spinal cords of rats (n = 50) were transected at the
10th thoracic level (T10). Briefly, under isoflurane gas (1.5–
2.0%) anesthesia, the spinal cord was completely transected
with a sterile stainless surgical blade (No. 11) following
partial laminectomy (T9-T10). After confirming that the spinal
transection was complete, bleeding was stopped with a piece
of gelatin sponge (Spongel; Astellas Seiyaku Co., Ltd., Tokyo,
Japan). For rats with CST, a piece of gelatin sponge soaked in
50 µl of ChABC solution (1 U/ml in 50 mM in saline, Millipore
Sigma, St. Louis, MO, United States) was placed at the lesion
site (CST-ChABC rats: n = 25). As a control, a piece of gelatin
sponge soaked in saline solution instead of ChABC was applied
to the lesion site (CST-saline rats: n = 25). Gelatin sponges are
water-insoluble and completely absorbed within 4–6 weeks when
placed in soft tissues. In animal experiments, gelatin sponges
are useful as a scaffold for the slow-release administration of
chemicals (Okamoto et al., 2004; Takemoto et al., 2008). The
muscles and fascia layers of the skin were closed with 6–0 nylon
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sutures. All rats with CST (CST rats) were housed individually
in polycarbonate cages in a room maintained at 25 ± 1◦C, with
a 05:00 on/19:00 off light cycle. Severe dysuria due to the CST
was addressed by the researcher by manually pressing on the
bladder two times a day. A total of 16 CST rats did not survive
2 weeks after the CST procedure and were therefore not included
in the analysis.

Tissue Preparation for
Immunohistochemistry
Complete spinal cord transection rats (n = 34) were deeply
anesthetized with isoflurane at 2 weeks after CST (CST-ChABC:
n = 6 and CST-saline: n = 6), 3 weeks after CST (CST-ChABC:
n = 7 and CST-saline: n = 7), and 8 weeks after CST (CST-ChABC:
n = 4 and CST-saline: n = 4), and transcardially perfused with
normal saline followed by 4% paraformaldehyde in the 0.1 M
phosphate buffer.

The spinal cords were dissected and postfixed with 4%
paraformaldehyde overnight at 4◦C. The tissues were then
cryoprotected in 25% sucrose for 2 days and embedded in
the optimal cutting temperature (OCT) compound via 2-
methylbutane (isopentane) in liquid N2, and stored at –80◦C
until sectioning. Horizontal sections were cut at 20 µm with
a cryostat (CM3050 S, Leica, Nussloch, Germany), attached to
slides, and stored at –20◦C.

Immunohistochemistry
A series of all the sections of CST rats were used for
immunohistochemistry. The slides were dried for 1 h and washed
three times for 5 min each in 0.01 M phosphate-buffered saline
(PBS). The sections were then incubated in PBS including 0.5%
Tween 20 (PBST) for 30 min.

Chondroitin sulfate-A was detected using the monoclonal
antibody clone 2H6, which recognizes multiple sequences
containing CS-A units in CS chains (Deepa et al., 2007) and binds
effectively in immunohistochemistry (Shimazaki et al., 2005). To
label motoneurons, antibodies against choline acetyltransferase
(ChAT) or NeuN that recognize α-motoneurons (Friese et al.,
2009; Godinho et al., 2020) were used. After the blocking
procedure with Block Ace (5%, UK-B80, DS Pharma Biomedical
Co., Ltd., Suita, Japan), the sections were incubated in a
moist chamber overnight at 4◦C with primary antibodies as
follows: (1) a mixture of goat polyclonal antibody against
ChAT (1:100, AB144P, Merck KGaA, Darmstadt, Germany)
and mouse monoclonal IgM antibody against CS-A (10 µg/ml,
Clone 2H6, NU-07-001, Cosmo Bio Co., Ltd., Tokyo, Japan);
(2) a mixture of mouse monoclonal IgG antibody against
NeuN (1:200, MAB377, Merck KGaA), mouse monoclonal IgM
antibody against CS-A (10 µg/ml, Clone 2H6, NU-07-001,
Cosmo Bio), and goat polyclonal antibody against 5-HT (1:2,000,
PA1-18017, Invitrogen, Carlsbad, CA, United States); (3) a
mixture of goat polyclonal antibody against 5-HT (1:2,000, PA1-
18017, Invitrogen) and mouse monoclonal IgG antibody against
GAP43 (1:100, ab129990, Abcam, Cambridge, United Kingdom);
(4) a mixture of goat polyclonal antibody against ChAT
(1:100, AB144P, Merck KGaA), mouse monoclonal antibody

against synapsin I (1:200, VAM-SV009, Stressgen Biotechnologies
Corp., San Diego, CA, United States), and rabbit polyclonal
antibody against 5-HT (1:200, S-5545, Sigma-Aldrich, Merck
KGaA); and (5) a mixture of rabbit polyclonal antibody against
collagen IV (1:200, ab6586, Abcam), and mouse monoclonal
IgM antibody against CS-A (10 µg/ml, Clone 2H6, NU-07-
001, Cosmo Bio), diluted with 1% normal donkey serum, 0.2%
bovine serum albumin, and 0.1% NaN3 in 0.1 M PBST. After
rinsing the sections several times with 0.01 M PBST, they
were incubated for 2 h at room temperature with a mixture
of secondary antibodies, i.e., cyanine Cy3-conjugated donkey
anti-goat IgG (1:200, Jackson ImmunoResearch Laboratories,
West Grove, PA, United States), Alexa Fluor 488-conjugated
donkey anti-mouse IgG (1:200, Jackson ImmunoResearch
Laboratories), Alexa Fluor 488-conjugated donkey anti-mouse
IgM (1:200, Jackson ImmunoResearch Laboratories), and Alexa
Fluor 647-conjugated donkey anti-mouse IgG (1:200, Jackson
ImmunoResearch Laboratories).

The PNNs were also visualized by staining for the plant lectin
Wisteria Floribunda agglutinin (WFA), a pan marker for CSPGs
(Miyata et al., 2012; Irvine and Kwok, 2018; Sigal et al., 2019). For
WFA staining, sections were incubated in fluorescein WFA lectin
for 2 h (diluted 1:100 in PBS, FL-1351, Vector Laboratories, Inc.,
Burlingame, CA, United States).

The slides were then rinsed in PBS, and coverslips were
mounted with a slow-fade reagent (SlowFade Gold antifade
reagent, S36936, Invitrogen). Antibody specificity was verified
by incubation with 0.5% normal mouse serum (Jackson
ImmunoResearch Laboratories) or 0.5% normal goat serum
(Jackson ImmunoResearch Laboratories) instead of the
primary antibodies.

Image Acquisition and Analysis
All the sections were digitally photographed using a Keyence
BIOREVO All-in-One Fluorescence Microscope (BZ-9000,
Keyence, Osaka, Japan) and transferred to Adobe Photoshop CS
(Adobe, San Jose, CA, United States) to generate the figures.
Contrast and brightness were adjusted with Adobe Photoshop
CS. The lesion site and ventral horn at the fifth lumbar (L5)
level were analyzed.

In the L5 ventral horn, WFA-positive and CS-A-positive PNN
structures surrounding motoneurons positive for ChAT or NeuN
were quantitatively analyzed in rats at 3 and 8 weeks after
CST. We identified motoneurons for which 20% or more of the
circumference was surrounded by CS-A-positive structures as
positive for CS-A. We further divided ChAT-positive neurons
into three groups: (1) those for which more than 80% of the
circumference was surrounded by CS-A-positive structures, (2)
those for which 20–80% of the circumference was surrounded by
CS-A-positive structures, and (3) those for which less than 20% of
the circumference was surrounded by CS-A-positive structures,
as described in previous studies (Takiguchi et al., 2021, 2022).
Similar criteria were applied to the WFA-positive structures.
The number of motoneurons in each group was counted by
researchers blinded to the group conditions. The percentage
of motoneurons surrounded by CS-A-positive or WFA-positive
structures among all motoneurons was then calculated for each of
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the three groups. This process was repeated for all rats. Statistical
analysis was performed using a two-tailed unpaired t-test. A p-
value of less than 0.05 was considered significant.

Behavioral Analysis
The hindlimb locomotor functions of CST rats (n = 34)
were assessed immediately before perfusion at 2, 3, and

FIGURE 1 | The Basso, Beattie, and Bresnahan (BBB) score of rats with ChABC or saline administration at 2, 3, and 8 weeks after complete spinal cord transection
(CST). Significant differences are indicated by ∗∗p < 0.01 or ∗p < 0.05.

FIGURE 2 | Double-labeled images of immunohistochemistry for collagen IV (red), chondroitin sulfate (CS)-A (green) at the lesion site of rats with saline (A), and
chondroitinase ABC (ChABC) (B) administration at 3 weeks after CST. Asterisks indicate the center of the lesion. Scale bars = 200 µm.
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8 weeks after CST. The Basso, Beattie, and Bresnahan (BBB)
locomotor scale method (Basso et al., 1995) was calculated
for each rat. The BBB scale (0–21) evaluates the recovery of
hindlimb motor function after SCI by scoring motor function
in terms of joint movement, hindlimb movement, stepping,
and coordination between forelimbs and hindlimbs. Statistical
analysis was performed using Student’s t-test. A p-value of less
than 0.01 was considered significant.

RESULTS

Motor Function of the Hindlimbs
The mean BBB score of the CST-ChABC rats was 3.83 ± 0.54
at 2 weeks after CST, 7.14 ± 0.64 at 3 weeks after CST, and
10.25 ± 0.61 at 8 weeks after CST. The mean BBB score of
the CST-saline rats was 1.33 ± 0.21 at 2 weeks after CST,
1.86 ± 0.37 at 3 weeks after CST, and 2.75 ± 0.20 at 8 weeks

after CST (Figure 1). The BBB scores of the CST-ChABC rats
were significantly higher than those of CST-saline rats at 2, 3, and
8 weeks after CST, indicating better recovery.

Axonal Regeneration of
5-Hydroxytryptamine Fibers Through the
Lesion Site
Two and 3 Weeks After Complete Spinal Cord
Transection
In the CST-ChABC rats at 2 weeks after CST, few 5-HT nerve
fibers entered the lesion site. No 5-HT nerve fibers were observed
in the nervous tissue caudal to the lesion site. At 2 weeks after
CST, no 5-HT fibers entered the lesion site in the CST-saline rats.

At 3 weeks after CST, scar tissue formed in both the CST-
ChABC and CST-saline rats. The scar comprised fibrous tissue
containing collagen IV-positive structures at the lesion level,
and glial tissue containing CS-A-positive structures surrounded

FIGURE 3 | Double-labeled images of immunohistochemistry for 5-hydroxytryptamine (5-HT) (red), and GAP-43 (green) in the lesion site of rats with saline
(A,C,E,G,I,K), and ChABC (B,D,F,H,J,L) administration at 3 (A–F), and 8 weeks (G–L) after CST. Images of GAP-43 (A,B,G,H), 5-HT (C,D,I,J), and merged images
(E,F,K,L) are shown. Arrows indicate nerve fibers doubly positive for 5-HT and GAP-43. Asterisks indicate the center of the lesion site. Scale bars = 100 µm.
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it from the rostral and caudal sides (Figure 2). In the CST-
ChABC rats, many 5-HT nerve fibers entered the lesion site.
Some 5-HT nerve fibers were also positive for GAP-43. Few 5-
HT nerve fibers were observed in the nervous tissue caudal to the
lesion site (Figures 3B,D,F). In the CST-saline rats, some 5-HT
fibers entered the lesion site. They were also positive for GAP-43
(Figures 3A,C,E).

No 5-HT neurons were observed in the spinal cord, including
the lesion site, in the CST rats at either 2 or 3 weeks after CST.

At 8 Weeks After Complete Spinal Cord Transection
In the CST-ChABC rats, many 5-HT nerve fibers passed through
the fibrous tissue at the lesion site. These fibers crossed the caudal
border of the lesion site and penetrated deep into the nervous
tissue caudal to the lesion site. Some 5-HT fibers were observed

in the meninges at the level of the lesion. Furthermore, 5-HT
nerve fibers in the CST-ChABC rats were negative for GAP-43
(Figures 3H,J,L). In the CST-saline rats, many 5-HT nerve fibers
entered deep into the lesion site. These fibers terminated near the
caudal border of the lesion site but did not enter the nervous
tissue caudal to the lesion site. Some 5-HT nerve fibers in the
CST-saline rats were positive for GAP-43 (Figures 3G,I,K).

At 8 weeks after CST, no 5-HT neurons were observed in the
spinal cord, including the lesion site.

Perineuronal Nets Around Motoneurons in the Fifth
Lumbar Segment Ventral Horn
Chondroitin Sulfate-A-Positive Perineuronal Net Structures
Chondroitin sulfate-A-positive structures were observed around
motoneurons in the L5 ventral horn at 2, 3, and 8 weeks

FIGURE 4 | Images of immunohistochemistry for CS-A (green), Neu N (converted to blue), and 5-HT (red) in the L5 ventral horn of rats with saline (A,C,E,G,I,K), and
ChABC (B,D,F,H,J,L) administration at 3 (A–F), and 8 (G–L) weeks after CST. Double-labeled images of 5-HT and NeuN (A,B,G,H), CS-A immunohistochemistry
images (C,D,I,J), and merged images (E,F,K,L) are shown. Arrows in (H) indicate 5-HT nerve terminals on NeuN-positive motoneurons. Many 5-HT varicosities were
also observed in (H,L). Scale bars = 50 µm.
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after CST (Figure 4). The percentages of motoneurons covered
with CS-A-positive structures in the CST-ChABC rats were
38.23 ± 4.24% at 3 weeks after CST, and 39.48 ± 9.53% at 8 weeks
after CST. The percentages of motoneurons covered with CS-
A-positive structures in the CST-saline rats were 91.85 ± 4.12%
at 3 weeks after CST and 54.18 ± 15.18% at 8 weeks after
CST (Figure 5).

Wisteria Floribunda Agglutinin-Positive Perineuronal Net
Structures
Wisteria Floribunda agglutinin-positive structures were observed
around motoneurons in the L5 ventral horn at 2, 3, and 8 weeks
after CST (Figure 6). The percentages of motoneurons covered
with WFA-positive structures in the CST-ChABC rats were
84.58 ± 3.65% at 3 weeks after CST and 66.71 ± 20.94% at 8 weeks
after CST. The percentages of motoneurons covered with WFA-
positive structures in the CST-saline rats were 75.66 ± 3.84%
at 3 weeks after CST and 72.04 ± 13.96% at 8 weeks after
CST (Figure 7).

5-Hydroxytryptamine Nerve Terminals in the Fifth Lumbar
Segment Ventral Horn at 8 Weeks After Complete Spinal
Cord Transection
In the CST-ChABC rats, many 5-HT nerve fibers were observed
in the L5 ventral horn. The termination of 5-HT nerve fibers
on motoneurons positive for ChAT or NeuN was frequently
observed (Figures 4, 6). Some of these 5-HT terminals were
colocalized with synapsin I (Figure 8). 5-HT nerve terminals
were in contact with motoneurons covered with CS-A-positive
structures as well as those that were not covered with CS-A-
positive structures (Figure 4). Similarly, 5-HT nerve terminals
contacted motoneurons covered with WFA-positive structures
and motoneurons not covered with WFA-positive structures
(Figure 6). In the CST-saline rats, no 5-HT nerve fibers terminals
in contact with motoneurons in the L5 ventral horn were
observed (Figures 4, 6).

DISCUSSION

The degradation of CS-GAGs by the administration of ChABC
efficiently promotes axonal regeneration and spinal neuronal
plasticity and is applied as a therapeutic strategy for SCI
(Bradbury et al., 2002; Yick et al., 2004; Caggiano et al., 2005;
Barritt et al., 2006; Huang et al., 2006; García-Alías et al.,
2008; Tester and Howland, 2008; Bradbury and Carter, 2011;
Starkey et al., 2012; Muir et al., 2019). In the present study,
ChABC administration at the lesion site immediately after
CST in rats promoted the passage of descending 5-HT axons
through the fibrous scar at the lesion site and termination of the
lumbar motoneurons.

The descending 5-HT projections to the spinal cord originate
in neurons in the nucleus raphe magnus (B3), raphe obscurus
(B2), and raphe pallidus (B1) in the medulla oblongata. Among
them, the raphe obscurus projects 5-HT axons to the ventral
horn. In addition, 5-HT neurons have enhanced regenerative
abilities that activate axonal sprouting and regeneration after SCI.
In incomplete SCI models, such as contusion or hemisection,

FIGURE 5 | Percentages of motoneurons whose cell bodies were covered
with CS-A-positive perineuronal net (PNN) structures among all motoneurons
at 3 and 8 weeks after CST in rats with ChABC or saline administration. The
blue bar indicates the percentage of motoneurons with > 80% CS-A-positive
structures and the red bars indicate the percentage of motoneurons
with > 20% CS-A-positive structures. Data are expressed as the
mean ± SEM. Significant differences are indicated by ∗(p < 0.05).

many sprouted axons from spared 5-HT axons and regenerated
axons from injured 5-HT axons pass the lesion site to project
to the level caudal to the lesion (Perrin and Noristani, 2019).
In the CST model, on the other hand, 5-HT axons do not
regenerate beyond the lesion site, and the axons caudal to the
lesion site are lost permanently (Perrin and Noristani, 2019).
This was confirmed by the present results in control CST rats
with saline administration. Furthermore, no 5-HT neurons were
observed at the lesion site or in the spinal cord caudal to the
lesion site in either the CST-saline rats or CST-ChABC rats,
suggesting that the appearance of 5-HT neurons induced by
injury, as reported in some vertebrates, is impossible (Takeda
et al., 2008; Kuscha et al., 2012; Fabbiani et al., 2018). The
present findings in rats with ChABC administration, therefore,
suggest that axons from brainstem 5-HT neurons have the
regenerative ability to pass through the lesion site under the
influence of ChABC. The mechanisms underlying the successful
regeneration of 5-HT axons beyond the lesion site are unclear.
A previous study demonstrated that 5-HT axons are more
capable of surviving and sprouting than cortical neurons under
the inhibitory environment of CSPGs, suggesting that 5-HT
axons have higher endogenous growth activity than other axonal
types (Hawthorne et al., 2011). Furthermore, 5-HT axons express
high levels of proteases that degrade CSPGs (Tran et al., 2018).
The degradation of CS-GAGs by ChABC administration might
support the endogenous activity of 5-HT axons to overcome
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FIGURE 6 | Images of Wisteria Floribunda agglutinin (WFA) histochemistry (green), and immunohistochemistry for NeuN (converted to blue), and 5-HT (red) in the L5
ventral horn of rats with saline (A,C,E,G,I,K), and ChABC (B,D,F,H,J,L) administration after 3 (A–F) and 8 (G–L) weeks after CST. Double-labeled images of 5-HT
and NeuN (A,B,G,H), WFA histochemistry images (C,D,I,J), and merged images (E,F,K,L) are shown. Arrows in (H) indicate 5-HT nerve terminals on NeuN-positive
motoneurons. Many 5-HT varicosities were also observed in (H,L). Scale bars = 50 µm.

the inhibitory environment of CSPGs at the lesion site. The
present findings also showed that 5-HT axons terminated on
motoneurons in the L5 in rats with ChABC administration. Many
5-HT terminals co-localized with synapsin I, suggesting that they
made synaptic contacts with motoneurons. Further quantitative
studies of synapse formation, however, are needed to elucidate
the details of reinnervation of 5-HT axons.

The present behavioral analysis showed that hindlimb
locomotor activities of CST-ChABC rats at 2, 3, and 8 weeks
after CST rats were significantly improved compared with those
of CST-saline rats. At 8 weeks after CST, many 5-HT axon
terminals were observed on motoneurons in the L5 ventral
horn of rats following ChABC administration, suggesting that
regenerated 5-HT projections to motoneurons may contribute
to the recovery of hindlimb locomotor activities. In the L5
ventral horn, however, many 5-HT varicosities were not in
contact with neurons. Previous studies have shown that 5-
HT neurotransmission predominantly occurs via a volumetric

transmission that involves 5-HT diffusion across the extracellular
space (Séguéla et al., 1989; Oleskevich et al., 1991; Miner et al.,
2000). Therefore, even 5-HT terminals that did not make synaptic
contact with ventral horn neurons might have contributed to
the recovery of locomotor function of the CST-ChABC rats at
8 weeks after CST. Our observations in the CST-ChABC rats
showed that 5-HT terminals in the L5 ventral horn were few at 2
and 3 weeks after CST, although the hindlimb locomotor activity
was recovered. Diffusion of 5-HT released from regenerated
axons at levels rostral to the L5 might have contributed to the
recovery of locomotor activities. Alternatively, it is possible that
the regeneration of descending tracts and sprouting within the
spinal cord by neurons other than 5-HT neurons was involved
in the recovery of locomotor function in the CST-ChABC
rats. Retrograde tracing in the CST-ChABC rats could show
populations of neurons projecting to the L5 ventral horn. It
is also possible that the axonal sprouting of primary afferents
contributed to the recovery of locomotor function. The primary
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FIGURE 7 | Percentages of motoneurons whose cell bodies were covered
with WFA-positive PNN structures among all motoneurons at 3 and 8 weeks
after CST in rats with ChABC or saline administration. Blue bars indicate the
percentage of motoneurons with > 80% WFA-positive structures, and red
bars indicate the percentage of motoneurons with > 20% WFA-positive
structures. Data are expressed as the mean ± SEM.

afferent projections to the ventral horn and intermediate zone
in L5 are strengthened after thoracic CST in neonatal rats
(Takiguchi et al., 2015). Further experiments are needed to
evaluate these possibilities.

Perineuronal nets are ECM structures that surround neuronal
cell bodies and proximal dendrites in the central nervous system.
The main component of PNN is CSPG, which contains CS-GAG,
a major inhibitory factor that contributes to neural plasticity and
development (Caterson, 2012; Soleman et al., 2013; Dyck and
Karimi-Abdolrezaee, 2015). The present results showed that the
percentage of motoneurons with CS-A-positive structures in the

CST-ChABC rats was significantly smaller than that in the CST-
saline rats at 3 weeks after CST. This finding suggests that ChABC
applied to the lesion site successfully degraded CS-GAGs around
motoneurons in the L5 ventral horn. ChABC administration,
therefore, might facilitate the reinnervation of 5-HT axons by
promoting the plasticity of motoneurons. On the other hand, the
percentage of motoneurons with WFA-positive structures in the
CST-ChABC rats did not significantly differ from that in the CST-
saline rats at 3 weeks after CST, suggesting that ChABC applied
to the lesion site had little effect on PNNs around motoneurons
in the L5 ventral horn. Therefore, regenerated 5-HT axons
might make synaptic contacts with motoneurons surrounded by
PNNs when CS-GAGs are degraded to some extent by ChABC.
At 8 weeks after CST, 5-HT terminals were observed on both
motoneurons with and without WFA-positive structures in rats
with ChABC administration.

In this study, 50 µl of ChABC solution (1 U/ml) was soaked
in a gelatin sponge and applied to the lesion site immediately
after the CST. The methods of ChABC administration in previous
studies vary in terms of the sites of administration, timing, dose,
and duration (Muir et al., 2019). Intraparenchymal injection
of high, but not low, doses of ChABC 2 weeks after lesioning
promotes axonal regeneration across the lesion site, resulting in
the recovery of locomotor activities in rats with thoracic CST
(Cheng et al., 2015). These results suggest that a high dose of
ChABC delivered during the subacute phase after CST is most
effective for axonal regeneration and functional recovery (Muir
et al., 2019). On the other hand, the present results revealed
that slow release of a low dose of ChABC also promotes axonal
regeneration beyond the lesion site after CST, and results in a
more pronounced functional recovery compared with high-dose
injection, which leads to only a modest functional recovery (an
average BBB score of 3) (Cheng et al., 2015). CSPGs and their
components are dramatically increased at the lesion site within
days after hemisection or contusion of the spinal cord in adult
rats (Lemons et al., 1999; Jones et al., 2003; Tang et al., 2003).
Considering that the intraparenchymal administration of a low
dose of ChABC 2 weeks after CST did not promote axonal
regeneration (Cheng et al., 2015), our findings suggest that the
application of ChABC immediately after CST effectively degrades
CSPGs and promotes axonal regeneration.

FIGURE 8 | Images of immunohistochemistry for synapsin I (green), ChAT (converted to blue), and 5-HT (red) in the L5 ventral horn of rats with ChABC
administration at 8 weeks after CST. Double-labeled image of ChAT and 5-HT (A), ChAT and synapsin I (B), and merged images (C). Arrowheads in (C) indicate
nerve terminals doubly positive for 5-HT and synapsin I on motoneurons. Scale bars = 50 µm.
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