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The number of scientific publications in the literature is steadily growing, containing our

knowledge in the biomedical, health, and clinical sciences. Since there is currently no

automatic archiving of the obtained results, much of this information remains buried

in textual details not readily available for further usage or analysis. For this reason,

natural language processing (NLP) and text mining methods are used for information

extraction from such publications. In this paper, we review practices for Named Entity

Recognition (NER) and Relation Detection (RD), allowing, e.g., to identify interactions

between proteins and drugs or genes and diseases. This information can be integrated

into networks to summarize large-scale details on a particular biomedical or clinical

problem, which is then amenable for easy data management and further analysis.

Furthermore, we survey novel deep learning methods that have recently been introduced

for such tasks.

Keywords: natural language processing, named entity recognition, relation detection, information extraction, deep

learning, artificial intelligence, text mining, text analytics

1. INTRODUCTION

With the exploding volume of data that has become available in the form of unstructured text
articles, Biomedical Named Entity Recognition (BioNER) and Biomedical Relation Detection
(BioRD) are becoming increasingly important for biomedical research (Leser and Hakenberg,
2005). Currently, there are over 30 million publications in PubMed (Bethesda, 2005) and over 25
million references in Medline (Bethesda, 2019). This amount makes it difficult to keep up with
the literature even in more specific specialized fields. For this reason, the usage of BioNER and
BioRD for tagging entities and extracting associations is indispensable for biomedical text mining
and knowledge extraction.

Named-entity recognition (NER), in general, (also known as entity identification or entity
extraction) is a subtask of information extraction (text analytics) that aims at finding and
categorizing specific entities in text, e.g., nouns. The phrase “Named Entity” was coined in 1996
at the 6th Message Understanding Conference (MUC) when the extraction of information from
unstructured text became an important problem (Nadeau and Sekine, 2007). In the linguistic
domain, Named Entity Recognition involves the automatic scanning through unstructured text
to locate “entities,” for term normalization and classification into categories, e.g., as person names,
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organizations (such as companies, government organizations,
committees.), locations (such as cities, countries, rivers) or date
and time expressions (Mansouri et al., 2008). In contrast, in
the biomedical domain, entities are grouped into classes such
as genes/proteins, drugs, adverse effects, metabolites, diseases,
tissues, SNPs, organs, toxins, food, or pathways. Since the
identification of named entities is usually followed by their
classification into standard or normalized terms, it is also referred
to as “Named Entity Recognition and Classification” (NERC).
Hence, both terms, i.e., NER and NERC, are frequently used
interchangeably. One reason why BioNER is challenging is the
non-standard usage of abbreviations, synonymous, homonyms,
ambiguities, and the frequent use of phrases describing “entities”
(Leser and Hakenberg, 2005). An example of the latter is the
neuropsychological condition Alice in wonderland syndrome,
which requires the detection of a chain of words. For all these
reasons, BioNER has undoubtedly become an invaluable tool in
research where one has to scan through millions of unstructured
text corpora for finding selective information.

In biomedical context, Named Entities Recognition is often
followed Relation Detection (RD) (also known as relation
extraction or entity association) (Bach and Badaskar, 2007), i.e.,
connecting various biomedical entities with each other to find
meaningful interactions that can be further explored. Due to a
large number of different named entity classes in the biomedical
field, there is a combinatorial explosion between those entities.
Hence, using biological experiments to determine which of
these relationships are the most significant ones would be too
costly and time-consuming. However, by parsing millions of
biomedical research articles using computational approaches, it
is possible to identify millions of such associations for creating
networks. For instance, identifying the interactions of proteins
allows the construction of protein-protein interaction networks.
Similarly, one can locate gene-disease relations allowing to
bridge molecular information and phenotype information. As
such, relation networks provide the possibility to narrow down
previously-unknown and intriguing connections to explore
further with the help of previously established associations.
Moreover, they also provide a global view on different biological
entities and their interactions, such as disease, genes, food, drugs,
side effects, pathways, and toxins, opening new routes of research.

Despite the importance of NER and RD being a prerequisite
for many text mining-based machine learning tasks, survey
articles that provide dedicated discussions of how Named
Entity Recognition and Relations Detection work, are scarce.
Specifically, most review articles (e.g., Nadeau and Sekine, 2007;
Goyal et al., 2018; Song, 2018), focus on general approaches
for NER that are not specific to the biomedical field or
entity relation detection. In contrast, the articles by Leser
and Hakenberg (2005) and Eltyeb and Salim (2014) focus
only on biomedical and chemical NER, whereas (Li et al.,
2013; Vilar et al., 2017) only focus on RD. To address
this shortcoming, in this paper, we review both NER and
RD methods, since efficient RD depends heavily on NER.
Furthermore, we also cover novel approaches based on deep
learning (LeCun et al., 2015), which have only recently been
applied in this context.

This paper is organized according to the principle steps
involved in named entity recognition and relation extraction,
shown in Figure 1. Specifically, the first step involves the tagging
of entities of biomedical interest, as shown in the figure for
the example sentence “BRCA1 gene causes predisposition to
breast cancer and ovarian cancer.” Here the tagged entities are
BRCA1, Breast Cancer, and Ovarian Cancer. In the next step,
relationships between these entities are inferred using several
techniques, such as association indicating verbs as illustrated in
the example. Here the verb causes is identified as pointing to a
possible association. In the subsequent step, we aim to distinguish
sentence polarity and strength of an inferred relationship. For
instance, in the above sentence, the polarity is negative, i.e.,
indicating an unfavorable relation between the BRCA1 gene and
the tagged disease and the strength of relationship could be
extracted by either shortest path in the sentence dependency tree
or by a simple word distance as shown in the example. Finally,
it is favorable to visualize these extracted relations with their
responding strengths in a graph, facilitating the exploration and
discovery of both direct associations and indirect interactions, as
depicted in Figure 1.

As such, in section 2, we survey biomedical Named
Entity Recognition by categorizing different analysis approaches
according to the data they require. Then we review relation
inferring methods in section 3, strength, and polarity analysis in
section 4 and Data Integration and Visualization in section 5. We
will also discuss applications, tools, and future outlook in NER
and RD in the sections that follow.

2. BIOMEDICAL NAMED ENTITY
RECOGNITION (BIONER)

BioNER is the first step in relation extraction between biological
entities that are of particular interest for medical research
(e.g., gene/disease or disease/drug). In Figure 2, we show an
overview of trends in BioNER research in the form of scientific
publication counts. We extracted the details of the publications
that correspond to several combinations of terms related to
“Biomedical Named Entity Recognition” from the Web of Science
(WoS) between 2001 and 2019 and categorize them by general
BioNER keywords, i.e., gene/protein, drugs/chemicals, diseases,
and anatomy/species. As a result, the counts of articles in each
category were plotted chronologically. One can see that there is
a steadily increasing amount of publications in general BioNER
and a positive growth in nearly every sub-category since the early
2000s. By looking at Figure 2, one can predict that this trend will
presumably continue into in the near future.

Accordingly, in the following sections, we discuss challenges
in BioNER, the steps in a generic NER pipeline, feature extraction
techniques, and modeling methods.

2.1. Main Challenges in BioNER
Developing a comprehensive system to capture named entities,
requires defining the types on NEs, specific class guidelines for
types of NEs, to resolve semantic issues such as metonymy and
multi-class entities, and capturing valid boundaries of a NE
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FIGURE 1 | An overview of the principle steps for BioNER and Relation Detection and Analysis. As an example, the sentence “BRCA1 gene causes predisposition to

breast cancer and ovarian cancer” is used to visualize each step.

(Marrero et al., 2013). However, for developing a BioNER system,
there are a few more additional problems to overcome than
those for general NER (Nayel et al., 2019). Most of these issues
are domain-specific syntactic and semantic challenges, hence
extending to feature extraction as well as system evaluation. In
this section, we will address some of these problems.

Text preprocessing and feature extraction for BioNER
requires the isolation of entities. However, as for any natural
language, many articles contain ambiguities stemming from the
equivocal use of synonyms, homonyms, multi-word/nested NEs,
and other ambiguities in naming in biomedical domain (Nayel
et al., 2019). For instance, the same entity names can be written
differently in different articles, e.g., “Lymphocytic Leukemia”
and “Lymphoblastic Leukemia” (synonyms/British and American
spelling differences). Some names may share the same head
noun in an article such as in “91 and 84 kDa proteins” (nested)

corresponding to “91 kDa protein” and “84 kDa protein”, in which
case the categorization needs to take the context into account.
There are various ways for resolving these ambiguities, using
different techniques, e.g., name normalization and noun head
resolving (D’Souza and Ng, 2012; Li et al., 2017b).

In addition, there are two distinct semantic-related
issues resulted from homonyms, metonymy, polysemy, and
abbreviations usage. While most terms in the biomedical field
have a specific meaning, there are still terms, e.g., for genes and
proteins that can be used interchangeably, such as GLP1R that
may refer to either the gene or protein. Such complications
may need ontologies and UMLA concepts to help resolve the
class of the entity (Jovanović and Bagheri, 2017). There are
also those terms that have been used to describe a disease in
layman’s terms or drugs that have ambiguous brand names.
For example, diseases like Alice in Wonderland syndrome,
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FIGURE 2 | Publication trends in biomedical Named Entity Recognition. The numbers of the published articles were obtained from Web of Science (WoS). The legend

shows different queries used for the search of WoS.

Laughing Death, Foreign Accent Syndrome and drug names
such as Sonata, Yasmin, Lithium are easy culprits in confusing
a bioNER system if there is no semantic analysis involved.
For this reason, recent research work (e.g., Duque et al., 2018;
Wang et al., 2018d; Pesaranghader et al., 2019; Zhang et al.,
2019a) discussed techniques for word sense disambiguation in
biomedical text mining.

Another critical issue is the excessive usage of abbreviations
with ambiguous meanings, such as “CLD”, which could either
refer to “Cholesterol-lowering Drug,” “Chronic Liver Disease,”
“Congenital Lung Disease,” or “Chronic Lung Disease.” Given
the differences in the meaning and BioNE class, it is crucial
to identify the correct one. Despite being a subtask of word
sense disambiguation, authors like (Schwartz and Hearst, 2002;
Gaudan et al., 2005) have focused explicitly on abbreviation
resolving due to its importance.

Whereas most of the above issues are a result of the lack of
standard nomenclature in some biomedical domains, even the
most standardized biological entity names can contain long
chains of words, numbers and control characters (for example
“2,4,4,6-Tetramethylcyclohexa-2,5-dien-1-one,” “epidemic
transient diaphragmatic spasm”). Such long named-entities make
the BioNER task complex, causing issues in defining boundaries
for sequences of words referring to a biological entity. However,
correct boundary definitions are essential in evaluation and
training systems, especially in those where penalizing is required
for missing to capture the complete entity (long NE capture)
(Campos et al., 2012). One of the most commonly used solutions
for multi-word capturing challenge is to use a multi-segment
representation (SR) model to tag words in a text as combination
of Inside, Outside, Beginning, Ending, Single, Rear or Front,
using standards like IOB, IOBES, IOE, IOE, or FROBES (Keretna
et al., 2015; Nayel et al., 2019).

In order to assess and compare NER systems using gold-
standard corpora, it is required to use standardized evaluation
scores. A frequently used error measures for evaluating NER
is the F-Score, which is a combination of Precision and Recall
(Mansouri et al., 2008; Emmert-Streib et al., 2019).

Precision, recall, and F-Score are defined as follows (Campos
et al., 2012):

Precision =
Relevant Names Recognized

Total Names Recognized

=
True Positives

True Positives+ False Positives
(1)

Recall =
Relevant Names Recognized

Relevant Names in Corpus

=
True Positives

True Positives+ False Negatives
(2)

F-score = 2×
Precision× Recall

Precision+ Recall
. (3)

A problem with scoring a NER system in this way is it requires
to define the degree of correctness of the tagged entities for
calculating precision and recall. The degree of correctness, in
turn, depends on the pre-defined boundaries of the captured
phrases. To illustrate this, consider the following example phrase
“Acute Lymphocytic leukemia.” If the system tags “lymphocytic
leukemia”, but misses “Acute”, we need to decide if it is
still a “true positive,” or not. The decision depends on the
accuracy requirement of the BioNER; for a system that collects
information on patients with Leukemia in general, it may be
possible to accept the above tag as a “true positive.” In contrast,
if we are looking for rapid progressing Leukemia types, it may be
necessary to capture the whole term, including acute. Hence, the
above would be considered “false positive.”
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One possible solution is to relax the matching criteria to a
certain degree, since an exact match criterion tends to reduce
the performance of a BioNER system. The effects of such
approaches have been evaluated, e.g., using left or right matching,
partial or approximate matching, name fragment matching, co-
term matching, and multiple-tagging matching. Furthermore,
some approaches apply semantic relaxation such as “categorical
relaxation,” which merges several entity types to reduce the
ambiguity, e.g., by joining DNA, RNA, and protein categories
or by combining cell lines and type entities into one class. In
Figure 3, we show an example of the different ways to evaluate
“Acute Lymphocytic leukemia.” For a thorough discussion of this
topic, the reader is referred to Tsai et al. (2006).

Until recently, there was also an evaluation-related problem
stemming from the scarcity of comprehensively labeled data to
test the systems (which also affected the training of the machine
learning methods). This scarcity was a significant problem for
BioNER until the mid-2000s, since human experts annotated
most of the gold standard corpora, and thus were of small
size and prone to annotator dependency (Leser and Hakenberg,
2005). However, with growing biological databases and as the
technologies behind NER evolved, the availability of labeled
data for training and testing have increased drastically in recent
years. Presently, there is not only a considerable amount of
labeled data sets available, but there are also problem-specific
text corpora, and entity-specific databases and thesauri accessible
to researchers.

The most frequently used general-purpose biomedical
corpora for training and testing are GENETAG (Tanabe et al.,
2005), and JNLPBA (Huang et al. , 2019), various BioCreative
corpora, GENIA (Kim et al., 2003) (which also includes several
levels of linguistic/semantic features) and CRAFT (Bada et al.,
2012). In Table 1, we show an overview of 10 text corpora often
used for benchmarking a BioNER system.

2.2. Principle Steps in BioNER
The main steps in BioNER include preprocessing, feature
processing, model formulating/training, and post-processing, see
Figure 4. In the preprocessing stage, data are cleaned, tokenized,
and in some cases, normalized to reduce ambiguity at the
feature processing step. Feature processing includes different
methods that are used to extract features that will represent the
classes in question the most, and then convert them into an
appropriate representation as necessary to apply for modeling.
Importantly, while dictionary and rule-based methods can take
features in their textual format, machine learning methods
require the tokens to be represented as real-valued numbers.
Selected features are then used to train or develop models
capable of capturing entities, which then may go through a
post-processing step to increase the accuracy further.

2.2.1. Pre-processing

While for general NLP tasks, preprocessing includes steps
such as data cleaning, tokenization, stopping, stemming
or lemmatization, sentence boundary detection, spelling,
and case normalization (Miner et al., 2012), based on the
application, the usage of these steps can vary. Preprocessing

in BioNER, however, comprises of data cleaning, tokenization,
name normalization, abbreviation, and head noun resolving
measures to lessen complications in the features processing
step. Some studies follow the TTL model (Tokenization,
Tagging, and Lemmatization) suggested by Ion (2007) as a
standard preprocessing framework for biomedical text mining
applications (Mitrofan and Ion, 2017). In this approach, the
main steps include sentence splitting and segmenting words into
meaningful chunks (tokens), i.e., tokenization, part-of-speech
(POS) tagging, and grouping tokens based on similar meanings,
i.e., lemmatization using linguistic rules.

2.2.2. Feature Processing

In systems that use rules and dictionaries, orthographic and
morphological feature extraction focusing on word formations
are the principle choice. Hence, they heavily depend on
techniques based on word formation and language syntax.
Examples of such include, regular expressions to identify the
presence of words beginning with capital letters and entity-type
specific characters, suffixes, and prefixes, counting the number
of characters, and part-of-speech (POS) analysis to extract
nouns/noun-phrases (Campos et al., 2012).

For using machine learning approaches, feature processing
is mostly concerned with real-valued word representations
(WR) since most machine learning methods require a real-
valued input (Levy and Goldberg, 2014). While the simplest
of these use bag-of-words or POS tags with term frequencies
or a binary representation (one-hot encoding), the more
advanced formulations also perform a dimensional reduction,
e.g., using clustering-based or distributional representations
(Turian et al., 2010).

However, the current state-of-the-art method for feature
extraction in biomedical text mining is word embedding due
to their sensitivity to even hidden semantic/syntactic details
(Pennington et al., 2014). For word embedding, a real-valued
vector representing a word is learned in an unsupervised or
semi-supervised way from a text corpus. While the groundwork
for word embedding was laid by Collobert and Weston (2008),
Collobert et al. (2011), over the last few years, much progress
has been made in neural network based text embedding
taking into account the context, semantics and syntax for NLP
applications (Wang et al., 2020). Below we discuss some of the
most significant approaches for word representation and word
embedding applicable to biomedical field.

2.2.2.1. Rich text features
The most commonly used rich text features in BioNER
are Linguistic, Orthographic, Morphological, Contextual, and
Lexicon (Campos et al., 2012), all of which are used extensively,
when it comes to rule-based and dictionary-based NER
modeling. Still, word representation methods may use selected
rich text features like char n-grams and contextual information to
improve the representation of feature space as well. For instance,
char n-grams are used for training vector spaces to recognize rare
words effectively in fastText (Joulin et al., 2016), and CBOW in
word2vec model uses windowing to capture local features, i.e.,
the context of a selected token.
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FIGURE 3 | An example for different matching criteria to evaluate Named Entity Recognition. From left to right the criteria become more relaxed (Tsai et al., 2006).

TABLE 1 | Benchmark Corpora used for analyzing BioNER systems.

Corpus Year Text type Training data type Data size

ChEBI (Shardlow et al., 2018) 2018 Abstracts/Full text Chemical Entities of Biological Interest Abs-199/FT-100

(15,000 mentions)

CHEMDNER (Krallinger et al.,

2015)

2015 Pubmed Abstracts Chemicals and Drugs 10,000 (84,355 Entity

mentions)

NCBI Disease (Dogan et al.,

2014)

2014 Pubmed Abstracts Diseases 793 (6,892 Disease

mentions)

CRAFT (Bada et al., 2012) 2012 Full Text Cell Type, Chemical Entities of

Biological Interest, NCBI Taxonomy,

protein, Sequence, Gene, DNA, RNA

97 (140,000

Annotations)

AnEM (Ohta et al., 2012) 2012 Abstracts/ Full text Pathology, Anatomical

Structures/Substances

500 (3,000 mentions)

NaCTeM Metabolite and Enzyme

(Nobata et al., 2011)

2011 Medline Abstracts Metabolites and Enzymes 296

LINNAEUS (Gerner et al., 2010) 2010 Full text Documents Species 100

GENETAG (Tanabe et al., 2005) 2005 Sentences Gene, Protein 20,000 Sentences

JNLPBA (Huang et al. , 2019) 2004 Abstracts DNA, RNA, Protein, Cell Type, Cell

Line

2,000 (+404 testset)

GENIA (Kim et al., 2003) 2003 Pubmed Abstracts DNA, RNA, Protein, Cells, Tissue,

Anatomy, Organisms, Chemicals

2,000

To further elaborate, linguistic features, generally focus on the
grammatical syntax of a given text, by extracting information
such as sentence structures or POS tagging. This allows us
to obtain tags that are most probable to be a NE since most
named entities occur as noun phrases in a text. The orthographic
features, however, emphasize the word-formation, and as such,
attempt to capture indicative characteristics of named entities.
For example, the presence of uppercase letters, specific symbols,
or the number of occurrences of a particular digit might
suggest the presence of a named entity and, therefore, can
be considered a feature-token. Comparatively, morphological
features prioritize the common characteristics that can quickly
identify a named entity, for instance, a suffix or prefix. It also
uses char n-grams to predict subsequent characters, and regular
expression to capture the essence of an entity. Contextual features
use preceding and succeeding token characteristics of a word
by windowing to enhance the representation of the word in
question. Finally, Lexicon features provides additional domain
specificity to named entities. For example, systems that maintain

extensive dictionaries with tokens, synonyms, and trigger words
that belong to each field are considered to use lexicon features in
their feature extraction (Campos et al., 2012).

2.2.2.2. Vector representations of text
One-hot vector word representation: The one-hot-encoded
vector is the most basic word embedding method. For a
vocabulary of size N, each word is assigned a binary vector
of length N, whereas all components are zero except one
corresponding to the index of the word (Braud and Denis, 2015).
Usually, this index is obtained from a ranking of all words,
whereas the rank corresponds to the index. The biggest issue of
this representation is the size of the word vector; since for a larger
corpus, word vectors are very high-dimensional and very sparse.
Besides, frequency and contextual information of each word are
lost in this representation but can be vital in specific applications.

Cluster-based word representation: In clustering-based
word representation, the basic idea is that each cluster of words
should contain words with contextually similar information. An
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FIGURE 4 | The main steps in designing a BioNER system (with an example from manually annotated GENIA Corpus article MEDLINE:95343554—

Routes and Cook, 1995).

algorithm that is most frequently used for this approach is Brown
clustering (Brown et al., 1992). Specifically, Brown clustering
is a hierarchical agglomerative clustering which represents
contextual relationships of words by a binary tree. Importantly,
the structure of the binary tree is learned fromword probabilities,
and the clusters of words are obtained by maximizing their
mutual information. The leaves of the binary tree represent the
words, and paths from the root to each leaf can be used to
encode each word as a binary vector. Furthermore, similar paths
and similar parents/grandparents among words indicate a close
semantic/syntactic relationship among words. This approach,
while similar to a one-hot vector word representation, reduces
the dimension of the representation vector, reduces its sparsity,
and includes contextual information (Tang et al., 2014).

Distributional word representation: The distributional word
representation uses co-occurrence matrices with statistical
approximations to extract latent semantic information. The
first step involves obtaining a co-occurrence matrix, F with
dimensions V × C, whereas V is the vocabulary size and C the
context, and each Fij gives the frequency of a word i ∈ V co-
occurring with context j ∈ C. Hence, in this approach, it is
necessary for the preprocessing to perform stop-word filtering
since high frequencies of unrelated words can affect the results
negatively. In the second step, a statistical approximation or
unsupervised learning function g() is applied to the matrix F to
reduce its dimensionality such that f = g(F), where the resulting
f is a matrix of dimensions V × d with d≪ C. The rows of this

matrix represent the words in the vocabulary, and the columns
give the counts of each word vector (Turian et al., 2010).

Some of the most common methods used include clustering
(Turian et al., 2010), self-organizing semantic maps (Turian
et al., 2010), Latent Dirichlet Allocation (LDA) (Turian et al.,
2010), Latent Semantic Analysis (LSA) (Sahlgren, 2006), Random
Indexing (Sahlgren, 2006), Hyperspace Analog to Language
(HAL) (Sahlgren, 2006). The main disadvantage of these models
is that they become computationally expensive for large data sets.

2.2.2.3. Neural network-based text embedding methods
Word2Vec: Word2Vec is the state-of-the-art word
representation model using a two-layer shallow neural network.
It takes a textual corpus as the input, creates a vocabulary out
of it, and produces a multidimensional vector representation
for each word as output. The word vectors position themselves
in the vector space, such that words with a common contextual
meaning are closer to each other. There are two algorithms
in the Word2Vec architecture, i.e., Continuous Bag-of-Words
(CBoW) and Continuous Skip-Gram. Either can be used based
on the application requirement. While the former predicts the
current word by windowing its close contextual words in the
space (with no consideration to the order of those words), the
latter uses the current word to predict the words that surround
it. The network ultimately outputs either a vector that represents
a word (in CBoW) or a vector that represents a set of words
(in skip-gram). Figure 5 illustrates the basic mechanisms of
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the two architectures of word2vec; CBOW and Skip-Gram.
Details about these algorithms can be found in Mikolov et al.
(2013a,b) (parameter learning of the Word2Vec is explained in
Rong, 2014).

GloVe: GloVe (Global Vectors) is another word
representation method. Its name emphasizes that global
corpus-wide statistics are captured by the method, as opposed
to word2vec, where local statistics of words are assessed
(Pennington et al., 2014).

GloVe uses an unsupervised learning algorithm to derive
vector representations for words. The contextual distance among
words creates a linear sub-structural pattern in the vector space,
as defined by logarithmic probability. The method bases itself
on how word-word co-occurrence probabilities evaluated on a
given corpus, can interpret the semantic dependence between
the words. As such, training uses log-bi-linear modeling with a
weighted least-square error objective, where GloVe learns word
vectors so that the logarithmic probability of word-word co-
occurrence equals the dot product of the words. For example, if
we consider two words i and j, a simplified version of an equation
for GloVe is given by

wT
i · w̃j = log(Pij) =

Xij

Xi
. (4)

Here wi ∈ R
d is the word vector for word i, w̃j ∈ R

d is the
contextual word vector, which we use to build the word-word co-
occurrence. Pij = P(j|i) =

Xij

Xi is the probability of co-occurrence
between the words i and j and Xij and Xi are the counts of
occurrence of word i with j and occurrence of word i alone in
the corpus. An in-depth description of GloVe can be found in
Pennington et al. (2014).

fastText: fastText, introduced by researchers at Facebook,
is an extension of Word2Vec. Instead of directly learning the
vector representation of a word, it first learns the word as
a representation of N-gram characters. For example, if we
are embedding the word collagen using a 3-gram character
representation, the representation would be <co, col, oll, lla,
lag, age, gen, en>, whereas < and >, indicate the boundaries
of the word. These n-grams are then used to train a model
to learn word-embedding using the skip-gram method with
a sliding window over the word. FastText is very effective in
representing suffixes/prefixes, the meanings of short words, and
the embedding of rare words, even when those are not present
in a training corpus since the training uses characters rather than
words (Joulin et al., 2016). This embedding method has also been
applied to the biomedical domain due to its ability to generalize
over morphological features of biomedical terminology (Pylieva
et al., 2018) and detecting biomedical event triggers using
fastText semantic space (Wang et al., 2018b).

BERT/BioBERT: Bidirectional Encoder Representations for
Transformers (BERT) (Devlin et al., 2018), is a more recent
approach of text embedding that has been successfully applied
to several biomedical text mining tasks (Peng et al., 2019). BERT
uses the transformer learning model to learn contextual token
embeddings of a given sentence bidirectionally (from both left
and right and averaged over a sentence). This is done by using

encoders and decoders of the transformer model in combination
with Masked Language Modeling to train the network to predict
the original text. In the original work targeted for general
purpose NLP, BERT was pre-trained with unlabeled data from
standard English corpora, and then fine-tuned with task-specific
labeled data.

For domain-specific versions of BioBERT (Peng et al., 2019;
Lee et al., 2020), one uses the pre-trained BERT model, and
by using its learned weights as initial weights, pre-trains the
BERT model again with PubMed abstracts and PubMed Central
full-text articles. Thereafter, the models are fine-tuned using
benchmark corpora, e.g., mentioned in Tables 1, 3. The authors
of BioBERT states that for the benchmark corpora, the system
achieves state-of-the-art (or near) precision, recall, and F1 scores
in NER and RE tasks.

We would like to highlight that a key difference between
BERT, ELMo, or GPT-2 (Peters et al., 2018; Radford et al., 2019)
and word2vec or GloVec is that the latter perform a context-
independent word embedding whereas the former ones are
context-dependent. The difference is that context-independent
methods provide only one word vector in an unconditional way
but context-dependent methods result in a context-specific word
embedding providing more than one word vector representation
for one word.

2.2.3. BioNER Modeling

Modeling methods in BioNER can be divided into four
categories: Rule-based, Dictionary-based, Machine Learning
based, and Hybrid models (Eltyeb and Salim, 2014). However,
in recent years, the focus shifted to either pure machine
learning approaches or hybrid techniques combining rules and
dictionaries with machine learning methods.

While supervised learning methods heavily dominate
machine learning approaches in the literature, some semi-
supervised and even unsupervised learning approaches are
also used. Examples of such work will be discussed briefly
later in the section below. The earliest approaches for BioNER
focused on Support Vector Machines (SVM), Hidden Markov
Models (HMM), and Decision Trees. However, currently, most
NER research utilizes deep learning with sequential data and
Conditional Random Fields (CRF).

2.2.3.1. Rule-based models
Rule-based approaches, unlike decision trees or statistical
methods, use handcrafted rules to capture named-entities and
classify them based on their orthographic and morphological
features. For instance, it is conventional in the English language
to start proper names, i.e., named-entities, with a capital letter.
Hence entities with features like upper-case letters, symbols,
digits, suffixes, prefixes can be captured, for example, using regex
expressions. Additionally, part-of-speech taggers can be used to
fragment sentences and capture noun phrases. It is common
practice, in this case, to include the complete token as an entity,
if at least one part of the token identifies as a named-entity.

An example of the earliest rule-based BioNER system is
PASTA (Protein Active Site Template Acquisition, Gaizauskas
et al., 2003), in which entity tagging was performed by
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FIGURE 5 | An overview of the Continuous Bag-of-Words Algorithm and the Skip-Gram Algorithm. A CBOW predicts the current word based on surrounding words,

whereas Skip-Gram predicts surrounding words based on the current word. Here w(t) represents a word sequence.

heuristically defining 12 classes of technical terms, including
scope guidelines. Each document is first analyzed for sections
with technical text, split into tokens, analyzed for semantic
and syntactic features, before extracting morphological and
lexical features. The system then uses handcrafted rules
to tag and classify terms into 12 categories of technical
terms. The terms are tagged with respective classes using
the SGML (Standard Generalized Markup Language) format.
Recently, however, there is not much literature on pure
handcrafted rule-based BioNER systems, and instead, papers
such as Wei et al. (2012) and Eftimov et al. (2017) present
how combining heuristic rules with dictionaries may result
in higher state-of-the-art f-scores. The two techniques
complement each other by rules compensating for exact
dictionary matches, and dictionaries refining results extracted
through rules.

The main drawbacks of rule-based systems are the time-
consuming processes involved with handcrafting rules to cover
all possible patterns of interest and the ineffectiveness of such
rules toward unseen terms. However, in an instance where an
entity class is well-defined, it is possible to formulate thorough
rule-based systems that can achieve both high precision and
recall. For example, most species entity tagging systems rely on
binomial nomenclature (two-term naming system of species),
which provides clearly defined entity boundaries, qualifying as an
ideal candidate for a rule-based NER system.

2.2.3.2. Dictionary-based models
Dictionary-based methods use large databases of named-entities
and possibly trigger terms of different categories as a reference
to locate and tag entities in a given text. While scanning texts
for exactly matching terms included in the dictionaries is a
straightforward and precise way of named entity recognition,
recall of these systems tends to be lower. Such is the result
of increasingly expanding biomedical jargon, their synonyms,
spelling, and word order differences. Some systems have been
using an inexact or fuzzy matching, by automatically generating
extended dictionaries to account for spelling variations and
partial matches.

One prominent example of a dictionary-based BioNER model
is in the association mining tool Polysearch (Cheng et al.,
2008), where the system keeps several comprehensive dictionary
thesauri, to make tagging and normalization of entities rather
trivial. Another example is Whatizit (Rebholz-Schuhmann,
2013), a class-specific text annotator tool available online, with
separate modules for different NE types. This BioNER is built
using controlled vocabularies (CV) extracted from standard
online databases. For instance,WhatizitChemical uses a CV from
ChEBI and OSCAR3, WhatizitDisease uses disease terms CV
extracted from MedlinePlus, whatizitDrugs uses a CV extracted
from DrugBank, WhatizitGO uses gene ontology terms and
whatizitOrganism uses a CV extracted from the NCBI taxonomy.
The tool also includes options to extract terms using UniProt
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databases when using a combined pipeline to tag entities.
LINNAEUS, Gerner et al. (2010) is also a dictionary-based NER
package designed explicitly to recognize and normalize species
name entities in text and includes regex heuristics to resolve
any ambiguities. The system has a significant recall of 94%
at the mention-level and 98% at the document level, despite
being dictionary-based.

More latest state-of-the-art tools have shown preference in
using dictionary-based hybrid NER as well, attributing to its high
accuracy of performance with previously known data. Moreover,
since it involves exact/inexact matching, the main requirement
for high accuracy is only a thoroughly composed dictionary of all
possible related jargon.

2.2.3.3. Machine learning models
Currently, the most frequently used methods for named entity
recognition are machine learning approaches. While some
studies focus on purely machine learning-based models, others
utilize hybrid systems that combine machine learning with rule-
based or dictionary-based approaches. Overall these present
state-of-the-art methods.

In this section, we discuss three principal machine learning
methodologies utilizing supervised, semi-supervised, and
unsupervised learning. These also include Deep Neural
Networks (DNN) and Conditional Random Fields (CRF),
because newer studies focused on using LSTM/Bi-LSTM coupled
with Conditional Random Fields (CRF). Furthermore, in section
2.2.3.4, we will discuss hybrid approaches.

Supervised methods: The first supervised machine learning
methods used were Support Vector Machines (Kazama et al.,
2002), Hidden Markov models (Shen et al., 2003), Decision trees,
and Naive Bayesian methods (Nobata et al., 1999). However, the
milestone publication by Lafferty et al. (2001) about Conditional
Random Fields (CRF) taking the probability of contextual
dependency of words into account shifted the focus away from
independence assumptions made in Bayesian inference and
directed graphical models.

CRFs are a special case of conditionally-trained finite-state
machines, in which the final result is a statistical-graphical model
that performs well with sequential data, therefore making it
ideal for language modeling tasks such as NER (Settles, 2004).
In Lafferty et al. (2001), the authors stated that given a text
sequence X = {x1, x2, ..., xn} and its corresponding state label
S = {s1, s2, ...., sn}, the conditional probability of state S for given
X can be expressed as:

P(S|X) =
1

Zx
exp(

∑n
i=1

∑m
j=1 λjfj(si−1 ,si ,x,i)) (5)

Here, si can be an entity class label (l ∈ L) for each text xi
(such as a gene or protein), fj(si−1, si, x, i) is the feature function
and λj is the weight vector of fj. Ideally, the learned λj for fj
must be positive for features that correlate to a target label,
negative for anti-correlation and zero for irrelevant features.
Overall, the learning process for a given training set D =

{〈x, l〉1, 〈x, l〉2, ....., 〈x, l〉n} can be expressed as a log likelihood

maximization problem given by:

LL(D) =
n∑

i=1

log{P(l(i)|x(i))} −
m∑

j=1

λ
2
j

2σ 2
(6)

Modified Viterbi algorithm assigns respective labels for the new
data, after the training process (Lafferty et al., 2001).

Deep learning: In the last 5 years, there is a shift in the
literature toward general deep neural network models (LeCun
et al., 2015; Emmert-Streib et al., 2020). For instance, feed-
forward neural networks (FFNN) (Furrer et al., 2019), recurrent
neural networks (RNN), or convolution neural networks (CNN)
(Zhu et al., 2017) have been used for BioNER systems. Among
these, frequent variations of RNNs are, e.g., Elman-type, Jordan-
type, unidirectional, or bidirectional models (Li et al., 2015c).

The Neural Network (NN) language models are essential since
they excel at dimension reduction of word representations and
thus help improve performances in NLP applications immensely
(Jing et al., 2019). Consequently, Bengio et al. (2003) introduced
the earliest NN language model as a feed-forward neural network
architecture focusing on “fighting the curse of dimensionality.”
This FFNN that first learns a distributed continuous space of
word vectors is also the inspiration behind CBOWand Skip-gram
models of feature space modeling. The generated distributed
word vectors are then fed into a neural network, that estimates
the conditional probability of each word occurring in context
to the others. However, this model has several drawbacks, first
being that it is limited to pre-specifiable contextual information.
Secondly, it is not possible to use timing and sequential
information in FFNNs, which would facilitate language to be
represented in its natural state, as a sequence of words instead
of probable word space (Jing et al., 2019).

In contrast, convolutional neural networks (CNN) are used
in literature as a way of extracting contextual information from
embedded word and character spaces. In Kim et al. (2016), such
a CNN has been applied to a general English language model. In
this setup, each word is represented as character embeddings and
fed into a CNN network. Then the CNN filters the embeddings
and creates a feature vector to represent the word. Extending
this approach to Biomedical text processing, Zhu et al. (2017),
generates embeddings for characters, words, and POS tagging,
which are then combined to represent words and fed to a CNN
level with several filters. The CNN outputs a vector representing
the local feature of each term, which can then be tagged by a
CRF layer.

To facilitate language to be represented as a collection
of sequential tokens, researchers have later started exploring
recurrent neural networks for language modeling. Elman-type
and Jordan-type networks are such simple recurrent neural
networks, where contextual information is fed into the system
as weights either in the hidden layers in the former type or the
output layer in the latter-type. The main issue with these simple
RNNs is that they face the problem of vanishing gradient, which
makes it difficult for the network to retain temporal information
long-term, as benefited by in a recurrent language model.

Long Short-Term Memory (LSTM) neural networks
compensate for both of the weaknesses mentioned in previous
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DNN models and hence are most commonly used for language
modeling. LSTMs can learn long-term dependencies through
a special unit called a memory cell, which not only can retain
information long time but has gates to control which input,
output, and data in the memory to preserve and which to forget.
Extensions of this are bi-directional LSTMs, where instead of
only learning based on past data, as in unidirectional LSTM,
learning is based on past and future information, allowing more
freedom to build a contextual language model (Li et al., 2016b).

For achieving the best results, Bi-LSTM and CRFs models
are combined with a word-level and character-level embedding
in a structure, as illustrated in Figure 6 (Habibi et al., 2017;
Wang et al., 2018a; Giorgi and Bader, 2019; Ling et al., 2019;
Weber et al., 2019; Yoon et al., 2019). Here a pre-trained look-
up table produces word embeddings, and a separate Bi-LSTM
for each word sequence renders a character-level embedding,
both of which are then combined to acquire x1, x2, ...., xn as word
representation (Habibi et al., 2017). These vectors then become
the input to a bi-directional LSTM, and the output of both
forward and backward paths, hb, hf , are then combined through
an activation function and inserted into a CRF layer. This layer is
ordinarily configured to predict the class of each word using an
IBO-format (Inside-Beginning-Outside).

If we consider the hidden layer hn in Figure 6, first, the
embedding layer embeds the word gene into a vector Xn. Next,
this vector is simultaneously used as input for the forward LSTM
−→
hn and the backward LSTM

←−
hn , of which the former depends on

the past value hn−1 and the latter on the future value hn+1. The
combined output resulting from the backward and the forward
LSTMs is then passed through an activation function (tanh) that
results in the output Yn. The CRF layer on the top uses Yn and
tags it as either I-inside, B-Beginning, or O-Outside of a NE
(named entity). Consequently, in this example, Yn is tagged as
I-gene, i.e., a word inside of the named entity of a gene.

Semi-supervised methods: Semi-supervised learning is
usually used when a small amount of labeled data and a larger
amount of unlabeled data are available, which is often the case
when it comes to Biomedical collections. If labeled data is
expressed as X(x1, x2, ...., xn)− > L(l1, l2, ..., ln) where X is the set
of data and L is the set of labels, the task is to develop a model
that accurately maps Y(y1, y2, ..., ym)− > L(l1, l2, ..., lm) where
m > n and Y is the set of unlabeled data that needs mapping
to labels.

Whereas literature using a semi-supervised approach is lesser
in BioNER, Munkhdalai et al. (2015) describes how domain
knowledge has been incorporated into chemical and biomedical
NER using semi-supervised learning by extending the existing
BioNER system BANNER. The pipeline runs the labeled and
unlabeled data in two parallel lines wherein one line labeled data
is processed through NLP techniques to extract rich features
such as word and character n-grams, lemma, and orthographic
information as in BANNER. In the second line, the unlabeled
data corpus is cleaned, tokenized, and run through brown
hierarchical clustering and word2vec algorithms to extract word
representation vectors, and clustered using k-means. All of the
extracted features from labeled and unlabeled data are then

used to train a BioNER model using conditional random fields.
The authors of this system emphasize that the system does
not use lexical features or dictionaries. Interestingly, BANNER-
CHEMDNER has shown an 85.68% and an 86.47% F-score on
the testing sets of CHEMDNERChemical Entity Mention (CEM)
and Chemical Document Indexing (CDI) sub-tasks and shown a
remarkable 87.04% F-score in the test set of the BioCreative II
gene-mention task.

Unsupervised methods: While unsupervised machine
learning has potent in organizing new high throughput data
without previous processing and improving the ability of the
existing system to process previously unseen information, it is
not very often the first choice for developing BioNER systems.
However, Zhang and Elhadad (2013) introduced a system, which
uses an unsupervised approach to BioNER with the concepts of
seed knowledge and signature similarities between entities.

First, for the seed concepts, semantic types and semantic
groups are collected from UMLS (Unified Medical Language
System) for each entity type, e.g., protein, DNA, RNA, Cell type,
and cell line, to represent the domain knowledge. Second, the
candidate corpora are processed using a noun phrase chunker
and an inverse document frequency filter, which formulates word
sense disambiguation vectors for a given named entity using
a clustering approach. The next step generates the signature
vectors for each entity class with the intuition that the same
class tends to have contextually similar words. The final step
compares the candidate named entity signatures and entity class
signatures by calculating similarities. As a result, they found the
highest F-score of 67.2 for proteins and the lowest at 19.9 for
cell-line. Sabbir et al. (2017) used a similar approach, where
they implement a word sense disambiguation with an existing
knowledge base of concepts extracted through UMLS to develop
an unsupervised BioNER model with over 90% accuracy. These
unsupervised methods tend to work well when dealing with
ambiguous Biomedical entities.

2.2.3.4. Hybrid models
Currently, there are several state-of-the-art applications of
BioNER, that combine the best aspects of all the above three
methods. Most of these methods combine machine learning with
either dictionaries or sets of rules (heuristic/derived), but other
approaches exist which combine dictionaries and rule sets as
well. Since machine learning approaches have shown to result
in better recall values, whereas both dictionary-based and rule-
based approaches tend to have better precision values, the former
method shows improved F-scores.

For instance, OrganismTagger (Naderi et al., 2011) uses
binomial nomenclature rules of naming species to tag organism
names in text and combines this with an SVM to assure that it
captures organism names that do not follow the binomial rules.
In contrast, SR4GN (Wei et al., 2012), which is also a species
tagger, utilizes rules to capture species names and a dictionary
lookup to reevaluate the accuracy of the tagged entities.

Furthermore, state of the art tools such as Gimli (Campos
et al., 2013), Chemspot (Rocktäschel et al. , 2012), and DNorm
(Leaman et al., 2013) use Conditional Random fields with a
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FIGURE 6 | Structure of the Bi-LSTM-CRF architecture for Named Entity Recognition.

thesaurus of own field-specific taxonomy to improve recall. In
contrast, OGER++ (Furrer et al., 2019), which performs multi-
class BioNER, utilizes a feed-forward neural network structure
followed by a dictionary lookup to improve precision.

On the other hand, some systems have been able to combine
statistical machine-learning approaches with rule-based models
to achieve higher results, as described in this more recent work
(Soomro et al., 2017). This study uses the probability analysis of
orthographic, POS, n-gram, affixes, and contextual features with
Bayesian, Naive-Bayesian, and partial decision tree models to
formulate rules of classification.

2.2.4. Post Processing

While not all systems require or use post-processing, it can
improve the quality and accuracy of the output by resolving
abbreviation ambiguities, disambiguation of classes and terms, as
well as parenthesis mismatching instances (Bhasuran et al., 2016).
For example, if a certain BioNE is only tagged in one place of the
text, yet the same or a co-referring term exist elsewhere in the
text, untagged, then the post-processing would make sure these
missed NEs are tagged with their respective class. Also, in the
case of a partial entity being tagged in a multi-word BioNE, this
step would enable the complete NE to be annotated. In the case
where some of the abbreviations are wrongly classified or failed to
be tagged, some systems use tools such as the BioC abbreviation
resolver (Intxaurrondo et al., 2017) at this step to improve
the annotation of abbreviated NEs. Furthermore, failure to tag

NE also stems from unbalanced parenthesis in isolated entities,
which also can be addressed during pre-processing. Interestingly,
Wei et al. (2016) describes using a complete rule-based BioNER
model for post-processing in disease mention tagging to improve
the F-score.

Another important sub-task that is essential at this point, is to
resolve coreferences. This may be also important for extracting
stronger associations between entities, discussed in the next
section. Coreferences are those terms that refer to a named
entity without using its proper name, but by using some form of
anaphora, cataphora, split-reference or compound noun-phrase
(Sukthanker et al., 2020). For example in the sentence “BRCA1
and BRCA2 are proteins expressed in breast tissue where they

are responsible for either restoring or, if irreparable, destroying
damaged DNA,” the anaphora they refers to the proteins BRCA1
and BRCA2, and resolving this helps to associate the proteins
with their purpose. When it comes to biomedical coreference
resolution, it is important to note that generalized methods
may not be very effective, given that there are fewer usages
of common personal pronouns. Some approaches that have
been used in the biomedical text mining literature are heuristic
rule sets, statistical approaches and machine learning-based
methods. Most of the earlier systems commonly used mention-
pair based binary classification and rule-sets to filter coreferences
such that only domain significant ones are tagged Zheng et al.
(2011a). While the rule set methods have provided state-of-the-
art precision they often do not have a high recall. Hence, a sieve-
based architecture Bell et al. (2016) has been introduced, which
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arranges rules starting from high-precision-low-recall to low-
precision-high-recall. Recently, deep learningmethods have been
used for coreference resolution in general domain successfully
without using syntactic parsers, for example in Lee et al. (2017).
The same system has been applied to biomedical coreference
resolution in Trieu et al. (2018) with some domain-specific
feature enhancements. Here, it is worth mentioning that the
CRAFT corpus, earlier mentioned in Table 1, has an improved
version that can be used for coreference resolution for biomedical
texts (Cohen et al., 2017).

In the biomedical literature coreference resolution is
sometimes conducted (e.g., Zheng et al., 2011b, 2012; Uzuner
et al., 2012), but in general underrepresented. A reason for this
could be that biomedical articles are differently written in the
sense that, e.g., protagonistic gene or protein names are more
clearly used and referred to due to their exposed role. However,
if this is indeed the reason or if there is an omission in the
biomedical NER pipeline requires further investigations.

3. INFERRING RELATIONS

After BioNER, the identification of associations between the
named entities follows. For establishing such associations, the
majority of studies use one of the following techniques (Yang
et al., 2011): Co-occurrence based approaches, rule-set based
approaches, or machine learning-based approaches.

3.1. Co-occurrence Based Approaches
The simplest of these methods, co-occurrence based approaches,
consider entities to be associated if they occur together in target
sentences. The hypothesis is that the more frequent two entities
occur together, the higher the probability that they are associated
with each other. In an extension of this approach, a relationship
is deemed to exist between two (or more) entities if they share an
association with a third entity acting as a reciprocal link (Percha
et al., 2012).

3.2. Rule-Based Approaches
In a rule-based approach, the relationship extraction depends
highly on the syntactic and semantic analysis of sentences. As
such, these methods rely on part-of-speech (POS) tagging tools to
identify associations, e.g., by scanning for verbs and prepositions
that correlate two or more nouns or phrases serving as named
entities. For instance, in Fundel et al. (2006), the authors explain
how syntactic parse trees can be used to break sentences into
the form NounPhase1 − AssociationVerb − NounPhrase2, where
the noun phrases are biomedical entities associated through an
association verb, and therefore indicates a relationship. In this
approach, many systems additionally incorporate a list of verbs
that are considered to show implications between nouns, i.e., for
example, verbs such as elevates, catalyzes, influences, mutates.

In Figure 7, an example of a syntactic sentence parse tree
created by POS tagging, is shown. In this figure, nodes signify
syntax abbreviations, i.e., S = sentence, NP = Noun Phrase,
VP = Verb Phrase, PP = Preposition Phrase, OP = Object
of Preposition, CONJ = conjunction ADJ = Adjective, N =
Noun, V = Verb, and O = Object. The method first fragments

a sentence into noun phrases and verb phrases, and each of these
phrases is further segmented to adjectives, nouns, prepositions,
and conjunctions for clarity of analysis. More details of the
strength of associations will include in section 4.2

3.3. Traditional Machine Learning
Approaches
The most commonly used machine learning approaches use an
annotated corpus with pre-identified relations as training data
to learn a model (supervised learning). Previously, the biggest
obstacle for using such machine learning approaches for relation
detection was acquiring the labeled training and testing data.
However, data sets generated through biomedical text mining
competitions such as BioCreative and BioNLP have moderated
this problem significantly. Specifically, in Table 2, we list a few
of the main gold-standard corpora available in the literature for
this task.

Historically, SVMs have been the first choice for this task
due to their excellent performance in text data classification
with a low tendency for overfitting. Furthermore, they have also
proven to be good with sentence polarity analyzing for extracting
positive, negative, and neutral relationships as described by
Yang et al. (2011). Of course, in SVM based approaches,
feature selection acts as the strength-indicator for accuracy and,
therefore, is considered a crucial step in relationship mining
using this approach.

One of the earliest studies using an SVM was (Özgür
et al., 2008). This study used a combination of methods for
evaluating an appropriate kernel function for predicting gene-
disease associations. Specifically, the kernel function used a
similarity measure incorporating a normalized edit-distances
between the paths of two genes, as extracted from a dependency
parse tree. In contrast to this, the study by Yang et al. (2011)
used a similar SVM model, however, for identifying the polarity
of food-disease associations. For this reason, their SVM was
trained with positive, negative, neutral, and irrelevant relations,
which allowed assigning the polarity in the form of “risk.” For
instance, particular food can either increase risk, reduce risk, be
neutral, or be irrelevant for a disease. Recently, Bhasuran and
Natarajan (2018) extended the study by Özgür et al. (2008) using
an ensemble of SVMs trained with small samples of stratified
and bootstrapped data. This method also included a word2vec
representation in combination with rich semantic and syntactic
features. As a result, they improved F-scores for identifying
disease-gene associations.

Although SVMs appear to take predominance in this task,
other machine learning methods have been used as well. For
instance, in Jensen et al. (2014), a Naive-Bayes classifier has
been used for identifying food-phytochemical and food-disease
associations based on TF-IDF (term frequency-inverse document
frequency) features. Whereas, in Quan and Ren (2014), a
Max-entropy based classifier with Latent Dirichlet Allocation
(LDA) was used for inferring gene-disease associations, and
in Bundschus et al. (2008) a CRF was used for both NER
and relation detection, for identifying disease-treatment and
gene-disease associations.
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FIGURE 7 | An example of a syntax parse tree for the sentence “BRCA1 gene causes predisposition to breast cancer and ovarian cancer”.

TABLE 2 | Benchmark corpora for biomedical entity relation detection.

Corpus References Relation type Data content Description

CHR Sahu et al., 2019 Chemical-chemical interactions 12,094 PubMed Abstracts

and Titles

Chemical Relations database

(National Center for Text Mining)

BioInfer Pyysalo et al., 2007 Gene, RNA, Protein, relations 1100 Sentences Bio Information Extraction Resource

GE Kim et al., 2009 Gene and Gene Product

Associations

15 Annotated PubMed

Articles

Genia Event Extraction Corpus

EU-ADR Van Mulligen et al.,

2012

Diseases, Drugs and Drug Target

relations

300 Abstracts 100 for each

Entity

European Union - Adverse Drug

Reaction Project affiliated

ChEBI Shardlow et al., 2018 Relations between Chemicals,

Proteins, Species, Biological

Activity

199 abstracts 100 full

papers annotated

Chemical Entities of Biological Interest

BC-II: PPI Corpus Krallinger et al., 2008 Protein-Protein Interactions 3,536+338 (TR+TE) Related

Entries 1,959+339 (TR+TE)

Non-Related Entries

BioCreative II - PPI task Corpora

BC-II.5: Elsevier Corpus Leitner et al., 2010 Protein-Protein Interactions 1190 Articles 124 - PPI

positive 1066 - unrelated

BioCreative II.5 Special Corpus

provided by Elsevier

BC-V: CDR Li et al., 2016a Chemical-Disease relations 1500 PubMed Articles 3116

interactions

BioCreative V - Chemicals and

Disease Corpus

BC-VI: ChemProt Corpus Krallinger et al., 2017 Chemical-Protein interaction 1020+800 (TR+TE)

Abstracts

Training/Testing article Corpus for the

BioCreative V Task

AIMed Corpus Bunescu et al., 2005 Protein-Protein interactions 225 Abstracts 200- PPI

positive 25- unrelated

Human annotated Corpus for Training

to Identify relations

These data sets contain labeled data that can be used for the training and testing of methods.

3.4. Deep Learning Approaches
Due to the state of the art performance and less need for
complicated feature processing, deep learning (DL) methods
are becoming increasingly popular for relation extraction in
the last five years. The most commonly used DL approaches
include convolutional neural networks (CNNs), recurrent neural
networks (RNNs), and hybrids of CNN and RNN (Jettakul et al.,
2019; Zhang et al., 2019b), most of which are also able to classify
relation-type as well.

The feature inputs to DL models may include sentence-
level, word-level, and lexical-level features represented as vectors
(Zeng et al., 2014), positions of the related entities, and the
class label of the relation type. The vectors are looked up from
pre-trained word and positional vector space on either a single
corpus or multiple corpora (Quan et al., 2016). Significantly,
the majority of deep learning methods use sentence dependency
graphs mentioned in the rule-based approach (Figure 8) to
extract the shortest path between entities and relations as features
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for training (Hua and Quan, 2016a,b; Zhang et al., 2018c; Li
et al., 2019). Other studies have used POS tagging, and chunk
tagging features in combination with position and dependency
paths to improve performance (Peng and Lu, 2017). The models
are trained to either distinguish between sentences with relations
or to output the type of relation.

The earliest approaches use Convolutional Neural Networks
(CNN), where the extracted features e.g., dependency
paths/sentences, are represented using the word vector
space. Since CNN’s require every training example to be of
similar size, instances are padded with zeros as required (Liu
et al., 2016). After several layers of convolutional operations
and pooling, these methods are followed by a fully connected
feed-forward neural layer with soft-max activation function
(Hua and Quan, 2016b).

Subsequently, LSTM networks, including bi-LSTM, have been
used in Sahu and Anand (2018) and Wang et al. (2018e), to learn
latent features of sentences. These RNN based models perform
well with relating entities that lie far apart from each other in
sentences. Whereas, CNNs requires restrictive sized inputs, the
RNNs have no such restrains and are useful when long sentences
are available, since the input is sequentially processed. These
models have been used to extract drug-drug and protein-protein
interactions (Hsieh et al., 2017). Extending this further, Zhang
et al. (2018c) experiments with bidirectional RNN models using
two hierarchical layers, one with two simple RNNs, one with two
GRUs, and last with two LSTMs. Here the hierarchical bi-LSTM
has shown a better performance.

In recent years, there have also been studies that use a novel
approach, i.e., graph convolutional networks (GCN) (Kipf and
Welling, 2016) for relation extraction using dependency graphs
(Zhang et al., 2018b; Zhao et al., 2019). Graph convolutional
networks use the same concept of CNN, but with the advantage
of using graphs as inputs and outputs. By using dependency
paths to represent text as graphs, GCNs can be applied to
relation extraction tasks. In Zhao et al. (2019), the authors use
a hybrid model that combines GCNs preceded by bidirectional
gated recurrent units (bi-GRU) layer to achieve significant F-
measures. Furthermore, for identifying drug-drug interactions,
a syntax convolutional neural network has been evaluated for
the DDIExtraction 2013 corpus (Herrero-Zazo et al., 2013)
and found to outperform other methods (Zhao et al., 2016).
Conceptually similar approaches have been used in Suárez-
Paniagua et al. (2019), Wei et al. (2019).

In extension, Zheng et al. (2018) uses a hierarchical hybrid
model that resembles a reverse CRNN (convolutional recurrent
neural network), where a CNN and a soft-max layer follow
two bi-LSTM layers. The method has been used to extract
chemical-disease relations, and have been trained and evaluated
on CDR corpus (Li et al., 2016a). Whereas, authors of Zhang
et al. (2018a) uses two CNNs and a bi-LSTM simultaneously to
learn from word/relation dependency and sentence sequences,
to extract disease-disease and protein-protein relations. These
hybrid methods aim to combine the CNN’s efficiency in
learning local lexical and syntactic features (short sentences)
with RNN’s ability to learn dependency features over long and
complicated sequences of words (long sentences). Both of the

above models have been found to perform well with their
respective corpora.

3.5. Graph-Based Approaches
Graph-based representation preserves the sentence structure by
converting the text directly into a graph, where biomedical
named entities are vertices and other syntactic/semantic
structures connecting them are edges. While complex sentence
structures may lead to nested relations, this method facilitates
identifying common syntactic patterns indicating significant
associations (Luo et al., 2016).

Once the named entities are tagged, the next steps involve
splitting sentences, annotating them with POS, and processing
other feature extractions as required. Graph extraction is usually
performed at this point as a part of the feature extracting process.
Once the graphs including concepts and their syntactic/semantic
relations are mined, these can be used as kernels, training data
for deep learning approaches, or for generating rule sets with
the help of graph search algorithms (Kilicoglu and Bergler,
2009; Ravikumar et al., 2012; Panyam et al., 2018a; Björne and
Salakoski, 2018). For example, in Liu et al. (2013), approximate
subgraph matching has been used to extract biomolecular
relations from key contextual dependencies and input sentence
graphs. A similar approach has been used in MacKinlay et al.
(2013). The paper by Luo et al. (2016) provides a good review
including a wide array of examples for which graph-based
approaches are used in biomedical text mining.

3.6. Hybrid Approaches
Also, the combination of machine learning and graph-based
approaches have been studied with great success. For instance,
in Kim et al. (2015), a linear graph kernel based on dependency
graphs for sentences has been used in combination with an
SVM to detect drug-drug interactions. In order to enrich the
information captured by kernels, Peng et al. (2015) uses an
extended dependency graph that has also been defined to include
information beyond syntax. Furthermore, in Panyam et al.
(2018b), chemical-induced disease relations have been studied
by comparing tree kernels (subset-tree kernel and partial-tree
kernel) and graph kernels (all-path-graph and approximate-
subgraph-matching). As a result, they found that the all-path-
graph kernel performs significantly better in this task.

3.7. Others Approaches
In this section, we discuss methods that do not fit in either of
the above categories but provide interesting approaches. In Zhou
and Fu (2018), an extended variant of the frequency approach
is studied, which combines co-occurrence frequency and Inverse
Document Frequency (IDF) for relations extraction. The study
sets the first precedence to entity co-occurrence in MeSH terms
and second to those in the article title, and third to the ones in
the article abstract by assigning weights to each precedence level.
A vector representation for each document sample is created
using these weights for calculating the score of each key-term-
association by multiplying IDF with PWK (penalty weight for the
keyword, depending on the distance from MeSH root). Next, by
comparing with the dictionary entries for relevance, each gene
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FIGURE 8 | Dependency graph for the sentence “BRCA1 gene causes predisposition to breast cancer and ovarian cancer” generated using Standford coreNLP

parser (Manning et al., 2014) (nsubj-nominal subject, dobj-direct object, nmod-nominal modifier, amod-adjectival modifier, conj-conjunction, CC-coordinating

conjunction, JJ-adjective, NN-noun).

and disease is converted into vectors (Vg ,Vd), and the strength
of a relation is calculated through the cosine similarity given by

Cos〈Vg ,Vd〉 =
Vg .Vd

|Vg |.|Vd|
. The authors then evaluate the system by

comparing precision, recall, and cosine similarity.
In contrast, the study by Percha and Altman (2015)

introduces an entirely novel algorithm to mine relations between
entities called Ensemble Clustering for Classification (EBC).
This algorithm extract drug-gene associations by combining an
unsupervised learning step and a lightly supervised step that uses
a small seed data set. In the unsupervised step, all co-occurrences
of gene-drugs pairs (n) and all dependency path between the
pairs (m) are mined to create a matrix of n × m which is
then clustered using Information-Theoretic Co-Clustering. The
supervised step follows by comparing how often the seed set pairs
and test set pairs co-cluster together using a scoring function,
and relationships are ranked accordingly. The same authors have
extended this method further in Percha and Altman (2018), by
applying hierarchical clustering after EBC to extract four types of
association between gene-gene, chemical-gene, gene-disease, and
chemical-disease. Incidentally, this hierarchical step has enabled
additional classification of these relationships into themes such
as ten different types of chemical-gene relations or seven distinct
types of chemical-disease associations.

4. ANALYZING POLARITY AND STRENGTH
OF RELATIONS

A further refinement following a relation detection is an analysis
of the polarity and the strength of the identified associations,
providing additional information about the relations and, hence,
enhances extracted domain-specific knowledge.

4.1. Polarity Analysis
A polarity analysis of relations is similar to a sentiment analysis
(Swaminathan et al., 2010; Denecke and Deng, 2015). For
inferring the polarity of relations, similar machine learning
approaches can be used, as discussed in section 3.3. However, a
crucial difference is that for the supervised methods, appropriate
training data need to be available, providing information about
the different polarity classes. For instance, one could have three
polarity classes, namely, positive associations (e.g., decreases risk,
promotes health), neutral associations (e.g., does not influence,
causes no change), and negative associations (e.g., increases
risk, mutates cell). In general, a polarity analysis opens new
ways to study research questions of how entities interact with

each other in a network. For example, the influence of a
given food metabolite on certain diseases can be identified,
which may open new courses of food-based treatment regiments
(Miao et al., 2012a,b).

4.2. Strength Analysis
A strength analysis comes after identifying associations between
entities in a text since all extracted eventsmight not be considered
significant associations. Especially in simple co-occurrences
based method to identify relationships, strength analysis can be
vital, since just a simple mention of two entities in a sentence
with no explicit reciprocity, may result in them wrongly defined
as associations. Some of the most common methods employed
in the literature include distance analysis and dependency path
analysis, or an extension of those methods.

An example of a method that implements a word distance
analysis is Polysearch (Liu et al., 2015). Polysearch is essentially
a biomedical web crawler focusing on entity associations.
This tool first estimates co-occurrence frequencies and the
association verbs to locate content that is predicted to have entity
associations. Next, using the word-distances between entity-
pairs in the selected text, content relevancy (i.e., the strength
of association) score is calculated. Incidentally, this system is
currently able to search in several text corpora and databases,
using the above method, to find relevant content for over 300
associative combinations of named entity classes.

In Coulet et al. (2010), the authors created syntactic parse
trees, as shown in Figure 7, by analyzing sentences selected by
the entity co-occurrences approach. Each tree then converts into
a directed and labeled dependency graph, whereas nodes are
words, and edges are dependency labels. Next, by extracting
shortest paths between node pairs in the graph, they transform
associations into the form Verb(Entity1,Entity2), such that
Entity1 and Entity2 are connected by Verb. This approach, which
is an extension of the association-identifying method described
in section 3.1, hypothesizes that the shortest dependency paths
indicate the strongest associations. Other studies that use a
dependency analysis of sentences to determine the strength of
the associations include (Quan and Ren, 2014; Kuhn et al., 2015;
Mallory et al., 2015; Percha and Altman, 2015). Many systems
using machine learning approaches, also tend to define syntactic
and dependency paths analysis of sentences as a feature selection
method before training relation mining models, as discussed
in Özgür et al. (2008), Yang et al. (2011), and Bhasuran and
Natarajan (2018).
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5. VISUALIZATION AND INTEGRATING
RELATIONS

5.1. Network Visualization
After individual relations between biomedical entities have been
inferred, it is convenient to assemble these in the form of
networks (Skusa et al., 2005; Li et al., 2014; Kolchinsky et al.,
2015). In such networks, nodes (also called vertices) correspond
to entities and edges (also called links) to relations between
entities. The resulting networks can be either weighted or
unweighted. If polarity or strength of relations has been obtained,
one can use this information to define the weights of edges
as the strength of the relations, leading to weighted networks.
Polarity information and relation type classifications can further
be used to label edges. For example, these labels could be positive
regulation, negative regulation, or transcription. In this case,
edges tend to be directed indicating which entity is influenced
by which. Such labeled and/or weighted networks are usually
more informative than unweighted ones because they carry more
relevant domain-specific information.

The visualization of interaction networks often provides a
useful first summary of the results extracted from the relation
extraction task. The networks are either built from scratch or
automatically by using software tools. Two such commonly used
tools for the network visualization are Cytoscape (Franz et al.,
2015) and Gephi (Bastian et al., 2009), both providing open-
source java libraries. Cytoscape can also be used interactively via
a web-interface, while Gephi can be used for 3D rendering of
graphs and networks. There are also several libraries specifically
developed for network visualization in different languages. For
instance, NetbioV (Tripathi et al., 2014) provides an R package
and Graph-tool (Peixoto, 2014) a package for Python.

5.2. Network Analysis
The networks generated in the above way can be further
analyzed to reconfirm known associations, and further explore
new ones (Özgür et al., 2008; Quan and Ren, 2014). Measures
frequently used for biomedical network analysis include node
centrality measures, shortest paths, network clustering, and
network density (Sarangdhar et al., 2016). The measures selected
to analyze a graph predominantly depend on the task at hand; for
example, shortest path analysis is vital for discovering signaling
pathways, while clustering analysis helps identify functional
subnetwork units. Further commonly used metrics are centrality
measures and network density methods, e.g., for identifying
the most influential nodes in the network. Whereas graph
density compares the number of existing relations between the
nodes vs. all possible connections that can be formed in the
network, centrality measures are commonly used to identifying
the importance of an entity within the entire network (Emmert-
Streib and Dehmer, 2011).

There are four main centrality measures, namely, degree,
betweenness, closeness, and eigenvector centrality (Emmert-
Streib et al., 2018). Degree centrality, the simplest of the above
measures, corresponds just to the number of connections of a
node. Closeness centrality is given by the reciprocal of the sum
of all shortest path lengths between a node and all other nodes

in the network, as such it measures the spread of information.
Also betweenness centrality utilizes shortest paths by taking into
account the information flow of the network. This is realized
by counting shortest paths through pairs of nodes. Finally,
eigenvector centrality is a measure of influence where each node
is assigned a score based on howmany other influential nodes are
connected to it.

For instance, consider Figure 9, a disease-gene network. Here
blue nodes correspond to genes and pink nodes represent
diseases. For instance, blue nodes with a higher degree centrality
correspond to those genes associated with a higher number of
diseases. Similarly, pink nodes with a high degree centrality
correspond to diseases that are associated with more genes.
Furthermore, the genes with a high closeness centrality are
important because they have a direct or indirect association to
the largest number of other genes and diseases. Further, if a
gene X that is connected to a large number of diseases, and
is furthermore connected to gene Y with a high eigenvector
centrality, it may be worth exploring if there are diseases in the
neighborhood of gene X, that are possibly also associated to gene
Y and vice versa. Hence, based on centrality measures, one may
be able to find previously undiscovered relations between certain
diseases and genes.

6. TOOLS AND DATA RESOURCES

In this section, we will discuss some of the main benchmark
tools and resources available for Named-Entity Recognition and
Relation Extraction used in the biomedical domain.

While the training corpora for machine learning methods in
BioNER and BioRD both have been discussed extensively in the
sections above, here we mention some of the databases with
entities and relation mappings. These are crucial for dictionary-
based methods and in post-processing, and as such, are often
used for biomedical text mining research.

Some of the Named-Entity specific databases that have
comprehensive collections of jargon include Gene Ontology
(Consortium, 2004), Chemical Entities of Biological Interest
(Shardlow et al., 2018), DrugBank (Wishart et al., 2017), Human
Protein Reference Database (Keshava Prasad et al., 2008), Online
Mendelian Inheritance in Man (Amberger et al., 2018), FooDB
(Wishart, 2014), Toxins and Toxin-Targets Database (Wishart
et al., 2014), International Classifications of Disease (ICD-11) by
WHO (World Health Organization , 2018), Metabolic Pathways
and Enzymes Database (Caspi et al., 2017), Human Metaboleme
Database (Jewell et al., 2007), and USDA food and nutrients
database (Haytowitz and Pehrsson, 2018). The majority of these
has been used by Liu et al. (2015) to compile their thesauri
and databases.

Databases for known Entity-Relations in Biomedical
research include DISEASES (Pletscher-Frankild et al., 2015)
and DisGeNet (Bauer-Mehren et al., 2010) providing gene-
disease relations, CTD (Davis et al., 2012) with relations
between chemicals, genes, phenotypes, diseases, exposures
and pathways, SIDER (Kuhn et al., 2015) providing drug-side
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FIGURE 9 | Disease-gene network created for selected 300 entries from the DisGeNet Database (Bauer-Mehren et al., 2010) with Cytoscape v3.7.2. Genes are

shown as blue nodes and diseases as pink nodes.

effect relations, STRING (Szklarczyk et al., 2014) with protein-
protein interactions, ChemProt (Kringelum et al., 2016) with
chemical-protein interactions and PharmGKB (Hewett et al.,
2002) providing drug-gene relations. These databases have been
used by various authors to evaluate relation extraction systems.

In Table 3, we provide an overview of BioNER tools that are
available for different programming languages. While there are
several other tools, our selection criterion was to cover the earliest
successful implementations, benchmark tools as well as the most
recent tools using novel approaches.

The improvement of resources and techniques for biomedical
annotation has also brought about an abundance of open
source tools that have simplified the information extraction

for relation mining in biomedical texts. Many of these are
general-purpose text mining tools that can be easily configured
to process biomedical texts. For instance, Xing et al. (2018)
used the open information extraction tool OLLIE (Schmitz
et al., 2012) to identify relations between genes and phenotypes,
whereas (Kim et al., 2017) identified gene-disease relations
utilizing DigSee (Kim et al., 2013). Other useful tools that
can be application adaptable and have higher F-score measures
are; DeepDive (Niu et al., 2012): an information extraction
system developed for structuring unstructured text documents,
RelEx (Fundel et al., 2006): a dependency parsing based
relations extractor applicable to biomedical free text, and
PKDE4J (Song et al., 2015): an extractor that combines

Frontiers in Cell and Developmental Biology | www.frontiersin.org 18 August 2020 | Volume 8 | Article 673

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Perera et al. Named Entity Recognition and Relation Detection

TABLE 3 | An overview of approaches for BioNER tools.

NER system References Entity type Learning model Feature model Software

OGER++ Furrer et al., 2019 Multiple Hybrid (Dictionary/FFNN) Rich Features/ word2vec Python

HUNER Weber et al., 2019 GE, PR, CH, DI, SP, CL Machine Learning

(LSTM-CRF)

Word2vec Python

LSTMVoter Hemati and Mehler,

2019

CH Machine Learning

(Bi-LSTM-CRF)

Character Level features Python

CollaboNet Yoon et al., 2019 CH, DI, GE, PR Machine Learning

(Bi-LSTM-CRF)

Character Level WE Python

MetaMap Demner-Fushman

et al., 2017

Multiple UMLS terms Dictionary Tokens/POS Java

TaggerOne Leaman and Lu, 2016 DI, CH Machine Learning

(Semi-Markov)

Rich Features Java

BEST Lee et al., 2016 Multiple Dictionary Tokens/POS Java

GNormPlus Wei et al., 2015 GE, PR Machine Learning (CRF) Rich Features Java/Perl

tmChem Leaman et al., 2015 CH Machine Learning

(Ensemble CRF)

Rich Features Java/Perl /C++

Dnorm Leaman et al., 2013 DI Hybrid (Dictionary/CRF) Rich Features Java

ChemSpot Rocktäschel et al. ,

2012

CH Hybrid (CRF/Dictionary) Rich Fetures Java

SR4GN Wei et al., 2012 SP Hybrid (Dictionary/Rules) Rich features Perl

OrganismTagger Naderi et al., 2011 Genus, SP, Strain Hybrid (Rule/SVM) Rich features/ Tokens Python

Gimli Campos et al., 2013 PR, DNA, RNA, CL, CT Hybrid

(Dictionary/CRF)

Rich Features Java

LINNAEUS Gerner et al., 2010 SP Dictionary Tokens/ Orthographic Java

BANNER Leaman and Gonzalez,

2008

DI, GE, PR Machine Learning (CRF) Rich features Java

GE, genes; PR, proteins; CH, chemicals; DI, diseases; SP, species; CL, cell line; CT, cell type.

rule-based and dictionary-based approaches for multiple-entity
relation extraction.

Furthermore, there are general NLP tools heavily used in
BioNER and BioRD alike for pre-processing and syntactic
analysis. These include Stanford CoreNLP (Manning et al., 2014)
for general pre-processing, Stanford POS Tagger (Toutanova
et al., 2003) and Stanford dependency parser (Chen and
Manning, 2014) for syntactic and semantic sentence analysis,
Splitta (Gillick, 2009) for sentence splitting, GENIA tagger
(Tsuruoka et al., 2005) for POS tagging and semantic analysis and
Verbnet (Palmer et al., 2017) for verb extraction.

7. APPLICATIONS

One of the most important applications of BioNER and BioRD
is narrowing down the search space when exploring millions
of online biomedical journal articles. Often, one needs to find
articles that do not merely include a search term but also include
contextual information. For example, if “sequenced genes in
chromosome 9” is the query, all the articles that contain different
gene names should also appear in the search results. That would
only be possible if the search method knows how to locate genes
as well as classify them as chromosome 9 related.

Another application is for disease diagnosis and treatment,
wheremining prior treatment data and research work could assist
in narrowing down the diagnosis and possibly effective treatment
regiments for a given complicated set of symptoms presented
by a patient (Zhu et al., 2013; Bello et al., 2019). In recent

years, there has been much attention to designing automated
healthcare chatbot systems that are configured to respond
to user queries and provide advice or support. Healthcare
chatbots use various biomedical text mining techniques to
process queries, match them to answers in their knowledge
base to either provide medical advice or to refer them
(Chawla and Anuradha, 2018; Ghosh et al., 2018). Such systems
require the ability to process entities and relations such as
diseases, drugs, symptoms, body parts, diagnosis, treatments,
or adverse effects (Ghiasvand and Kate, 2018; Wang et al.,
2018c).

Another notable application of relation detection is for
generating biological interaction networks Azam et al. (2019).
For instance, a query like “all drugs associated with prostate
cancer treatment” requires knowing which tokens refer to drugs
and which phrases point to prostate cancer treatment. Once such
associations are established, they can be summarized as a network
representing prostate cancer gene interactions or drug-to-drug
interactions with side effects. These networks not only provide a
summation of thousands of research articles and a visualization
but also allow us to derive novel hypotheses.

Furthermore, relation extraction can be a vital tool in
Adverse Drug Reaction (ADR) andDrug-Drug Interaction (DDI)
analysis. It is not practical and ethical to conduct drug trials
in a way that all possible DDIs and ADRs are discovered. As
such, creating a network with known interactions extracted from
research would allow us to explore other possible interactions
between drugs and adverse effects Luo et al. (2016).
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8. DISCUSSION

From a general point of view, the task of performing Named
Entity Recognition (NER) and Relation Detection (RD) are
data science problems (Emmert-Streib and Dehmer, 2019a).
That means an optimal combination of data and methods is
required for achieving the best results. Regarding the data,
most current studies are based on information from abstracts
of scientific articles as provided, e.g., by PubMed. However,
such articles contain much more information, which is only
accessible if one would have access to full-text publications. For
journals having an open access policy like PLoS, Frontiers, or
MDPI, this does not constitute an obstacle. However, many
articles are still hidden behind a paywall, e.g., most articles
from Nature and Science. A related problem refers to capturing
information from tables or Supplementary Files. Especially the
latter possess new challenges because most publishers do not
provide formatting guidelines for Supplementary Files rendering
such texts as unstructured. Importantly, information extracted
from such full-text publications or Supplementary Files could not
only lead to additional information but to redundant information
that could be utilized for correcting errors obtained from using
journal abstracts solely. Hence, one could expect to improve the
quality of the analysis performance by using additional input
texts as provided by full-text publications or Supplementary Files.
Another problem relates to the extraction of italicized or quoted
text which may not be captured.

A common question asked is what is the performance of a
method and how does it compare to other related methods?
Since the papers reviewed in this article have all been published
in either scientific journals or conferences or preprint servers
all of them have been studied numerically, at least to some
extend. However, for any serious application the information
required is the generalization error (GenErr) Emmert-Streib
and Dehmer (2019b) and the dependence of the GenErr on
variations of the data. The statistical estimation of the GenErr
is in general challenging and not straight forward. This implies
that this error may be considerably different to the numerical
results provided in the reviewed papers and, hence, a case-
by-case analysis is required to select the proper method for a
given application domain. For this reason, as a warning, we
would like to remark that despite the fact that we provided
throughout the paper information about obtained F-scores or
recall values, such information needs to be considered cautiously.
Hence, such values should not be seen as an absolute indicator of
performance but as guideline for your own dedicated context-
specific performance analysis.

From a methodological point of view, deep learning
approaches are still relatively new, leaving plenty of room for
improvement (Yadav and Bethard, 2019). A general reason for the
popularity of thesemethods is that deep learning neural networks
require no/little feature selection but perform such a mechanism
internally within their hidden layers. Certainly, this characteristic
is not entirely domain and data-independent (Smolander et al.,
2019), and it remains to be seen if this also holds for text
data, especially when the number of samples is not in the
millions. Interestingly, recent results for patient phenotyping
from electronic health records (eHRs) show that this might be

the case (Yang et al., 2019). Regarding methods, unsupervised
and semi-supervised methods have the most significant potential
for improvement because annotated benchmark corpora are
still relatively small; see Table 1 and the information about
the available sample sizes. Hence, methods that operate, at
least partially, unsupervised would be very beneficial because
they do not require such annotations yet can harvest from the
millions of available publications. This could also be connected
to learning representations of sentences or words. A good
example of this direction is an extension of BERT (Devlin
et al., 2019), where unsupervised pre-training with large-scale
biomedical corpora is used followed by task-specific fine tuning.
The resulting method called BioBERT (Lee et al., 2019) has
been shown to result in state-of-the-art performance in a
number of different biomedical tasks, including biomedical
named entity recognition, biomedical relation extraction and
biomedical question answering.

Looking back, methods for word embedding made
tremendous progress in recent years starting with word2vec and
the improvement by BERT. These results have been enabled
by exploiting different neural network architectures (e.g.,
bidirectional transformers for BERT and LSTMs for ELMo). It
seems natural to further explore this direction, e.g., by using
nested architectures or introducing additional training or
pre-training steps for combined network architectures.

Related to the last point above is learning new sentence
representations in the form of trees or general graphs (Luo et al.,
2016). A potential advantage of such a representation is that the
rich information from network studies about graph energy, graph
entropy, molecular descriptors, or network comparisons could be
utilized (Todeschini et al., 2002; Li et al., 2012; Dehmer et al.,
2016; Emmert-Streib et al., 2016). For instance, starting from a
dependency parse, refined representations could be learned using
unsupervised approaches, e.g., autoencoders, to enhance the
captured features (Eisenstein, 2019). Importantly, not only deep
learning methods might be relevant but also SVMs by deriving
new graph kernels from such refined graph representations and,
e.g., graph descriptors (Vishwanathan et al., 2010; Panyam et al.,
2018b). Furthermore, we would like to note that NLP methods
can contain subjective notions. For instance, for a polarity
analysis there is no objective way to derive the meaning of a
“positive” or “negative” association. Instead, this information
needs to be defined by the user. Hence, such an analysis captures
the definition of the user.

Finally, another recent development is provided by end-
to-end learning Li and Ji (2014). For end-to-end learning
the NER and RD tasks are jointly learned, as opposed to
pipeline-based systems, because this has been shown to minimize
error propagation and improve performance (Giorgi et al.,
2019). Generally, end-to-end systems can be either trained as
a sequentially (Li et al., 2015a,b; Bekoulis et al., 2018a) or as
a simultaneous learning process for both NER and RD. The
latter approach is more recent, yet successful with state-of-the-art
performance (Li et al., 2017a; Bekoulis et al., 2018b). While it is
common for most end-to-end approaches to get some help from
external NLP tools for auxiliary tasks, e.g., dependency parsers,
Giorgi et al. (2019) proposed a model to be truly end-to-end
with no external help. Problems current systems struggle with are
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nested entities and inter-sentence relations. Both issues provide
ample opportunities for future research.

9. CONCLUSION

In this paper, we reviewed methods for Named Entity
Recognition (NER) and Relation Detection (RD) allowing, e.g.,
to identify interactions between proteins and drugs or genes and
diseases. Over the years, many methods have been introduced
and studied for resolving a variety of problems in biomedical,

health, and clinical sciences. For this reason, we aimed for
a systematic presentation by categorizing methods according
to their main characteristics. Importantly, recent progress in

artificial intelligence via deep learning provided a new perspective
on NER and RD, and further advances can be expected in this
direction in the near future.
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Zhang, C., Biś, D., Liu, X., and He, Z. (2019a). Biomedical word
sense disambiguation with bidirectional long short-term memory
and attention-based neural networks. BMC Bioinform. 20:502.
doi: 10.1186/s12859-019-3079-8

Zhang, S., and Elhadad, N. (2013). Unsupervised biomedical named entity
recognition: experiments with clinical and biological texts. J. Biomed. Inform.
46, 1088–1098. doi: 10.1016/j.jbi.2013.08.004

Zhang, Y., Lin, H., Yang, Z., Wang, J., Sun, Y., Xu, B., et al. (2019b). Neural
network-based approaches for biomedical relation classification: a review. J.
Biomed. Inform. doi: 10.1016/j.jbi.2019.103294

Zhang, Y., Lin, H., Yang, Z., Wang, J., Zhang, S., Sun, Y., et al. (2018a). A hybrid
model based on neural networks for biomedical relation extraction. J. Biomed.

Inform. 81, 83–92. doi: 10.1016/j.jbi.2018.03.011
Zhang, Y., Qi, P., and Manning, C. D. (2018b). Graph convolution over

pruned dependency trees improves relation extraction. arXiv [Preprint].

arXiv:1809.10185. doi: 10.18653/v1/D18-1244
Zhang, Y., Zheng, W., Lin, H., Wang, J., Yang, Z., and Dumontier,

M. (2018c). Drug-drug interaction extraction via hierarchical RNNs on
sequence and shortest dependency paths. Bioinformatics 34, 828–835.
doi: 10.1093/bioinformatics/btx659

Zhao, D., Wang, J., Lin, H., Yang, Z., and Zhang, Y. (2019). Extracting
drug-drug interactions with hybrid bidirectional gated recurrent
unit and graph convolutional network. J. Biomed. Inform. 99:103295.
doi: 10.1016/j.jbi.2019.103295

Zhao, Z., Yang, Z., Luo, L., Lin, H., and Wang, J. (2016). Drug drug interaction
extraction from biomedical literature using syntax convolutional neural
network. Bioinformatics 32, 3444–3453. doi: 10.1093/bioinformatics/btw486

Zheng, J., Chapman,W.W., Crowley, R. S., and Savova, G. K. (2011a). Coreference
resolution: a review of general methodologies and applications in the clinical
domain. J. Biomed. Inform. 44, 1113–1122. doi: 10.1016/j.jbi.2011.08.006

Zheng, J., Chapman,W.W., Crowley, R. S., and Savova, G. K. (2011b). Coreference
resolution: a review of general methodologies and applications in the clinical
domain. J. Biomed. Inform. 44, 1113–1122.

Zheng, J., Chapman, W. W., Miller, T. A., Lin, C., Crowley, R. S., and Savova, G.
K. (2012). A system for coreference resolution for the clinical narrative. J. Am.

Med. Inform. Assoc. 19, 660–667. doi: 10.1136/amiajnl-2011-000599
Zheng, W., Lin, H., Li, Z., Liu, X., Li, Z., Xu, B., et al. (2018). An effective neural

model extracting document level chemical-induced disease relations from
biomedical literature. J. Biomed. Inform. 83, 1–9. doi: 10.1016/j.jbi.2018.05.001

Zhou, J., and Fu, B.-Q. (2018). The research on gene-disease association
based on text-mining of pubmed. BMC Bioinformatics 19:37.
doi: 10.1186/s12859-018-2048-y

Zhu, F., Patumcharoenpol, P., Zhang, C., Yang, Y., Chan, J., Meechai, A., et al.
(2013). Biomedical text mining and its applications in cancer research. J.
Biomed. Inform. 46, 200–211. doi: 10.1016/j.jbi.2012.10.007

Zhu, Q., Li, X., Conesa, A., and Pereira, C. (2017). Gram-CNN: a deep learning
approach with local context for named entity recognition in biomedical text.
Bioinformatics 34, 1547–1554. doi: 10.1093/bioinformatics/btx815

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Perera, Dehmer and Emmert-Streib. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 26 August 2020 | Volume 8 | Article 673

https://doi.org/10.1016/j.jbi.2012.04.004
https://doi.org/10.1093/bib/bbx010
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://doi.org/10.1007/s00607-019-00768-7
https://doi.org/10.1093/bioinformatics/bty869
https://doi.org/10.1186/s12859-018-2543-1
https://doi.org/10.1016/j.jbi.2017.11.011
https://doi.org/10.1093/jamia/ocy013
https://doi.org/10.1093/bioinformatics/bty060
https://academic.oup.com/bioinformatics/article-abstract/36/1/295/5523847?redirectedFrom=fulltext
https://academic.oup.com/bioinformatics/article-abstract/36/1/295/5523847?redirectedFrom=fulltext
https://doi.org/10.1371/journal.pone.0038460
https://doi.org/10.1155/2015/918710
https://doi.org/10.1093/database/baw140
https://doi.org/10.1093/jamia/ocz063
https://doi.org/10.1093/nar/gku1004
https://doi.org/10.1093/nar/gkx1037
https://www.who.int/classifications/icd/en/
https://doi.org/10.1093/bioinformatics/bty263
http://www.jmlr.org/papers/volume11/vishwanathan10a/vishwanathan10a.pdf
http://www.jmlr.org/papers/volume11/vishwanathan10a/vishwanathan10a.pdf
https://doi.org/10.1007/978-3-642-22913-8_10
https://doi.org/10.1038/s41598-020-58178-1
https://doi.org/10.1186/s12859-019-2813-6
https://www.aclweb.org/anthology/C14-1220.pdf
https://www.aclweb.org/anthology/C14-1220.pdf
https://doi.org/10.1186/s12859-019-3079-8
https://doi.org/10.1016/j.jbi.2013.08.004
https://doi.org/10.1016/j.jbi.2019.103294
https://doi.org/10.1016/j.jbi.2018.03.011
https://doi.org/10.18653/v1/D18-1244
https://doi.org/10.1093/bioinformatics/btx659
https://doi.org/10.1016/j.jbi.2019.103295
https://doi.org/10.1093/bioinformatics/btw486
https://doi.org/10.1016/j.jbi.2011.08.006
https://doi.org/10.1136/amiajnl-2011-000599
https://doi.org/10.1016/j.jbi.2018.05.001
https://doi.org/10.1186/s12859-018-2048-y
https://doi.org/10.1016/j.jbi.2012.10.007
https://doi.org/10.1093/bioinformatics/btx815
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles

	Named Entity Recognition and Relation Detection for Biomedical Information Extraction
	1. Introduction
	2. Biomedical Named Entity Recognition (BioNER)
	2.1. Main Challenges in BioNER
	2.2. Principle Steps in BioNER
	2.2.1. Pre-processing
	2.2.2. Feature Processing
	2.2.2.1. Rich text features
	2.2.2.2. Vector representations of text
	2.2.2.3. Neural network-based text embedding methods

	2.2.3. BioNER Modeling
	2.2.3.1. Rule-based models
	2.2.3.2. Dictionary-based models
	2.2.3.3. Machine learning models
	2.2.3.4. Hybrid models

	2.2.4. Post Processing


	3. Inferring Relations
	3.1. Co-occurrence Based Approaches
	3.2. Rule-Based Approaches
	3.3. Traditional Machine Learning Approaches
	3.4. Deep Learning Approaches
	3.5. Graph-Based Approaches
	3.6. Hybrid Approaches
	3.7. Others Approaches

	4. Analyzing Polarity and Strength of Relations
	4.1. Polarity Analysis
	4.2. Strength Analysis

	5. Visualization and Integrating Relations
	5.1. Network Visualization
	5.2. Network Analysis

	6. Tools and Data Resources
	7. Applications
	8. Discussion
	9. Conclusion
	Author Contributions
	Funding
	References


