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Abstract: Postmenopausal osteoporosis is the most common bone disease, associated 

with low bone mineral density (BMD) and pathological fractures which lead to significant 

morbidity. It is defined clinically by a BMD of 2.5 standard deviations or more below the young 

female adult mean (T-score = −2.5). Osteoporosis was a huge global problem both socially 

and economically – in the UK alone, in 2011 £6 million per day was spent on treatment and 

social care of the 230,000 osteoporotic fracture patients – and therefore viable preventative 

and therapeutic approaches are key to managing this problem within the aging population 

of today. One of the main issues surrounding the potential of osteoporosis management is 

diagnosing patients at risk before they develop a fracture. We discuss the current and future 

possibilities for identifying susceptible patients, from fracture risk assessment to shape 

modeling and in relation to the high heritability of osteoporosis now that a plethora of genes 

have been associated with low BMD and osteoporotic fracture. This review highlights the 

current therapeutics in clinical use (including bisphosphonates, anti-RANKL [receptor 

activator of NF-κB ligand], intermittent low dose parathyroid hormone, and strontium ranelate) 

and some of those in development (anti-sclerostin antibodies and cathepsin K inhibitors). By 

highlighting the intimate relationship between the activities of bone forming (osteoblasts) and 

bone-resorbing (osteoclasts) cells, we include an overview and comparison of the molecular 

mechanisms exploited in each therapy.
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Physiological control of bone remodeling
A healthy skeleton is maintained throughout life by the constant process of 

bone remodeling that is regulated by the balanced activities of bone-resorbing 

osteoclasts and bone-forming osteoblasts (Figure 1) to maintain normal physiological 

structure and mineral content. The bone remodeling process is completed in 4–6 months. 

It takes place mostly in a nontargeted manner to remove old bone and involves 

resorption of bone by peripheral blood-derived multinucleated osteoclasts, followed 

by bone formation by osteoblasts.1 Remodeling also takes place at specific, targeted 

bone surfaces, which develop stress-induced microfractures attracting osteoclasts by 

signaling via osteocytes embedded deep within the mineralized bone.2–4 The activation of 

different bone cells in the bone remodeling process is orchestrated by multiple pathways 

such as receptor activator of nuclear factor (NF)-κB ligand (RANKL) and Wnt 

signaling pathways, and these pathways are exploited in the development of new 

therapies for osteoporosis.5
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Osteoporosis – an exploding 
21st century problem of an aging 
population
Osteoporosis is defined by the World Health Organization 

as a value for bone mineral density (BMD) 2.5 standard 

deviations or more below the young female adult mean– 

referred to as a T-score of −2.5, where a T-score of zero 

is equal to the young female adult mean.6 It is estimated 

that one in two women and one in five men over the age of 

50 years in the UK (National Osteoporotic Society, UK) and 

an estimated 44 million Americans (National Osteoporotic 

Society, USA) are at risk of osteoporotic fracture – most 

commonly fractures of the hip, wrist, and vertebra. Therapies 

to inhibit osteoclasts are effective at preventing bone loss, 

but osteoporosis often goes undiagnosed until an individual 

receives a bone scan after a fracture. Population screening by 

dual-energy X-ray absorptiometry (DXA) bone scans (which 

is the current gold standard for osteoporosis diagnosis) is 

not cost-effective, and therefore new, reliable methods to 

identify individuals with low BMD are required.7 Since 

the treatment of osteoporotic fracture has a huge impact on 

individual recovery and the national health budget, this serves 

to highlight the pivotal role for early diagnosis, prevention, 

and treatment of osteoporosis.

Osteoporosis is caused by an uncoupling of bone resorption 

from bone formation such that the activities of osteoclasts far 

outweigh those of the osteoblasts. Peak bone mass is achieved 

in early adulthood and, following this point, both women and 

men lose bone with increasing age. However, this process is 

accelerated in postmenopausal women whereby the loss of 

estrogen is associated with an increase in osteoclast activity. 

Decades of research indicates that estrogen plays a dominant 

multifactorial role in maintaining cortical bone formation by 

supporting osteoblasts and preventing bone resorption by 

suppressing osteoclast formation and stimulating osteoclast 

apoptosis.8,9
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Figure 1 The cells responsible for bone remodeling, highlighting key signaling pathways that are targets for therapies recommended for the prevention of osteoporotic 
fracture.
Notes: Osteocytes are embedded within mineralized bone and, in response to mechanical loading or microdamage, provide signals to osteoclasts to resorb. Osteoclast 
differentiation and function is dependent on the RANKL–RANK signaling pathway, which in vivo, is negatively regulated by OPG. Circulating PTH is a physiological regulator 
of plasma calcium and binds to PTHR on osteoblasts to indirectly stimulate osteoclast activity via upregulation of RANKL and downregulation of OPG expression. Calcitonin 
binds to the CTR expressed on mature osteoclasts to reversibly inhibit osteoclast function, although the exact physiological relevance for calcitonin is not fully understood. 
E2 has a positive effect on bone, through effects on osteoblasts and osteoclasts via ERα. CatK is secreted by resorbing osteoclasts across the convoluted ruffled border 
membrane and is required to degrade collagen. Osteoclast activity releases factors from the bone, which attract osteoblasts to the site of resorption. Osteoblast differentiation 
and function is controlled by the wnt signaling pathway via the LRP5/6 and Frizzled co-receptors, which is regulated by endogenous inhibitors such as sclerostin, expressed 
by osteocytes and upregulated in response to unloading.
Abbreviations: CatK, cathepsin K; CTR, calcitonin receptor; E2, estrogen; ERα, estrogen receptor; LRP5/6, lipoprotein-related protein 5/6; OPG, osteoprotegerin; 
PTH, parathyroid hormone; PTHR, PTH receptor; RANK, receptor activator of nuclear factor-κB; RANKL, RANK ligand.

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

436

Das and Crockett

www.dovepress.com
www.dovepress.com
www.dovepress.com


Drug Design, Development and Therapy 2013:7

In men, testosterone plays a crucial role in protecting 

the skeleton. Experiments with androgen receptor knockout 

mouse models showed that the absence of androgen receptors 

on the surface of bone cells leads to the development of 

osteoporosis in male mice, but not in female mice.10 These 

experiments showed that the protective action of testosterone 

is mediated via the supportive activity of osteoblasts on 

osteoclasts, not directly on osteoclasts themselves. Although 

testosterone has a direct effect on bone, estrogen is also 

important in maintaining bone health in men since estrogen 

activity in bone cells is via the conversion of androgen to 

estrogen, indicating a dual protective action of androgens 

in men.11

Secondary osteoporosis is defined as osteoporosis that 

develops as a consequence of an unrelated underlying 

cause.12 These can include a drug treatment (eg, chronic 

corticosteroid use), hypogonadism, malnutrition or eating 

disorders such as anorexia nervosa, excessive exercise, and 

neoplastic disorders.

The integrity of the skeleton is also intricately linked to 

appetite and energy balance, and the underlying mechanism 

by which bone mass is regulated by the brain is through a 

leptin-mediated brain-derived serotonin pathway.13 This 

research indicates potential adverse effects of anti-obesity 

leptin therapy on bone mass and confirms the molecular basis 

of the bone loss that is associated with prolonged treatment 

with selective serotonin reuptake inhibitors.14

Osteopenia – destined 
for osteoporosis?
Osteopenia is diagnosed when a T-score by DXA is between −1 

and −2.5.6 There is no clear consensus as to whether to treat 

osteopenia with pharmacotherapy. Osteopenia per se is not 

a criterion for pharmacotherapy under current guidelines, 

although treatment could be initiated if other risk factors are 

associated, particularly in men. One study showed that the 

majority of fractures occurred in osteopenic women, and this 

put emphasis on the careful assessment of osteopenic patients 

with high risk factors whilst restraining from treating all 

osteopenic patients.15,16 It was suggested that further assessment 

of these patients with high resolution peripheral quantitative 

computed tomography (HR-pQCT) was needed.

Screening methods for osteoporosis
DXA of hip and lumbar spine is the most commonly 

used diagnostic tool for osteoporosis assessment.17 DXA 

is very expensive, and many patients only receive a scan 

after a fracture. Identifying individuals that are at highest 

risk of pathological fracture and therefore likely to benefit 

from preventative treatment is an important goal in 

osteoporosis management. This could be achieved using 

alternative scanning methods, since for example, HR-pQCT 

together with finite element analysis for bone strength has 

demonstrated improved fracture risk prediction than DXA 

measurements.18 Fracture prediction calculators, including 

FRAX® (Fracture Risk Assessment), QFractureScores®, and 

the Garvan Institute fracture calculator, are algorithm-based 

methods to estimate risk of fracture, considering lifestyle 

factors such as body mass index as well as alcohol and 

smoking history.19–21 Fracture risk calculators can be used 

as tools to determine individuals that would benefit from 

a DXA scan, and FRAX® and Garvan can also be used in 

conjunction with BMD measurements to provide a fracture 

prediction score. FRAX® has been validated for use in many 

countries; however, there is some debate about whether 

these risk calculators actually provide better prediction of 

osteoporotic fracture than assessing age and BMD alone, 

and the importance of calibration of the algorithms to local 

cohorts, time period for risk assessment, and inclusion of risk 

of mortality have been highlighted and discussed in detail.22–24 

It is likely that other non-BMD assessments in addition 

to DXA are required to improve osteoporosis detection.25 

Active shape and appearance modeling were developed 

based on previous observations that differences in femoral 

geometry and bone quality might increase susceptibility to 

hip fracture.26,27 Different studies have employed a range 

of statistical algorithms to assess femoral neck appearance 

and shape from computed tomography, X-ray, and DXA 

images in cross-sectional and longitudinal studies.28 

A correlation was found between the texture and appearance 

and actual measured bone strength of femora, supporting 

the development of appearance models, and in recent cross-

sectional and prospective studies, active shape and appearance 

models of the hip predicted significantly more fractures than 

BMD measurements alone.28 Common to each study was that 

increased likelihood of fracture was associated with greater 

neck shaft angle.29–31 These results suggest that subtle shape 

and appearance differences between individuals could act 

as additional biomarkers, which could be incorporated into 

fracture assessment tools given appropriate adaption to allow 

automatic point placement.

Is osteoporosis susceptibility 
in the genes?
As a stepping stone to determining a genetic link in 

osteoporosis, twin and family studies have shown that up 
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to 85% variation in BMD can be attributed to genes.32,33 

Although initially genome-wide scans revealed no significant 

association to individual genes due to low sensitivity, later 

genome-wide association studies showed single nucleotide 

polymorphisms (SNPs) associated with variation in BMD, 

and most recently, up to 56 loci were associated with low 

BMD, of which 14 were associated with osteoporotic 

fractures.34–36 Many of these genes are associated with 

regulation of bone mineral homeostasis.37 As it is becoming 

apparent that multiple SNPs are responsible for osteoporosis, 

it may be possible in the near future to screen for the risk of 

development of osteoporosis using SNPs as biomarkers and 

allow monitoring and therapeutic management of genetically 

at-risk patients to be implemented earlier.

Risk factors and prevention 
of bone loss or fracture
Risk factors for developing low BMD, osteoporosis, and 

fracture include inherent, nonmodifiable factors as well as those 

that individuals can address to prevent or slow down onset of 

osteoporosis. Age, sex, and family history are independent risk 

factors for developing low BMD. Everyone loses bone mass 

with age, but women are at higher risk since they rapidly lose 

bone around and following menopause. The modifiable risk 

factors for developing osteoporosis have been systematically 

studied using observations from participants of the Framingham 

Heart Study, showing that low baseline weight, weight loss, and 

alcohol use in women, and smoking in men were associated 

with loss in BMD.38 A history of previous fragility fractures 

(vertebral or hip) is a strong predictor of future fractures, 

and given that falling is also a strong predictor of fracture, 

approaches to assessing the risk of falling together with risk 

of fracture is likely to be beneficial.39,40

Adequate calcium and vitamin D status are associated 

with good bone health, and studies that have examined the 

effect of a range of different vitamins and other dietary factors 

on maintaining BMD highlight the need for adequate and 

balanced nutrition.41–43

Current therapeutic management 
options for osteoporosis
There is a range of anti-resorptive or anabolic options 

for the prevention of osteoporotic fracture. The history 

of when each drug was approved for use for osteoporosis 

by the US Food and Drug Administration (FDA) or the 

European Medicines Agency (EMA) in the case of strontium 

ranelate is detailed in Figure 2. All therapeutic management 

strategies for the prevention and treatment of osteoporosis 

include recommendations for calcium and vitamin D 

supplementation.

Anti-resorptive drugs
Bisphosphonates
Bisphosphonates are the most commonly used drugs for the 

treatment of osteoporosis. They avidly bind to bone and are 

internalized by osteoclasts to inhibit resorption (Figure 3). 

They are administered both orally and intravenously and 

are divided into two classes – the low potency non-nitrogen 

containing bisphosphonates and the potent nitrogen-

containing bisphosphonates. These two classes have distinct 

intracellular targets and molecular mechanisms of action that 

lead to inhibition of osteoclast-mediated bone resorption.44 

All bisphosphonates have a phosphate-carbon-phosphate 

backbone with two side chains (R
1
 and R

2
). The non-nitrogen 

containing bisphosphonates have simple side chains (in 

etidronate R
1
 and R

2
 are CH

3
 groups, in clodronate R

1
 and 

R
2
 are Cl groups) and are metabolized in osteoclasts to 

non-hydrolysable analogs of adenosine triphosphate (ATP), 

accumulation of which causes osteoclast apoptosis.45 On the 

route to clinic, etidronate was successfully administered to 
H

orm
one replacem

ent

Therapy

1995 1999 2002 2006/7 201019911986 ??????2004

C
alcitonin

O
ral bisphosphonates

R
aloxifene

Teriparatide
Strontium

 ranelate
IV bisphosphonates

D
enosum

ab

Anti-sclerostin

C
athepsin K inhibitors

Figure 2 Key milestones in the lifecourse of osteoporosis therapy. Strontium ranelate is not approved by the FDA but all other agents have been approved both by the 
FDA and EMA.
Note: The dates shown represent the year that they were first approved by the FDA (or EMA for strontium ranelate) for use in the treatment of osteoporosis. 
Abbreviations: EMA, European Medicines Agency; FDA, US Food and Drug Administration; Iv, intravenous.
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treat a young patient with myosytis ossificans progressive 

in 1968, and prior to the use of etidronate (Didronel®) as an 

anti-osteoporotic drug it was used to treat Paget’s disease of 

bone before Procter and Gamble developed it for treatment 

of osteoporosis.46–48

In the nitrogen-containing bisphosphonates, R
1
 tends 

to be –OH and R
2
 contains a nitrogen molecule either 

attached to a multiple carbon side-chain (as in alendronate 

and pamidronate) or in a heterocyclic group (such as 

risedronate and zoledronate). These bisphosphonates are 

not metabolized to non-hydrolysable ATP analogs but 

inhibit farnesyl pyrophosphate synthase (FPPS), an enzyme 

in the mevalonate pathway.49,50 In addition to cholesterol 

biosynthesis, this pathway is responsible for synthesis of 

farnesyl and geranylgeranyl pyrophosphate, required for the 

prenylation and correct subcellular localization of proteins, 

including small GTPases that regulate processes critical 

for osteoclast function, including vesicular trafficking.51 

The potency of nitrogen-containing bisphosphonates for 

inhibiting FPPS activity correlates with their ability to inhibit 

resorption in vivo.52,53

Alendronate (Fosamax®; oral, 70 mg) is the most commonly 

prescribed drug for the treatment of postmenopausal 

osteoporosis and is associated with increased BMD 
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Figure 3 Sites of action of different classes of drugs that are either in clinical use (left hand side) or in development (right hand side).
Notes: Drugs that inhibit resorption: BPs are internalized and inactivate resorbing osteoclasts, whilst calcitonin binds to a cell-surface receptor to inhibit osteoclast function. 
Denosumab prevents RANKL interacting with RANK, therefore potentially inhibiting both the differentiation of osteoclasts and the function of mature osteoclasts. Drugs 
that stimulate formation: Teriparatide, an analog of PTH, binds to the PTHR on osteoblasts and, following a transient increase in osteoclast activity, a coupled increase in 
osteoblast activity is observed. Anti-sclerostin antibodies prevent sclerostin binding to the LRP5/6 coreceptor, thereby allowing wnt ligands to activate the canonical signaling 
pathway in osteoblasts. Drugs that uncouple bone formation from resorption: Raloxifene interacts with intracellular ERα in osteoblasts and, via upregulation of OPG and 
downregulation of RANKL, inhibits osteoclasts. Raloxifene also has positive effects on osteoblast proliferation. Strontium ranelate (Sr2+) substitutes for Ca2+ in the bone 
and interacts with the CaSR on osteoblasts, upregulating OPG expression and downregulating RANKL expression to indirectly inhibit osteoclasts, whilst acting directly on 
the CaSR on osteoclasts themselves to induce apoptosis. The anabolic effect of strontium ranelate on osteoblasts is also mediated via the CaSR as well as potentially other, 
unidentified receptors. Cathepsin K inhibitors uncouple resorption from formation since the cross-talk between inactive osteoclasts and osteoblasts is maintained.
Abbreviations: BMD, bone mineral density; BP, bisphosphonate; CaSR, calcium-sensing receptor; CatK, cathepsin K; CTR, calcitonin receptor; ERα, estrogen receptor; 
LRP5/6, lipoprotein-related protein 5/6; OPG, osteoprotegerin; PTH, parathyroid hormone; PTHR, PTH receptor; RANK, receptor activator of nuclear factor-κB; RANKL, 
RANK ligand; OB, osteoblast; OC, osteoblast.
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and fracture risk reduction.54 Oral bisphosphonates but 

especially alendronate are associated with gastrointestinal 

side effects, despite detailed guidance on when and how to 

take the medication. Risedronate (Actonel®) and etidronate 

(Didronel®) are recommended for patients who are unable to 

tolerate alendronate. These side effects are likely one of the 

reasons for patient noncompliance with oral bisphosphonates. 

Intravenous administration of other nitrogen-containing 

bisphosphonates (pamidronate, zoledronate) overcomes this 

patient non-compliance, and a 5 mg dose of zoledronate 

(Aclasta®) is highly effective at reducing fracture risk and 

preventing new fractures if administered as an annual single 

infusion.55 It is approved for use in women at high risk of 

fracture or who have experienced a previous osteoporotic 

fracture. Intravenous bisphosphonates are generally well 

tolerated, and the most commonly observed side effect is 

self-limiting flu-like symptoms which persist for about 3 days 

following the first administration, mediated by circulating 

monocytes and activation of specific subsets of T-cells.56 

Osteonecrosis of the jaw (ONJ) is a rare but recognized side 

effect resulting from long-term bisphosphonate use. The 

estimated rates of occurrence in osteoporosis patients taking 

oral bisphosphonates range from 1/100,000 to 1/10,000 patient 

years of oral bisphosphonate administration.55,57 The route of 

administration of bisphosphonate and duration of treatment 

affects the projected time to onset of ONJ (median time of 

3 years for intravenous and 5 years for oral) and may explain 

why ONJ is more common in cancer patients receiving 

higher doses of intravenous zoledronate than in osteoporosis 

patients whose first-line therapy is oral alendronate.58,59 

Accumulating evidence suggests that long-term use of 

bisphosphonates is associated with atypical fracture of the 

femur, diagnosed upon presentation with a characteristic 

combination of features to distinguish from typical femoral 

fractures.60–62 Recommendations by the FDA in 2010 advised 

that bisphosphonate labeling be changed to raise awareness 

of the potential increased risk of such fractures with extended 

bisphosphonate use. The pathophysiologic mechanism of this 

unique type of fracture is likely to be related to the affinity 

of bisphosphonates for areas of increased bone remodeling, 

thus accumulating in high concentration in bone matrix. 

This means prolonged absence of osteoclast activity, which 

by virtue of the tight coupling of osteoblast to osteoclast 

activity will result in a subsequent inability of osteoblasts to 

repair microdamage.63

There have been a few reports of cases of treatment 

failure or incidence of fragility fracture in patients taking anti-

osteoporotic medications, particularly bisphosphonates.64 

This group of patients was categorized as nonresponsive or 

resistant to bisphosphonate treatment, and it would be interesting 

to determine whether this nonresponsiveness was a result 

of genetic differences. A single nucleotide polymorphism 

(rs2297480) within the promoter region of FPPS was 

recently associated with low BMD and reduced response 

to bisphosphonate treatment in postmenopausal women, 

with carriers of the rare allele demonstrating significantly 

less improvement in BMD with long-term bisphosphonate 

treatment compared with homozygous carriers of the 

common allele.65–67 It was suggested that the variant allele 

destroys a Runx1 binding site, likely leading to increased 

FPPS transcription.44 We have recently found resistance 

to bisphosphonate treatment is induced in vitro when 

endogenous FPPS is upregulated.68

Denosumab
The interaction of RANKL with RANK is critical for the 

formation and function of bone-resorbing osteoclasts. 

Denosumab (Prolia®), a fully human monoclonal antibody 

against RANKL, is an anti-resorptive drug that acts by 

preventing RANKL from interacting with RANK on the 

osteoclast precursor cells (Figure 3). This inhibits the 

differentiation and function of these cells and is associated 

with fracture prevention at multiple sites.69 In 2010, 

denosumab (60 mg, subcutaneous injection every 6 months) 

was licensed by the FDA for use in postmenopausal women 

who are at high risk of osteoporotic fracture and for those 

that have been nonresponsive to other osteoporosis therapies. 

In 2012, it was approved for treatment of osteoporosis in 

men with high risk of fracture. When the effectiveness of 

denosumab and alendronate treatment in postmenopausal 

women was compared, denosumab was at least as effective 

at increasing BMD at the hip and lumbar spine.70 Although 

clinical effectiveness was maintained for up to 6 months 

following a single injection of denosumab, cessation of 

treatment was associated with a more rapid reduction 

in BMD compared with bisphosphonate therapy, since 

unlike bisphosphonates, denosumab is not incorporated 

into the structure of the bone itself and therefore resolution 

of denosumab-associated ONJ may be more rapid than 

bisphosphonate-induced ONJ if treatment is stopped.71

Calcitonin
Calcitonin is a naturally occurring peptide hormone 

synthesized and secreted by the thyroidal C-cells. The 

precise role for calcitonin in human physiology is not fully 

understood, but levels of calcitonin are elevated when serum 
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calcium levels are low, and it has been proposed that calcitonin 

is important to regulate calcium levels during periods of 

physiological stress such as during lactation and pregnancy. 

Mature osteoclasts express calcitonin receptors and, in vitro, 

calcitonin acts directly on osteoclasts to inhibit resorption 

(Figure 3).72–74 Calcitonin is less effective for increasing 

BMD in postmenopausal women when compared with 10 mg 

alendronate.75 Intranasal salmon calcitonin (200 IU per day) 

is licensed for the treatment of postmenopausal osteoporosis. 

However, the EMA conducted a review of calcitonin use 

for postmenopausal osteoporosis and recommended that 

calcitonin should no longer be prescribed for management 

of osteoporosis. This was attributed to evidence that linked 

calcitonin use to increased risk of cancer.76 The FDA will 

hold a similar review early in 2013.

Anabolic agents
Teriparatide
Parathyroid hormone (1–84; PTH) plays a central role in 

calcium homeostasis by maintaining the serum calcium level 

within the physiological range by indirectly (via osteoblasts) 

stimulating osteoclasts to resorb bone.77 Although in 

hyperparathyroidism this catabolic effect leads to loss of 

bone mineral content, PTH has an anabolic effect on bone 

remodeling when administered intermittently.78 Teriparatide 

(1–34 amino acid peptide) is a human PTH analog which also 

has an osteoanabolic effect when administered intermittently 

at low doses.79 Teriparatide (Forteo®) is effective (20 µg/

day subcutaneously) at increasing BMD in postmenopausal 

and glucocorticoid-induced osteoporosis and is more 

effective than alendronate at reducing the incidence of 

vertebral and hip fractures.80–82 Both the pro-resorptive 

and anabolic functions of teriparatide are required for 

clinical effectiveness. Combining anti-resorptive therapy 

(to inhibit bone loss) with teriparatide therapy (to stimulate 

bone formation) has agent-specific effects on the overall 

effectiveness of teriparatide therapy. The administration of 

raloxifene prior to teriparatide improves BMD above that 

of teriparatide alone.83 In open-label studies, alendronate 

blunted the ability of teriparatide to increase BMD when the 

therapies were combined,79 whereas in another study patients 

that had been previously treated with risedronate showed 

better improvement in BMD in response to teriparatide than 

patients that had previously been on alendronate therapy.84 

Randomized trials that examined the effect of combining 

PTH (1–84) itself with alendronate showed no synergistic 

effects on BMD at multiple sites.84 However, if patients 

that had taken PTH (1–84) for 1 year were randomized to 

alendronate, they showed significant improvement in BMD.84 

Recently, a pilot randomized study examining the effect 

of concurrent or sequential administration of ibandronate 

with just 6 months PTH (1–84) demonstrated overall 

improvements in BMD but with a blunting of the anabolic 

effect of PTH.85 Taken together, these data demonstrate that 

more studies are needed to clarify the most appropriate 

combination therapies to best exploit the anabolic potential 

of intermittent PTH-based therapies.

The exact mechanism leading to the anabolic effect of 

teriparatide is not fully understood, but it has been shown to 

enhance osteoblast formation from its circulating precursors 

and prevent osteoblast apoptosis.85,86 Despite its anabolic 

effect on bone, the use of teriparatide in osteoporosis remains 

guarded due to the associated high incidence of osteosarcoma 

in animal models; however, a long-term clinical study has 

so far found no association between osteosarcoma and 

teriparatide in humans.87,88 Teriparatide is approved by the 

FDA as an anabolic treatment for osteoporosis in individuals 

at high risk of fracture. The potential to reduce the frequency 

of administration (and hence increase compliance) is a 

possibility given that a single 20 µg dose of teriparatide is 

effective for up to 1 week.89 In addition, alternative delivery 

systems (such as intranasal and transdermal) are currently 

being tested, and an implantable wirelessly controlled 

drug delivery device for teriparatide is in clinical trial for 

postmenopausal osteoporosis.90,91

Strontium ranelate
Divalent strontium ions have the capacity to substitute 

for calcium within bone without adversely affecting 

mineralization.92 Strontium ranelate (Protelos®) increases 

BMD and reduces the risk of vertebral and nonvertebral 

fractures.93–95 The protective effect of strontium ranelate 

results from an uncoupling of bone formation from 

resorption, thereby increasing functional osteoblasts whilst 

simultaneously decreasing osteoclasts.96 The mechanism by 

which strontium has these concomitant effects is thought to 

involve, at least in part, the calcium sensing receptor (CaSR) 

(Figure 3), the receptor responsible for mediating cellular 

responses to extracellular calcium ions.97–99 However, there 

is also evidence for CaSR independent pathways.98,100

Strontium ranelate is not approved by the FDA, but is 

licensed (oral formulation of 2 g/day) for restricted use for 

the prevention of vertebral and nonvertebral osteoporotic 

fractures in the EU, in patients where bisphosphonate 

treatment has failed or is contraindicated. The prescribing 

guidelines have been amended recently to account for 
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reported adverse effects of strontium ranelate treatment, 

including skin rashes and deep vein thrombosis.101

Raloxifene
Given the potential adverse effects of long-term hormone 

replacement therapy use on extra-osseous tissues, including 

slight increased risk of cardiovascular disorders and uterine 

and breast cancers which appear to be directly related to the 

duration of treatment, hormone replacement therapies are no 

longer recommended for prevention of osteoporosis.102,103

To overcome the potential unwanted tissue-specific 

effects of estrogen, selective estrogen receptor modulators 

(SERMs) were investigated for a potential role in osteoporosis 

management. Tamoxifen, used to treat breast cancer, also has 

beneficial effects on BMD, and raloxifene hydrochloride 

(Evista®) improves BMD in postmenopausal women and 

was approved by the FDA for use in the prevention of 

osteoporosis in postmenopausal women in 1997.104 In the 

EVA (Evista vs Alendronate) trial, a direct comparison 

with daily oral alendronate (10 mg) demonstrated that 

daily oral raloxifene (60 mg) was equally as effective at 

reducing fracture risk; however, this study was terminated 

early because of slow enrollment, so the numbers in the 

final analyses were low.105 A recent retrospective database 

analysis found similar improvements in fracture rates in 

alendronate versus raloxifene-treated cohorts, with reduced 

risk of breast cancer in the raloxifene-treated patients.106 

Side effects of raloxifene treatment include an increased 

risk of fatal stroke and venous thromboembolism that were 

observed in the RUTH trials.107 Given that raloxifene is also  

effective at reducing the risk of developing breast cancer, 

the FDA subsequently approved it in 2007 for treatment of 

postmenopausal women with high risk of breast cancer.108 In 

addition to synthetic SERMs, there is increasing interest in the 

therapeutic application of naturally occurring phytoestrogens 

in the regulation of bone remodeling and prevention of 

bone loss. One example is genistein, an isoflavone found 

in soybeans that effectively prevents postmenopausal bone 

loss without adverse effects on other tissues.109 However, the 

overall effectiveness of phytoestrogens on fracture risk has 

not been proven.

Monitoring response to treatment
Response to treatment with anti-resorptive or anabolic 

therapeutic agents is monitored by assessing the biochemical 

markers of bone turnover (Table 1). These allow for treatment 

efficacy assessment and highlight nonresponsiveness. 

Treatment strategies can be reviewed and amended based 

on these measurements, in accordance with local, approved 

guidelines. In addition, DXA scans will be performed to 

monitor BMD changes, but these changes can take years 

to detect by DXA, and a recent study suggested the use of 

stable isotopes of calcium for rapidly assessing changes 

in BMD.110

Is it possible to compare the overall 
clinical effectiveness of different 
osteoporosis therapies?
In the absence of randomized, blinded clinical trials 

comparing all available treatments, research groups have 

employed network meta-analysis approaches to compare 

the relative effectiveness of different bisphosphonates 

on vertebral fractures or the range of different classes of 

approved agents described in this review on hip, vertebral, 

and non-vertebral fracture prevention.111,112 Overall, they 

conclude that all agents (except etidronate) reduce the risk 

of vertebral and non-vertebral fractures when compared 

with placebo. Jansen et al111 concluded that zoledronate 

was more effective than other bisphosphonates at reducing 

vertebral fractures, and Freemantle et al112 showed that 

denosumab was not different to zoledronate but was more 

effective at reducing the occurrence of vertebral fractures 

than strontium ranelate, raloxifene, risedronate, and 

alendronate.

The next generation of therapeutics 
for osteoporosis management?
Anti-sclerostin antibodies
Sclerostin is expressed by osteocytes, secreted as a 

monomer, and was first identified as the gene mutated in 

sclerosteosis, a disease featuring hyperostotic bones.113 

Sclerostin is a negative regulator of bone formation by 

Table 1 Serum biomarkers for osteoporosis

Osteoblastic activity markers Osteoclastic activity 
markers

Total or bone specific alkaline 
phosphatase

Tartrate resistant acid 
phosphatase (TRAP)

Osteocalcin C-terminal telopeptide 
of collagen type I (ICTP)

N- or C-terminal propeptide of 
protocollagen type 1

β-CrossLaps (β-CTX)

N-terminal telopeptide 
of collagen type I (NTX)

Note: Adapted with permission of Elsevier. Original Source: Torres E, Mezquita P, 
DeLa Higuera M, Fernandez D, Munoz M. Actualizacion sobre la determinacion de 
marcadores de remodelado oseo. Endocrinol Nutr. 2003;50(6):237–243.133
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antagonizing the interaction between Wnt ligand and 

LRP5/6 co-receptor on osteoblasts, thus inhibiting canonical 

Wnt signaling. Sclerostin expression is upregulated 

during mechanical unloading, which is associated with 

reduced BMD, and sclerostin antibodies prevent bone 

loss associated with unloading in mice.114,115 Phase I 

trials of AMG785 (a humanized monoclonal antibody 

against sclerostin) showed increase in bone formation and 

reduction in bone resorption markers in healthy men and 

postmenopausal women, and Phase II trials are underway 

(NCT00896532).116,117 AMG 167 (also a humanized 

monoclonal antibody against sclerostin) has completed 

Phase I clinical trials for the treatment of osteopenia 

(NCT01101048; results pending).

Cathepsin K inhibitors
Cathepsin K was first cloned from a human cDNA library 

in 1995, and expression was localized predominantly to 

osteoclastoma tissue.118,119 It is a lysosomal cysteine protease 

released by osteoclasts across the ruffled border during bone 

resorption and catalyses the degradation of type I collagen. 

Nonsense mutations in cathepsin K were identified in patients 

with pycnodysostosis, a disease characterized by nonfunctioning 

osteoclasts, and it was this together with the osteopetrotic 

phenotype of Ctsk−/− mice that confirmed cathepsin K as a 

possible therapeutic target for osteoporosis.120,121 A number 

of cathepsin K inhibitors have been developed, and most to 

date have been discontinued as a result of adverse reactions 

due to lack of selectivity or drug interactions. Odanacatib is a 

selective, reversible nonpeptidic biaryl inhibitor of cathepsin 

K, which is effective at increasing BMD with 50 mg weekly 

doses, given a relatively long half-life (up to 93 hours).122,123 

Odanacatib reduces bone resorption whilst maintaining bone 

formation – an uncoupling of bone formation from resorption 

likely as a result of the fact that cathepsin K inhibition does not 

reduce osteoclast numbers and therefore osteoclast–osteoblast 

coupling factors (such as the ephrins) have the potential to 

maintain osteoblast recruitment and function.124 Odanacatib 

has reached Phase III clinical trials in postmenopausal women 

(NCT00529373 and NCT00729183). In 2012, Medivir AB 

(Switzerland) commenced a Phase I trial of their lead cathepsin 

K inhibitor MIV-711.

Stem cell therapy
Over recent years, stem cell therapy in musculoskeletal 

research has exploded, and there is a wide range of possible 

clinical applications for such technologies, many focusing 

on tissue repair following damage, including bone fractures, 

cartilage lesions, or ligament and tendon injuries.125 

One hurdle in the development of therapies exploiting 

endogenous mesenchymal stem cells (MSCs) is their 

lack of capacity to home to bone surfaces. A recent study 

indicated the possibility of directing endogenous MSCs 

to the bone surface using piggyback technology in which 

LLPA2, the ligand for integrin α4β1 expressed by MSCs, is 

administered in vivo, piggybacked onto alendronate. When 

LLPA2 binds to MSCs, the bisphosphonate directs those stem 

cells to the bone surface where osteoblastic differentiation 

and subsequent bone regeneration takes place. In studies in 

mice, this approach was effective when employed to direct 

transplanted MSCs to the bone surface, and the results 

strongly indicated that the homing of endogenous MSCs was 

positively influenced too.126

Treatment guidelines
Representative treatment guidelines for postmenopausal 

women are summarized in Figure 4. In men, specific guidelines 

are not published, however the Endocrine Society suggest a 

guideline for pharmacological treatment of osteoporosis in 

men based on a T-score of −1 or below and FRAX® scoring.127 

Elderly men with low serum testosterone and a risk of fracture 

are advised to take testosterone and a bone protective drug 

such as bisphosphonate or teriparatide. Any improvement in 

treatment can be monitored every 1–2 years.

How long should osteoporosis 
treatment be continued?
As the human life span is gradually increasing, more 

and more elderly people are being treated for primary 

and secondary osteoporosis over increasing periods of 

time. The question arises as to whether it is necessary or 

clinically prudent to treat osteoporosis for many years. This 

is particularly relevant for bisphosphonates, which are the 

first choice treatment. As bisphosphonates have an apparent 

half-life of more than 10 years due to selective adherence 

to the bone surface, successive treatment over years would 

not only have a cumulative effect, but may actually be 

detrimental for bone health by preventing the cyclical 

changes required to maintain normal bone architecture.128 

In a recent report from the FDA, it was suggested that, 

based on evidence from three long-term clinical trials, 

patients are unlikely to benefit from continued treatment 

with bisphosphonates beyond 3–5 years, and it was difficult 

to predict how long the beneficial effect of bisphosphonates 

would remain after discontinuation of therapy.129 One 

alternative is to stop bisphosphonate therapy for a “drug 
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holiday” to allow normal bone remodeling to resume, and 

then to restart therapy.130

Conclusion
Currently, bisphosphonates are the mainstay treatment 

for osteoporosis. Although there are concerns about their 

long-term effect, they are one of the safest drugs because of 

very short serum half-life (4 mg/5 min intravenous infusion 

reaching less than 1% of initial serum concentration at 

24 hours postadministration) and high tissue specificity.131 

Moreover, since alendronate is now off-license and therefore 

a generic drug, it is far cheaper compared with other 

available treatments for osteoporosis. As described in this 

review, there are a wide range of alternatives to the use 

of bisphosphonates, for those individuals who are unable 

to tolerate or are contraindicated for bisphosphonates. In 

addition, there are exciting new treatment options on the 

horizon, the development of which have followed directly 

from the identification of key molecules critical to the 

maintenance of a healthy skeleton.
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