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Abstract

Background: Despite apparently abundant amounts of observable variation and species diversity, the order Lepidoptera
exhibits a morphological homogeneity that has provided only a limited number of taxonomic characters and led to
widespread use of nucleotides for inferring relationships. This study aims to characterize and develop methods to quantify
the value of priority gene regions designated for Lepidoptera molecular systematics. In particular, I assess how the DNA
barcode segment of the mitochondrial COI gene performs across a broad temporal range given its number one position of
priority, most sequenced status, and the conflicting opinions on its phylogenetic performance.

Methodology/Principal Findings: Gene regions commonly sequenced for Lepidoptera phylogenetics were scored using
multiple measures across three categories: practicality, which includes universality of primers and sequence quality;
phylogenetic utility; and phylogenetic signal. I found that alternative measures within a category often appeared correlated,
but high scores in one category did not necessarily translate into high scores in another. The DNA barcode was easier to
sequence than other genes, and had high scores for utility but low signal above the genus level.

Conclusions/Significance: Given limited financial resources and time constraints, careful selection of gene regions for
molecular phylogenetics is crucial to avoid wasted effort producing partially informative data. This study introduces an
approach to assessing the value of gene regions prior to the initiation of new studies and presents empirical results to help
guide future selections.
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Introduction

The Lepidoptera are a globally distributed, charismatic group

which has seen extensive taxonomic attention yet still can be

considered ‘unknown’. Current estimates for the global total of

lepidopteran species range from 280, 000 to 1.4 million species [1]

but only 100, 000 have been described [2], representing a critical

gap in our knowledge. Additionally, higher taxonomic relation-

ships within the most species rich group (containing 98% of all

known species) – Ditrysia - are still ‘shrouded in mystery’ [3].

Despite apparently abundant amounts of observable variation

and species diversity, the order exhibits a morphological

homogeneity that has provided only a limited number of

taxonomic characters and led to widespread use of DNA

sequences for inferring relationships (e.g. [4], [5], [6]). DNA

sequence databases are growing at an exponential rate [7] but

continue to exhibit uneven taxonomic distributions. Many genes

are available for a limited set of exemplar taxa but only one or two

genes are available for the majority of species (see [8], [9]).

Therefore it is not surprising that the value of taxon and character

sampling in phylogenetic datamatrices continues to be fiercely

debated in the literature [10]. The debate is particularly relevant

to those studying Lepidoptera [11] as two big science projects,

ATOL (http://www.leptree.net) and DNA barcoding (http://

www.lepbarcoding.org), alternatively promote increased genomic

or taxon coverage respectively.

DNA barcoding refers to the technique of sequencing a short

fragment of the mitochondrial cytochrome c oxidase subunit I (COI) gene

from a taxonomically unknown specimen and performing compar-

isons with a reference library of sequences of known species origin to

establish a species-level identification. The technique has gained

acceptance among the taxonomic community but the use of the

barcode fragment in phylogenetics, especially without additional

genetic data remains controversial [12].

These two big science projects are however largely comple-

mentary [13] and knowledge of the Lepidoptera phylogeny should

benefit from a strong community movement to standardize

molecular sequencing efforts (http://www.lepsys.eu) and avoid

the Tower of Babel of molecular systematics [3], [14]. The

LEPSYS.eu consortium is promoting the use of priority molecular

markers for phylogenetic studies, with the goal of emulating the

successes of plant systematists and their extraordinary database of

homologous sequences from thousands of plant species. COI, from

which the DNA barcode is derived [15], [16] and the nuclear gene
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elongation factor-1 alpha (EF1a), have been sequenced most

extensively for Lepidoptera and are recommended by the

consortium as the first gene regions to sequence in any new study.

While the designation of priority gene regions is certainly

commendable, the presence of advantageous characteristics for

phylogenetic analysis in these genes has been questioned [5], [17],

and the temporal ranges (i.e. taxonomic levels) over which

different gene regions are most informative have never been

thoroughly investigated in broad comparisons across the order.

Many authors assess the phylogenetic value of datamatrices, often

ambiguously termed utility, through an ad hoc combination of the

number of potentially informative characters and the quality,

‘accuracy’ and support of an inferred phylogeny (e.g. [18]). Value

is often measured in relative terms; morphological versus

molecular data [19], this gene versus that gene [20]. For example,

Nazari et al. [21] looked at relationships within Parnassiinae

(Papilionidae) and found conflicting, weak results from mtDNA

compared to nuclear and morphological data, and that nuclear

genes were particularly good at resolving deeper nodes. In

contrast, Warren et al. [6] looked at relationships within

Hesperiidae and found good support from COI and EF1a, but

conflicting results from another nuclear gene, wingless (WG).

Consequently, the objective of this study is to characterize and

develop methods to quantify the value of priority gene regions

designated for Lepidoptera molecular systematics. In particular, I

will assess how the DNA barcode segment of COI performs across

a broad temporal range given its number one position of priority,

most sequenced status, and the conflicting opinions on its

phylogenetic performance [21]–[23].

To undertake these goals, it is important to develop objective

measures by which gene regions can be judged. A useful guide

could be the criteria used recently to select the plant DNA barcode

[24] although different approaches have been undertaken (e.g.

[25]) to target the common problem addressed in this study. The

Plant Working Group followed the Consortium for the Barcode of

Life’s data standards and guidelines for locus selection (http://

www.barcoding.si.edu/protocols.html) with three specific catego-

ries included. Modified slightly for systematics above the species-

level the categories are:

Practicality
This encompasses: a) universality- which loci can be routinely

sequenced across Lepidoptera; and b) sequence quality- which loci

are most amenable to the production of bidirectional sequences

with few or no ambiguous base calls?

Phylogenetic utility
Wortley and Scotland [19] delineate this term as intrinsic

properties of a datamatrix measured prior to phylogenetic analysis.

Measures include the character-taxon ratio, the number of

variable or parsimony informative characters and phenetic

distances between taxa (Table 1). Cameron and Whiting [25]

also used ‘utility’ in the context of the number of variable

characters of various classes.

Phylogenetic signal
This category can be interpreted as the ability of a datamatrix to

group taxonomically related taxa together [26] or ‘accuracy’ of a

phylogenetic hypothesis. Although the accuracy of phylogenetic

inference can never be known [27], except when using simulated

evolution (e.g. [28]), proxy measures are commonly used. Signal is

necessarily measured after phylogenetic analysis and can be

measured a) through character congruence within the current

datamatrix quantified by the consistency and retention indices

([29], [30], Table 1) or; b) through congruence of the hypothesis

with an inference produced from independent sources of data

(taxonomic congruence). As the current classification represents a

consensus phylogenetic hypothesis, measures of phylogenetic

signal can be formalized through the designation of concordance

groups derived from taxonomy (e.g. [11], [27], [31], but see [32]).

Although taxonomic congruence is typically assessed qualitatively

[30], in this study I present quantitative measures adapted from

the character consistency and retention indices used to assess

character congruence ([29], Table 1).

Table 1. Measures of phylogenetic utility and signal used in this study.

Measure Notes

Phylogenetic utility A Number of aligned characters; equivalent to number of columns in an aligned matrix.

V Number of variable characters; A excluding invariant characters.

PI Number of parsimony-informative characters; V excluding autapomorphies.

M Minimum number of character-state changes.

Gt Number of terminals (species) in datamatrix.

Character-taxon ratio A/Gt

p Phenetic distance between taxa, averaged for all pairwise comparisons.

Phylogenetic signal S Tree length; minimum number of state changes on the cladogram in question.

CI Ensemble consistency index; M/S

G Greatest number of character state changes on any cladogram.

RI Ensemble retention index; (G-S)/(G-M)

Mt Number of taxa included in the test (e.g. number of families).

PMT Proportion of monophyletic taxa; Number of monophyletic taxa/Mt

St Minimum number of clades a taxon exhibits on cladogram in question; summed for all test taxa.

TCI Taxon consistency index; Mt/St

TRI Taxon retention index; (Gt-St)/(Gt-Mt)

doi:10.1371/journal.pone.0010525.t001
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Results and Discussion

Practicality
The first set of experiments consisted of determining the

practicality of obtaining sequences of gene regions commonly

employed for Lepidoptera phylogenetics with standard high-

throughput molecular sequencing techniques across a broad

taxonomic sample (Figure 1). It is common for research groups

to use a single recipe for PCR cocktails and single thermocycling

profile for all primer combinations and gene regions sequenced in

their labs (see http://nymphalidae.utu.fi/Nymphalidae/Molecu-

lar.htm). I modeled techniques commonly used in molecular

systematic labs in order to reproduce what any lab attempting to

sequence new genes would try first (e.g. [34]). The practicality

category encompassed scoring primer universality and sequence

quality. Not surprisingly, primers for the multi-copy gene regions,

COI and 18S rDNA, produced the most distinct bands on the gels

(100%), indicating successful PCR amplification (Figure 1A).

Although taxon selection was limited to a small number of species,

all primers, except DDC, appear to have a broad taxonomic range

with bands for both macrolepidopteran and microlepidopteran

families and no clear taxonomic pattern to amplification failures.

The CAD and EF1a primers seemed particularly poor at

amplifying product in butterflies (the superfamily at the top of

the tree in Figure 1A), a somewhat surprising result since much

effort has been focused on collecting molecular data in this group.

Failures in EF1a and WG seemed to match taxonomically; 15

families with distinct bands for EF1a also produced distinct bands

for WG, although 4 additional families were amplified for WG.

Since at least one gene was successfully amplified and sequenced

from every specimen, it seems unlikely there were problems with

DNA quality. It does seem quite possible that a second round of

optimization of reaction and thermocycle conditions could

produce bands for the missing regions. For example, for those

regions that amplified poorly, it is likely that MgCl2 concentra-

tions were not optimal [34]. Also it is usual activity in a molecular

phylogenetics project to re-design and optimize primers after an

initial test run. However, these were not tested in this study, as I

was specifically interested in identifying gene regions that were

successfully amplified under standard conditions for high-through-

Figure 1. Results of the experiment to test the practicality of sequencing six of the commonly sequenced gene regions for
Lepidoptera molecular systematics. A). Universality of primers for the tested gene regions against the taxonomic scheme of Pogue [50]. Families
included in the test dataset are named on branches of the tree, unnamed branches are families for which no specimens were available. Families
within a superfamily are connected by black line. A tick indicates a distinct band was present on the E-gel for at least one specimen of the family, an X
indicates no bands were visible. B). Sequence quality was measured in CodonCode Aligner using Phred algorithm. F refers to the forward sequences
and R refers to the reverse.
doi:10.1371/journal.pone.0010525.g001
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put processing with minimal optimization. The results for

sequence quality matched closely with the results for primer

universality. COI and 18S were the highest quality sequences (0.91

and 0.88 respectively), WG was intermediate (0.78) between these

and EF1a (0.61) and CAD (0.53) sequences (Figure 1B). That the

COI sequences were the highest quality was not surprising given

the historical efforts undertaken to optimize primers and protocols

for this gene (e.g. [35]).

The region rankings for primer universality and sequence

quality seen in this study closely resembled the priority gene

ranking of the LEPSYS.eu consortium. Two exceptions were 18S

and EF1a. The 18S gene has not been selected as a priority gene

region even though it proved easy to produce high quality

sequences in all taxa. This is most likely because of problems

establishing primary homology in length variable regions [36].

There were fewer EF1a amplifications than WG amplifications,

despite the former’s position as number two on the priority

ranking. This may be an effect of the primer pair chosen for EF1a.

While COI and WG have only a limited number of primer options

available from published studies, numerous different regions have

been used to amplify EF1a fragments (e.g. [37]), and I could have

inadvertently chosen a set that was not optimal for my taxon

sample. The problem with a plethora of competing primer options

could also be relevant to CAD. Because different research groups

are sequencing different, and often non-overlapping fragments of

the same genes, this limits inclusion of the genes in composite

supermatrix analyses (see below). Surprisingly, this was also a

problem seen with COI when many species had to be excluded

from the utility and signal experiments, because the fragment of

COI available on GenBank did not overlap with the DNA barcode

region. This demonstrates that it might be equally as important for

the LEPSYS.eu consortium to specify a more precise fragment and

universal primers alongside designations of standard gene regions.

Phylogenetic utility
A search of GenBank, combined with new sequences produced

in this study, recovered 977 species from macrolepidopteran

families and potential microlepidopteran sister families with

sequences available for all the following three gene regions: COI

(barcode fragment), Ef1a and WG. Sequences were downloaded

and aligned, and a datamatrix was created for each gene. From

these matrices I estimated, using PAUP, standard measures of

utility, defined for the purpose of this study as properties of the

matrices measured prior to analysis [19]. The other gene regions

included in the practicality experiments (18S, CAD, DDC) were

not included in the utility and signal analyses due to the relatively

low number of sequences available on GenBank and lack of

overlap of species sequenced for theses genes and species

sequenced for the three most common genes COI, EF1a and

WG. Including 18S or CAD would have led to datasets which

were not comparable. There are actually very few Lepidoptera

genera with 18S sequences from multiple species on GenBank, due

to the fact this gene is often sequenced for investigations into

deeper taxonomic levels. The same is true for CAD, where

sequences exists they are not easily aligned, often not homologous

fragments and not available for multiple species from within a

genus.

The simplest measure of utility is simply the number of columns

in the aligned matrix (A). EF1a had the highest score for A at

1006. Trimming the sequences downloaded from GenBank was

especially difficult for EF1a as no standard region is amplified and

sequenced across research groups. Obtaining a maximal score

necessitated lots of missing data, coded as Ns, and produced the

only datamatrix with no overlap of non-ambiguous data between

some taxa. This missing data could be exerting an effect on the

utility scores. COI had the intermediate score for A, after being

trimmed to the DNA barcode region. Many species had to be

excluded from the analysis because the COI sequence on

GenBank did not overlap with the DNA barcode fragment. As

the same species were included in each datamatrix, the character-

taxon ratio was directly proportional to measures of A. It will

always be highly dependent on A, in which case WG would often

have the lowest score. Gene number is closely associated with A

and is another factor often highly regarded as an indicator of

utility. Gene number is often reported in the title of papers [5],

[13, [21] and the assumed value of gene number as a measure of

utility may be an artefact of using bootstrap support to evaluate

phylogenetic hypotheses (e.g. [34]). Bootstrap values increase as a

function of A regardless of the quality of the phylogeny.

The number of variable (V) or parsimony-informative charac-

ters (PI) and minimum number of state changes (M) are properties

of A which may be more informative measures of utility. I found

that all these measures were closely correlated to one another

(Figure 2), but did not relate to A. Despite having the lowest score

for A, WG had the highest PI score (measured as a proportion of

A; Figure 2) and scored the highest in all other measures of

phylogenetic utility at all taxonomic levels above genus. COI

scored highest for V, PI and M within genera. The utility scores

showed similar relationships between the gene regions at all

taxonomic levels, and all increased at deeper taxonomic levels

where more species, and consequently more opportunity for

variable characters, were included in each calculation (Figure 2).

Wahlberg and Wheat [34] noted the new nuclear genes they

investigated in their study had similar levels of parsimony-

informative sites between 30–50% of all sequenced sites, which

is similar to the values presented here (Figure 2). Despite the large

differences in A, the absolute number of parsimony-informative

characters for each gene region was remarkably similar across all

datamatrices ranging from 309 to 472. It is worth noting that

homoplasy, often cited as an indicator of utility, can only be

inferred from a cladogram, and never known for certain, thus it is

useless as a measure for determining utility prior to phylogenetic

analysis [19] and why I consider it as a measure of signal for the

purposes of this study.

In contrast to Wortley and Scotland [19] I found that all

measures of phylogenetic utility were roughly correlated. The only

inconsistent measures were A and consequently the character/

taxon ratio. A is the only measure not dependent on the taxon

sample, and perhaps our different findings can be explained by the

fact that their study included datamatrices containing different

numbers of taxa sampled across different taxonomic levels,

whereas, measures were structured by taxonomic level and

averaged across a large range of genetic divergences in this broad

lepidopteran sample.

Phylogenetic signal
All three genes included in this study have been previously

promoted as having strong phylogenetic signal [6], [21], although

previous assessments have been largely qualitative and ad hoc.

Phylogenetic signal can be defined as the ability of a datamatrix to

group taxonomically related taxa together and can be quantified

through character congruence (within the dataset) or taxonomic

congruence (between datasets) (Table 1). Character congruence

measured across large datamatrices through the consistency index

(CI) is perhaps not very informative (Figure 3) because homoplasy

is almost guaranteed to be present, given the limited number of

possible nucleotide substitutions and the historical divergence

times. The retention index, which corrects for the number of taxa

Lepidoptera Phylogenetics
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is likely to be more informative and showed that WG had the

strongest signal, EF1a the intermediate, and COI the weakest

signal across all taxonomic levels (Figure 3). Signal measured

through character congruence decreased in all genes from genus to

subfamily (Figure 3). However, there are conflicting opinions

about the impact of the level of inferred homoplasy on

phylogenetic signal [38]. Character congruence seemed closely

correlated with taxonomic congruence in this study, providing

some justification for the inclusion of character congruence as a

measure of signal (Figure 3). This may especially be the case where

taxonomic congruence measures are not applicable because no

‘known’ phylogeny exists or there is no logical means of

partitioning ‘independent’ data sources (see [29] for a review of

this debate).

Taxonomic congruence, typically assessed qualitatively by

systematists, was assessed quantitatively in this study through

three measures: (1) the proportion of monophyletic taxa, (2) the

ensemble taxon consistency index and (3) the ensemble taxon

retention index (see Table 1). All three measures appeared highly

correlated, although with a larger number of taxa where

monophyly is probabilistically least expected, the TCI and TRI

may represent more informative measures. The TCI and TRI

may also be less sensitive to error due to the arbitrary nature of

taxonomic ranks and the fact that many of the taxa included may

not represent natural groups. As judged by the three measures, the

signal in all genes was very similar at the genus level (TCI ranged

from 0.62–0.72; Figure 3). Moving up the taxonomic hierarchy to

subfamily, EF1a and WG have reasonable signal and the values

are fairly similar (0.47), but signal in COI was only about half as

strong (0.20) based on the TCI values. Family results were similar

to subfamily but at the superfamily level low signal was observed

for all three genes. The prevailing view of low signal in COI at

deep divergences was supported by this study, however, at

shallower divergences (genus level) COI signal was comparable

with the nuclear genes.

Concluding remarks
The literature regarding the use of molecular sequence data in

phylogenetic inference has often relied upon model-based or

qualitative measures of utility, a term which itself has been used

ambiguously. However, it is crucial to have reliable empirical

results when making recommendations about which gene regions

to sequence large-scale as standards [24]. In this study I developed

objective measures for assessment of fundamental qualities

pertinent to the assembly of a molecular datamatrix. These

measures in three categories; practicality, phylogenetic utility and

phylogenetic signal, were then applied to single-gene datamatrices,

each containing 977 species of Lepidoptera. The categories and

measures used in this study have not focused on model-based

properties of the data, for example, the function of the genes and

associated modes of molecular evolution. As a result of this

distinction, these criteria are also applicable to other types of

phylogenetic characters (e.g. morphology), with minor modifica-

tions to the practicality component. This could be in the form of a

measure of the ease of scoring morphological characters by non-

specialists. While molecular evolution is undoubtedly an interest-

ing avenue of research, incorporating process-models into

phylogenetic hypothesis testing, involves additional assumptions

which are always likely to be arbitrary, over simplified, or even just

plain wrong [33], [39], [40].

I found that alternative measures within a category were often

highly correlated, but that high scores across one category did not

Figure 2. Phylogenetic utility scores. On the y-axes, the proportion refers to A, the aligned sequence length; A was 658 for COI, 1006 for EF1a
and 409 for WG. V is the proportion of variable characters, PI is the proportion of parsimony informative characters and M is the proportion of the
minimum number of character state changes (see Table 1).
doi:10.1371/journal.pone.0010525.g002
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Figure 3. Phylogenetic signal scores. A). Character congruence. Note that lower values of CI and RI indicate more homoplasy in the datamatrix.
B). Taxonomic congruence. All abbreviations refer to Table 1; PMT is the proportion of monophyletic taxa, TCI is the taxon consistency index and TRI
is the taxon retention index.
doi:10.1371/journal.pone.0010525.g003
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necessarily translate into high scores across another. The DNA

barcode fragment of COI was easier to sequence than the other

genes, and had high scores for utility but low signal above the

genus level. COI’s number one position of priority in the

LEPSYS.eu list could be justified due to the ability to confirm

the species identity of a new specimen being sequenced [13]. This

is especially important given the prevalence of misidentified

sequences/specimens currently being submitted to GenBank.

Whole genome phylogenetics (phylogenomics [34]) has been

considered prohibitively expensive but is becoming increasingly

feasible. For example, mitochondrial genomics based phyloge-

nomics can be done for less than $500 a genome and will become

more mainstream as sequencing costs decrease over the next few

decades. Methodological advances are required to effectively

analyze such large amounts of data. Most recently published

phylogenetic hypotheses are reconstructed from datamatrices

containing few genes, and sometimes only one [41]. A single

short gene fragment may well be sufficient depending on the

phylogenetic question under investigation. However, given limited

financial resources and time constraints, careful selection of target

gene regions can be crucial to avoid wasted effort leading to the

production of sub-informative data. This study introduces an

approach to assessing the value of gene regions prior to the

initiation of new studies and presents empirical results to help

guide future selections.

Materials and Methods

Practicality
Seventy-two species of Lepidoptera were selected from 60, 000

specimens collected in Area de Conservacion Guanacaste, Costa

Rica and shipped to the Canadian Centre for DNA Barcoding

(CCDB) as part of ‘‘BioLep Project’’ (http://www.bolinfonet.org/

casestudy/index.php/display/study/20) [42]. The selection in-

cluded at least one species from each macrolepidopteran family

available, plus species from potential outgroup microlepidopteran

families (Table S1). DNA was extracted from legs using Qiagen

DNAeasy Kit following the manufacturers instructions for animal

tissue (www.quiagen.com). Primer pairs expected to amplify

product of approximately 500 bp, were obtained for COI, EF1a,

WG, 18S rDNA (18S), Carbamoyl phosphate synthase II,

Aspartate carbamoyltransferase, Dihydroorotase (CAD) and dopa

decarboxylase (aromatic L-amino acid decarboxylase) (DDC) and

used for PCR in standard protocols. High-throughput PCR set-up

followed http://www.dnabarcoding.ca while thermocycling pro-

files followed http://nymphalidae.utu.fi/Nymphalidae/Molecular.

htm.

All primers were tailed with M13 except for LepF1 and LepR1

(Table 2). Universality success was scored based on the presence of

a distinct band on an E-gel [43]. PCR products were sequenced

using M13 primers in standard protocols (http://www.dnabarcod-

ing.ca) with the exception of COI, which was sequenced using the

PCR primers. Chromatograms were imported into CodonCode

Aligner (www.codoncode.com) and summarized scores of se-

quence quality were generated from raw files.

Phylogenetic utility
I mined GenBank for macrolepidopteran species, and species

from potential microlepidopteran sister families, with sequences

available for all three gene regions: COI (barcode fragment), EF1a

and WG. The dataset was supplemented with newly generated

Table 2. List of primers used in this study.

Primer name Sequence (59..39) Gene Reference

LepF1 ATTCAACCAATCATAAAGATATTGG COI [51]

LepR1 TAAACTTCTGGATGTCCAAAAAATCA COI [51]

Cho (E234F) GTCACCATCATYGACGC EF1a [52]

Juke (E600rc) CTCCTTACGCTCAACATTC EF1a [52]

LepWG1 GARTGYAARTGYCAYGGYATGTCTGG WG [53]

LepWG2a ACTICGCARCACCARTGGAATGTRCA WG [53]

rc18H GCTGAAACTTAAAGGAATTGACGGAAGGGCAC 18S rDNA [54]

18L CACCTACGGAAACCTTGTTACGACTT 18S rDNA [54]

CAD743nF GGNGTNACNACNGCNTGYTTYGARCC CAD [34]

CAD1028R TTRTTNGGNARYTGNCCNCCCAT CAD [34]

DDC3.2sF TGGYTICAYGTIGAYGCNGCNTAYGC DDC [34]

DDCdegR3 CCCATNGTNACYTCYTC DDC [34]

M13F(-21) TGTAAAACGACGGCCAGT [55]

M13R(-27) CAGGAAACAGCTATGAC [55]

doi:10.1371/journal.pone.0010525.t002

Table 3. The taxonomic structure of datamatrices used to
measure phylogenetic utility and signal.

Taxonomic
rank # of taxa

# of concordance
groups i.e. taxa
containing .1 species

# of taxa
containing .2
species

Species 977 n/a n/a

Genus 200 109 56

Subfamily 53 34 27

Family 20 13 13

Superfamily 11 6 6

Taxon membership followed LepIndex (www.nhm.ac.uk/research-curation/
projects/lepindex/) or NCBI taxonomy database (http://www.ncbi.nlm.nih.gov/
Taxonomy/).
doi:10.1371/journal.pone.0010525.t003
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sequences from the practicality experiment above, available at

www.barcodinglife.org (Published Project LGC). Sequences from

species meeting these criteria were downloaded creating three

datamatrices with 977 species (Table S2). Sequences were

trimmed and aligned in BIOEDIT [44] using CLUSTALW and

with minor modifications by eye. Measures of phylogenetic utility

(Table 1) were calculated in PAUP [45]. Values were measured

within taxa for those represented by three or more species in the

datasets (Table 3) and averaged for four taxonomic levels: Genus,

Subfamily, Family and Superfamily.

Phylogenetic signal
Aligned datamatrices were analysed using the phenomenolog-

ical method of maximum parsimony in TNT (new technology

searches using the default section and ratchet options) [46]. Genus,

subfamily, family and superfamily groups were designated as

concordance groups (see [27], [31], [47], [48], [49]) for tests of

phylogenetic signal through taxonomic congruence (Table 3).

Quantification was incorporated in the form of three measures: (1)

the proportion of monophyletic taxa, (2) the ensemble taxon

consistency index and (3) the ensemble taxon retention index -

modeled after the character consistency and retention indices used

in cladistics (see [29], Table 1). Values for these indices were

obtained by constructing datamatrices of characters relating to

group membership (i.e. 1 = member, 0 = non-member) and

scoring these characters in PAUP on the trees produced from

the parsimony analysis of the molecular characters. The best

possible score is 1 and higher values indicate the taxa are closer to

monophyly. Character congruence was measured through the

consistency and retention index. Values were measured within

taxa for those represented by three or more species in the datasets

(Table 3) and averaged for four taxonomic levels: Genus,

Subfamily, Family and Superfamily.

Supporting Information

Table S1 Specimens used in practicality experiment.

Found at: doi:10.1371/journal.pone.0010525.s001 (0.03 MB

XLS)

Table S2 Sequences used in phylogenetic utility and phyloge-

netic signal experiments.

Found at: doi:10.1371/journal.pone.0010525.s002 (0.18 MB

XLS)
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