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Raman spectroscopy and group 
and basis‑restricted non negative 
matrix factorisation identifies 
radiation induced metabolic 
changes in human cancer cells
Kirsty Milligan1, Xinchen Deng1, Phillip Shreeves2, Ramie Ali‑Adeeb1, Quinn Matthews3, 
Alexandre Brolo4, Julian J. Lum5,6, Jeffrey L. Andrews2 & Andrew Jirasek1*

This work combines single cell Raman spectroscopy (RS) with group and basis restricted non-
negative matrix factorisation (GBR-NMF) to identify individual biochemical changes associated 
with radiation exposure in three human cancer cell lines. The cell lines analysed were derived from 
lung (H460), breast (MCF7) and prostate (LNCaP) tissue and are known to display varying degrees 
of radio sensitivity due to the inherent properties of each cell type. The GBR-NMF approach involves 
the deconstruction of Raman spectra into component biochemical bases using a library of Raman 
spectra of known biochemicals present in the cells. Subsequently, scores are obtained on each of these 
bases which can be directly correlated with the contribution of each chemical to the overall Raman 
spectrum. We validated GBR-NMF through the correlation of GBR-NMF-derived glycogen scores with 
scores that were previously observed using principal component analysis (PCA). Phosphatidylcholine, 
glucose, arginine and asparagine showed a distinct differential score pattern between radio-resistant 
and radio-sensitive cell types. In summary, the GBR-NMF approach allows for the monitoring of 
individual biochemical radiation-response dynamics previously unattainable with more traditional 
PCA-based approaches.

It is estimated that radiation therapy (RT) is used to treat ∼ 50% of cancers worldwide1 and is currently the most 
cost-effective treatment for most types of cancers2. Altered cellular metabolism is a hallmark of tumour cells3,4 
and a contributing factor in tumour cell resistance to both radiation therapy and anti-cancer drugs. This has 
created significant interest in the development of more personalised and effective methods of radiation treatment 
delivery. To develop treatment plans which are specific to tumour type and environment, a better understanding 
of the radiation-induced biochemical changes which take place within the tumour environment is required.

Raman spectroscopy (RS) is a non-invasive, label-free optical spectroscopic technique which can be used 
to obtain spectral information pertaining to the biochemicals present in live cells both pre and post radiation 
treatment. As a result, specific radiation induced responses can be monitored within a given cell population and 
potential therapeutic targets identified5,6. In this study, three human tumour cell lines were irradiated and ana-
lysed using RS. The cells were derived from human lung (H460), breast (MCF7) and prostate (LNCaP) tumour 
cell lines. Previous studies have shown that both MCF7 and H460 cells display a radiation-induced accumula-
tion of glycogen which is correlated with radiation resistance7. The metabolism of glycogen involves an array 
of complex signalling pathways, many of which can be directly related to tumour progression8–12. Increase in 
glycogen content within tumour cells post radiation treatment is thought to provide metabolic precursors which 
protect against hypoxia and other forms of stress13.

Identifying metabolites which are associated with tumour progression and treatment resistance enable the 
development of more personalised, cancer-specific treatment options. Matthews et al.7 identified metformin, a 
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drug widely used to treat type-2 diabetes, as a potential candidate for use in combination with radiation therapy. 
Specifically, 5 mM metformin was shown to reverse the glycogen accumulation observed in MCF7 breast can-
cer cells after treatment with small doses of radiation. As a result, the previously radio-resistant cells displayed 
enhanced levels of radio-sensitivity. These results support the possibility that manipulation of metabolic pathways 
could provide a therapeutic strategy to enhance sensitivity to RT.

In much of the literature exploring radiation response using RS, principal component analysis (PCA) has been 
used as the primary data analytic tool. The main drawback of using dimensionality reducing techniques such as 
PCA in combination with RS is the difficulty often encountered when interpreting the relationship between posi-
tive and negative attributes of principal components and how these can be correlated with individual biochemical 
responses within cells and tumours. Aside from the drawbacks of PCA allowing components to assume negative 
values, which is an incorrect representation of spectroscopic data, there is also a constraint of orthogonality 
within the principal components, which can restrict our interpretation of the features which are responsible for 
the variance within the dataset. Additionally, principal components are often combinations of spectral features 
relating to multiple cellular bio-components which can confound identification of specific biochemicals14.

We therefore report an alternate approach, wherein a variant of non-negative matrix factorisation (NMF) is 
used to identify radiation induced responses specific to a known library of chemical bases. NMF was originally 
developed by Lee and Seung15 to provide an additive, parts-based representation of a non-negative data matrix. 
A data matrix X can be decomposed into two lower rank non-negative matrices W and H , where W can be 
referred to as scores on the factors found in H . In group and basis restricted NMF (GBR-NMF)16, the H matrix 
is further decomposed into two non-negative matrices A and S , where A is a diagonal matrix providing scaling 
for the factors either found or pre-specified in S . In our implementation of GBR-NMF, the observations input 
to the model X were Raman spectra, each collected from the three cell lines aforementioned at various time 
points and doses of ionising radiation. Each spectrum then has a non-negative score W estimated on each of 
the factors in S , which in this case includes individual biochemical bases along with an unconstrained factor 
that can be estimated from the data. This model differs from conventional NMF in that the factors are partially 
constrained by the biochemical bases. That is, all factors but one are constrained by biochemical profile, with 
the remaining profile being allowed to be estimated from the data—in other words, be unconstrained. The A 
matrix is an auxiliary matrix used to scale the data such that the mean score for each factor equates to 1. In this 
instance, the S matrix consisted of Raman spectra of 30 biochemicals (listed in Table S1, spectra are shown in 
figures S1 and S2) as constrained factors alongside one unconstrained factor estimated from the data. The scores 
on each of the chemical bases were monitored as a result of radiation dose and time subsequent to exposure. A 
schematic representation of the model is shown in Fig. 1.

In this model, a library consisting of 30 Raman spectra of the biochemicals (listed in S1) were utilised as the 
biochemical bases. The 30 biochemicals chosen represent four classes of biochemicals present in cells—nucleic 
acids, proteins, lipids and carbohydrates17. Biochemicals which are not represented by the constrained bases, 
should be accounted for in the unconstrained component of the model. Spectra can be added or removed to 
the model, dependent on the biochemical make up of the samples and components which may be of particular 
interest. Raman spectra for each cell line, acquired subsequent to treatment with clinically relevant doses of 
ionising radiation (2–10 Gy) and 0 Gy controls, on days 1–3 post treatment were the input data. The GBR-NMF 
model then produced scores on each of the 30 biochemical bases spectra, for each cell type, under each condi-
tion described above. The scores obtained are similar in nature to PCA scores, which correlate how much a 
sample spectrum can be described by the positive and negative features of the principal component output by 
the model18,19. However, as GBR-NMF is a semi-supervised approach, the scores obtained correlate directly with 
the contributions of the biochemical bases to the sample spectrum. These scores allow us to identify biochemi-
cal score patterns (expression dynamics) with respect to the conditions under which the initial input data was 
obtained—for example: cell type, radiation dose, time post radiation treatment.

The major benefit of using the GBR-NMF approach over other data analysis techniques such as PCA, is the 
capacity to identify, with reasonable confidence, individual biochemicals which may be involved in metabolic 
pathways relating to radiation resistance. The ability to identify radiation induced response profiles within various 

Figure 1.   Schematic depicting the decomposition of the matrix X (cell spectra) into lower rank non negative 
matrices W (scores), A (auxiliary) and S (chemical bases). This method is semi-supervised when compared with 
traditional NMF as matrix H is further decomposed into two matrices A and S , where A is an auxiliary matrix 
used to scale the data such that the mean score on each factor equates to 1 and S is a matrix containing Raman 
spectra of known biochemicals which can be fully or partially pre-specified.



3

Vol.:(0123456789)

Scientific Reports |         (2021) 11:3853  | https://doi.org/10.1038/s41598-021-83343-5

www.nature.com/scientificreports/

cell types opens up a number of new treatment pathways that could be exploited in order to both increase the 
radio-sensitivity of the tumour cells as well as the possibility to explore new, combination therapies. Combin-
ing radiation therapy with, for example, the addition of radio-sensitising agents in order to induce anti-tumour 
mechanisms, may result in a more effective treatment.

The GBR-NMF model produces scores on biochemicals which can also be used in conjunction with other 
machine learning techniques. Random forest20 (RF) is a supervised learning method which can be used for 
classification or regression. Random forests are generated by constructing a large number of decision trees, 
which when their predictions are systematically combined have strong predictive power21. An advantage of this 
type of machine learning is that it allows us to measure the importance of the features in the model based on 
the classifications provided and the success of the classification22,23. There are two main ways that this is often 
measured in classification RF: mean decrease accuracy (MDA) and mean node impurity (MNI). MDA measures 
the decrease in accuracy of the model when the observations on the variable in question are randomly permuted. 
The greater the decrease in accuracy due to the permuting of each variable, the greater the importance of that 
variable in correctly classifying the data. In our applications, the MDA and MNI measures provided very similar 
results, and so we will only discuss MDA in this work. Combining GBR-NMF with RF allows us to discern the 
important biochemicals which contribute to the classification of the three cell types, H460, MCF7 and LNCaP, 
as radio-sensitive or radio-resistant.

Results
Comparison of PCA and GBR‑NMF score trends with radiation exposure.  One major advan-
tage of using a semi-supervised NMF approach is the ability to monitor the response of specific biochemicals 
as a result of radiation exposure. We applied GBR-NMF to examine two radio-resistant human tumour cell 
types, derived from oestrogen receptor positive breast cell line (MCF7) and non-small cell lung tumour cell line 
(H460). A human prostate tumour cell line (LNCaP) was also examined as this cell line is known to be radio-
sensitive6. Each cell line was exposed to single fractions of 0, 2, 4, 6, 8 and 10 Gy radiation. Single cell Raman 
spectra were obtained on days 1, 2 and 3 post-irradiation, as described by Matthews et al.7 Prior to GBR-NMF, 
PCA was carried out on the entire data set, wherein the first principal component (PC1) very closely resembled 
that of a pure glycogen spectrum (Fig. 2A)7.

The average spectrum for each cell line including all doses and days is shown in Fig 2B. The standard deviation 
at each wavenumber is highlighted in each spectrum, which clearly shows a greater deviation from the mean for 
both MCF7 and H460 cells at 479 cm−1 , correlating with increased glycogen content. This large deviation was 
not observed in LNCaP cells. The inset spectra in Fig. 4B show various other spectral regions where there was 
a noticeable deviation from the mean across the dataset, such as 974 cm−1 and 1003 cm−1 in both MCF7 and 
H460 cell types. Matthews et al.7 have previously shown that both radio-resistant cell lines (MCF7 and H460) 
show a trend pertaining to increased glycogen accumulation with respect to radiation dose received. The H460 
and MCF7 cell line displayed a statistically significant ( p < 0.005 ) difference in mean PC1 score, for all radiation 
doses (2–10 Gy), relative to un-irradiated cells for days 1–3 (H460) and 2–3 (MCF7) post radiation. LNCaP cells 
did not display any significant change in mean PC1 score, regardless of dose or time (Fig. 2C). Despite all three 
cell lines exhibiting reductions in proliferation and increased cell death, with a dose dependent trend, clonogenic 
survival assays indicated that H460 and MCF7 cells are significantly more resistant to radiation than LNCaP cells.

In Fig. 2D the mean score corresponding to the glycogen basis spectrum used in the GBR-NMF model is 
shown, obtained for each cell type at each dose of radiation. This score plot shows the ability to replicate the plot 
derived from PC1 scores, using GBR-NMF modelling, with striking accuracy. In both cases, H460 and MCF7 cells 
displayed an upward trend toward glycogen expression in response to treatment with higher doses of radiation, 
as well as in response to the time at which analysis was carried out post treatment. The upregulation of glycogen 
is partly due to inactivation of glycogen synthase kinase 3 β (GSK-3β ), an isoform of GSK-3, which is heavily 
involved in energy metabolism and has been implicated in radiation cytotoxicity responses11,24 in all three cell 
types when comparing irradiated samples with unirradiated controls.

Monitoring glycogen and glucose levels.  The GBR-NMF model was used to obtain scores on 30 chem-
ical bases listed in Table S1. As an example of the ability to monitor interactions between various biochemicals 
using the GBR-NMF model, glycogen and glucose expression were plotted using the GBR-NMF scores on each 
of these chemical bases, for each cell line with respect to radiation dose and time of analysis following radiation 
exposure. The resulting boxplot is shown in Fig. 3 wherein the mean score for each sub-group is plotted for glyco-
gen (black) and glucose (red). For both radio resistant cell types, H460 (pink) and MCF7(yellow), glucose scores 
appeared to decrease as the glycogen score increased. The linear correlation coefficient ( p < 0.01 , α = 0.05 ) of 
glucose and glycogen scores was −0.56 , −0.75 and −0.18 for H460, MCF7 and LNCaP cells, respectively. As 
glycogen is formed from glucose monomers25, it was expected that an increase in glycogen score would result in 
a decrease in glucose score. An exception to this trend was observed in MCF7 cells the first day after radiation 
exposure, wherein glucose scores appeared significantly higher than glycogen scores for all doses including the 
unirradiated control. This observation was also true of the unirradiated controls and the cells which received 
a 2 Gy dose of RT across all days for MCF7 cells. In both days two and three following radiation exposure, the 
cells which received 2 Gy dose displayed more similar scores in glucose and glycogen expression. This suggests 
that treatment with doses of less than 4 Gy does not promote the same level of glycogen accumulation as seen 
with doses of 4 Gy and higher or that significant decrease in glucose levels does not occur for doses of 2 Gy or 
less within 1–3 days post irradiation. A similar trend was observed for H460 cells, in that mean glucose score 
decreased significantly as glycogen score increased across all doses. The relationship between glucose and gly-
cogen expression was less linear in H460 cells when compared with MCF7 cells. This is also consistent with the 
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Figure 2.   (A) RS of pure glycogen (black) overlaid with principal component 1 (green). (B) Average RS 
obtained from all days and doses including unirradiated controls for H460 cells, MCF7 cells and LNCaP cells. 
Shadow spectrum represents +/− 1 standard deviation at each wavenumber. The greatest deviation in H460 and 
MCF7 cells is visible at 479 cm−1 , which can be attributed to the change in glycogen content with respect to day 
and dose of radiation received. Inset spectra highlight the larger standard deviation (shadow spectrum) from 
the mean at 479 cm−1 , 974 cm−1 and 1003 cm−1 for MCF7 and H460 cells compared with a smaller standard 
deviation observed in LNCaP cells. (C) Mean PC1 scores for H460 cells (pink), MCF7 cells (yellow) and LNCaP 
cells (blue) for doses 2–10 Gy on days 1–3 post irradiation. Error bars represent +/− 1 standard error. (D) Mean 
glycogen scores for H460 cells (pink), MCF7 cells (yellow) and LNCaP cells (blue) for doses 2–10 Gy on days 
1–3 post irradiation, obtained using the GBR-NMF model. Error bars represent +/− 1 standard error.

Figure 3.   Mean scores for glycogen (black) and glucose (red) for H460 cells (pink), MCF7 cells (yellow) and 
LNCaP cells (blue) for doses 2–10 Gy on days 1–3 post irradiation, obtained using the GBR-NMF model. Error 
bars represent +/− 1 standard error.
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much greater increase in glycogen score observed for H460 cells for all doses compared with unirradiated con-
trols than was observed for MCF7 cells, which displayed a more linear relationship with glycogen expression and 
dose received. LNCaP cells did not display any significant decrease in glucose score with respect to radiation.

Identification of radiation induced biochemical changes using GBR‑NMF scores and random 
forest.  MDA values for each chemical base were calculated using a random decision forest consisting of 200 
decision trees and the scores obtained on each of these chemical bases using the GBR-NMF model. The data 
input included all unirradiated controls, each dose and day for all three cell types. The data was then categorised 
as radio-resistant (H460 and MCF7) and radio-sensitive (LNCaP). The data was randomly split into a training 
set (75% of the original data) and a testing set (25% of the original data). The resultant MDA values for each of 
the 31 variables (30 chemical bases spectra and 1 unconstrained component) are shown in Fig 4A.

Analysis of the MDA of each variable revealed phosphatidylcholine to be the most important variable in 
correctly classifying the data as radiation resistant or radiation sensitive. This was unexpected as PCA analysis 
had shown glycogen to be a major biochemical which showed distinctly different expression patterns between 
radiation resistant and radiation sensitive cell types. However, it is shown in Fig 4A that glycogen contributes to 
a slightly lesser extent than phosphatidylcholine in terms of reducing the mean error associated with classifying 
the data using random forest. The five most important variables were identified as phosphatidylcholine, glycogen, 
asparagine, arginine and lactose. As phosphatidylcholine was identified as being the variable with the largest 
influence on the MDA of the overall RF model, the Raman spectrum used for this chemical base (black trace in 
Fig 4B) was overlaid with PC1 (red) and PC2 (blue), shown in Fig 4B. The overlay of phosphatidylcholine with 

Figure 4.   (A) Bar chart showing variable importance prediction obtained using GBR-NMF scores for 30 
chemical bases plus 1 unconstrained component in a random forest decision model. The values shown are 
the average of 10 RF models using 75% of the original data for training. Error bars represent +/− 1 standard 
deviation. (B) PC1 spectrum (red) and PC2 spectrum (blue) shown overlaid with pure phosphatidylcholine 
spectrum used for GBR-NMF modelling to show overlap of spectral features present in both PC1 and PC2 with 
phosphatidylcholine. Spectra have been scaled and offset for clarity. Phosphatidylcholine spectrum has been 
inverted in overlay with PC1 to highlight the similarities with the negative component of PC1. (C) Mean PC2 
scores for H460 cells (pink), MCF7 cells (yellow) and LNCaP cells (blue) for doses 2–10 Gy on days 1–3 post 
irradiation. Error bars represent +/− 1 standard error. (D) Mean phosphatidylcholine scores for H460 cells 
(pink), MCF7 cells (yellow) and LNCaP cells (blue) for doses 2–10 Gy on days 1–3 post irradiation. Error bars 
represent +/− 1 standard error.
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PC1 and PC2 shows that both PC1 and PC2 contain spectral features which closely match those present in the 
phosphatidylcholine spectrum. PC1 has two closely matched peaks with phosphatidylcholine at 1301 cm−1 and 
1442 cm−1 in the negative region of the spectrum. The overlaid phosphatidylcholine spectrum has been inverted 
for clarity. PC2 has similarities at 710 cm−1 , 1065 cm−1 , 1301 cm−1 and 1442 cm−1 with a small shoulder peak at 
1453 cm−1 in the positive region of the spectrum. As the positive region of PC2 closely resembled the Raman 
spectrum of phosphatidylcholine, mean PC2 scores were compared with mean phosphatidylcholine scores from 
the GBR-NMF model, shown in Fig 4C,D, respectively.

The GBR-NMF approach also allows us to visualise possible relationships between the input chemicals, for 
example, glucose and glycogen. The scores for each cell line, H460 (pink), MCF7 (yellow) and LNCaP (blue) 
from the ten most important chemicals (top 10 MDA scores in Fig 4A) in reducing the MDA value are shown 
as a scatter plot in Fig 5. The scatter plot shows clear separation between the three cell lines across the majority 
of the input chemicals. Additionally, this scatter plot highlights some of the differences in score trends across 
the three cell types. For example, H460 cells displayed a strong separation from the other two cell types when 
lactose was plotted against the remaining 9 top scoring biochemicals. Similarly, MCF7 displayed a distinctly 
different trend in score for glutamic acid, glutathione and asparagine. The most noticeable difference in score 
pattern for LNCaP cells compared with H460 and MCF7 cells was observed for glycogen, phosphatidylcholine 
and phosphatidylserine.

To discern whether the GBR-NMF model could reliably distinguish radio-sensitivity from radio-resistance, 
random forest was used to predict and classify the data based on GBR-NMF scores for the 30 chemical spectra 
listed in Table S1 and one unconstrained spectrum. The results from the prediction are shown in Table 1. The 
random forest algorithm correctly classified 1066 true positive values, as well as 548 true negative values. The 
misclassification rate was low, with only 5 false positives (0.3% of total dataset) and 0 false negatives. The accuracy, 
specificity and sensitivity were calculated and are listed in Table 2.

Identification of new radiation response profiles.  The scatter plot matrix considered all doses and 
days combined for each cell type as three separate groups. To investigate whether any of the biochemicals which 
caused separation between the three groups displayed any trend with regards to radiation dose received, box 
plots of mean scores for asparagine, citric acid and lactose, with respect to dose and day were plotted for each cell 
type as shown in Fig. 6A–C, respectively. Figure 6A shows that the mean score for asparagine varies significantly 
across all three cell lines, irrespective of dose and day, which was expected from the scatter plot matrix shown 

Figure 5.   Scatter plot depicting scores for each cell line H460 (pink), MCF7 (yellow) and LNCaP (blue) on 
the 10 most important chemicals obtained from random forest decision modelling (Fig 4A), as labelled in the 
diagonal.

Table 1.   Random forest prediction of radiosensitivity vs. radioresistance.

Observed

Prediction

Radiosensitive Radioresistant

Radiosensitive 1066 0

Radioresistant 5 548
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in Fig. 5. The mean score on asparagine shows a trend with respect to radiation dose received for H460 cells. 
For days 1–3 the unirradiated control sample displayed a downward trend in mean asparagine score. However, 
for days 2 and 3 subsequent to radiation exposure, all doses (2–10 Gy) displayed a statistically significant differ-
ence ( p < 0.001 ) in mean asparagine score, when compared with the unirradiated control. This was not true of 
MCF7 and LNCaP cells. Conversely, mean scores of citric acid (Fig 6B) showed similar patterns across MCF7, 
H460 and LNCaP cell types. H460 cells displayed a statistically significant ( p < 0.001 ) decrease in mean score 
for doses 2–10 Gy when compared with the unirradiated controls on the same day. A similar trend was observed 
in mean score for MCF7 cells which exhibited a significant decrease in mean score for all days and doses when 
compared with unirradiated controls, with the exception of doses 8 and 10 Gy on day 1. LNCaP cells exhibited 
a significant change in mean score from unirradiated controls in only three cases (6 Gy on day 2 and 2 Gy and 
4 Gy on day 3). The differences in trends noted between H460 and MCF7 cells with LNCaP cell types suggest 
the decrease in citric acid content with respect to radiation exposure may be linked to radiation resistance. 
Mean score plots for lactose are shown in Fig. 6C and similarly to asparagine, only H460 cell types displayed any 
significant change in mean score with respect to radiation dose received. In this case, a statistically significant 
change in mean score was observed for all doses (2–10 Gy) across all days when compared with unirradiated 
controls. Despite lactose being identified as an important variable in distinguishing between cell type (0 Gy con-
trols) (Fig. S3), there appears to also be some correlation with decreasing lactose content and increased radiation 
exposure for H460 cells.

Discussion
We have demonstrated, as proof of concept, the capabilities of a GBR-NMF model using a spectral library of 30 
biochemicals as a method of identifying radiation response profiles across three different cancerous cell lines. 
Previously discovered PCA-based trends in glycogen expression due to radiation exposure were replicated using 
the GBR-NMF model. Matthews et al.7 highlighted the complexity of the metabolic pathways involved in radia-
tion resistance, which calls attention to the fact that multiple metabolic processes can impact the levels of a single 
matabolite. This in turn can make it challenging to identify mechanisms which promote radiation resistance 
within multiple cell types and in turn potentially exploit such pathways to increase radiation sensitivity. The main 
advantage of using a GBR-NMF approach is that this model allows us to identify individual biochemicals which 
show increased or decreased expression as a result of both cell type and radiation exposure. To our knowledge, 
the most currently accepted method of identifying changes in metabolite expression is immuno histochemical 
(IHC) staining for metabolic enzymes, which is both time consuming and can often be subjective26,27. Another 
advantage of the GBR-NMF method is the distinct absence of negative features in the bases spectra, which can 
often be a problem when analysing PCA score trends relating to PCs with both positive and negative features. 
Additionally, as the model is semi-supervised and therefore each base is constrained to contain only one chemical 
spectrum, score trends can be directly related to the input chemical base. This is not often the case when PCA 
modelling is used as PCs often contain spectral features from multiple biochemicals, again making interpreta-
tion difficult and subjective18.

Glucose and glycogen scores were plotted for all three cell lines for unirradiated controls and doses 2–10 Gy 
on days 1, 2 and 3 post irradiation. The relationship between glucose and glycogen scores were as expected for 
each cell line28. Although not an entirely linear relationship, both H460 and MCF7 cells displayed decreasing 

Table 2.   Random forest prediction of radiosensitivity vs. radioresistance evaluation.

Accuracy% Sensitivity% Specificity%

Radiosensitivity 99.8 99.5 100

Figure 6.   Mean scores obtained for H460 cells (pink), MCF7 cells (yellow) and LNCaP cells (blue) for doses 
2–10 Gy on days 1–3 post irradiation for asparagine (A), citric acid (B) and lactose (C). Error bars represent 
+/− 1 standard error.
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glucose scores as glycogen scores increased, a pattern not observed for LNCaP cells. It is to be expected that 
glucose content would decrease with increasing glycogen content as glycogen is a polymer of glucose residues 
linked together by α − (1, 4)−glycosidic bonds. Interestingly, MCF7 cells displayed the highest glucose scores 
of the three cell types, with LNCaP cells also displaying high mean glucose scores across all conditions. This is 
not entirely unexpected as increased glucose uptake is a hallmark of cancer cells as noted by Otto Warburg in 
192729 and in several recent studies25,30,31. The difference in mean glucose scores in the 0 Gy controls across the 
three cell types could be due to many factors including cell type30,32 and aggressiveness of proliferation rates33.

Each of the biochemicals listed in Table S1 were investigated in order to determine any changes related to 
both radiation exposure and potentially radiation resistance within all three cell types. Random forest decision 
modelling showed that the most important variable in classifying the data as radio-resistant or radio-sensitive 
was phosphatidylcholine. Phosphatidylcholines are a class of phospholipids that incorporate choline as a head 
group and are a key component of membranes within eukaryotic cells34. This finding is supported by multiple 
theories which suggest the re-programming of lipid metabolism as an important feature in promoting malig-
nant growth of cells34–37. Previous work in our group has used standard NMF algorithms to identify lipid like 
spectra as factors which displayed unique score patterns with respect to radio-sensitivity and dose of radiation 
received38. By constraining the bases in the S matrix, we here can move one step further by identifying the score 
patterns of specific lipids.

Identification of phosphatidylcholine as an important variable in contributing to the classification of spectra 
as belonging to a radio-sensitive or radio-resistant cell line also helped to identify many of the spectral features 
present in PC 2. This again highlights the benefit of GBR-NMF modelling over other dimensionality reduction 
techniques such as PCA as this information would likely have been overlooked or more difficult to discern from 
analysis of the PC components alone. The mean PC2 scores exhibited a very similar pattern to the mean phos-
phatidylcholine scores for both H460 and LNCaP cell types. MCF7 cells displayed a trend toward less negative 
PC2 scores with increasing dose of radiation and time post treatment. Therefore, it is unlikely that the MCF7 
PCA score pattern pertains to that of phosphatidylcholine and more likely the negative features of PC2, which 
appear to mostly belong to nucleic acid ( 784 cm−1 , 902 cm−1 ), phenylalanine ( 1003 cm−1 ) and Amide III and 
collagen ( 1235 cm−1 , 1334 cm−1)39,40. The reason for the differences in score plots for H460 and LNCaP cells can 
likely be attributed to the presence of various other spectral features within PC2 (Fig. 4B). Using GBR-NMF 
modelling allows us to assign scores to specific biochemicals that may contribute to identifying metabolic path-
ways in response to radiation treatment. An important point to note is that GBR-NMF allows us to distinguish 
scores from the positive and negative features of principal components separately. This is achieved by inclusion of 
individual spectra to which those features physically relate to within the library of chemical bases. For example, 
the PC2 scores of MCF7 cells only give us information on the negative component of the spectrum, positive PC 
features are not represented in the scores. The GBR-NMF model provides scoring information on both positive 
and negative features of the PC, provided each spectrum is included in the GBR-NMF model.

Classification of radio-sensitivity vs. radio-resistance was achieved with 99.8% accuracy using the scores on 
the 30 chemicals listed in Table S1 and the scores on one unconstrained component. The combination of GBR-
NMF and random forest modelling identified phosphatidylcholine and glycogen as the two most distinguishing 
factors between the two radio-resistant and one radio-sensitive cell type investigated in this study, however there 
were also noticeable contributions from asparagine, citric acid and lactose.

H460 cells displayed a statistically significant increase in mean asparagine score for all doses compared with 
unirradiated controls for days 2 and 3 post treatment, which was not observed in the other two cell types. It is 
well documented that malignant cells generally exhibit increased amino acid uptake41–44. Asparagine has also 
been noted to promote amino acid uptake, particularly of serine and threonine45, which is favourable and preva-
lent in cancer cells due to the increased requirement for building blocks to support the increase in proliferation 
rates. Krall et al.44 provided evidence that asparagine may also act as an amino acid exchange factor in cancer 
cells, wherein intracellular asparagine exchanges with extracellular amino acids, in particular, serine, histidine 
and arginine, thus promoting increased cell proliferation and growth, however they did not investigate radiation 
effects on asparagine expression.

Both H460 (day 2–3) and MCF7 (day 1–3) cells exhibited a significant decrease in citric acid score compared 
with unirradiated controls on the same day. This finding implies that the radio-resistant cell types (H460 and 
MCF7) displayed a different pattern in mean score of citric acid when compared with radio-sensitive LNCaP 
cells. More recently, there has been significant interest in the citric acid cycle (TCA) and its potential as a thera-
peutic target for certain types of cancers46. Most early studies into cancer cell metabolism assumed that cancer 
cells bypass the TCA and utilise aerobic glycolysis as a primary energy source47. However, it is now generally 
accepted that some cancers rely heavily on the TCA for energy production47. The decreased citrate content in 
radio-resistant H460 and MCF7 could be an indicator of increased utilisation of the TCA as an energy source 
in response to ionising radiation.

As with asparagine, H460 cells were the only cell type to display a significant change in lactose score for all 
doses (2–10 Gy) when compared with unirradiated controls on the same day post treatment. Lactose was identi-
fied as an important variable in distinguishing between the three cell types using unirradiated controls. Therefore, 
it is possible that high lactose content is inherent to H460 cells, irrespective of radiation, however there appears 
to be a relationship with mean lactose score and radiation dose received by H460 cells (Fig. 6).

At present there is an unmet clinical need to identify factors that contribute to radiation response. Here we 
have demonstrated a proof of concept approach wherein a chemical base library can be exploited in order to 
obtain scores corresponding to each of these biochemicals for cells under various conditions, in our case radia-
tion exposure. As future work, confirmation of the increased or decreased expression of the various biochemicals 
identified herein would be corroborated using IHC or liquid chromatography-mass spectrometry (LC–MS). 
Identification of radiation induced metabolic processes, which may ultimately lead to radio-resistance within 
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certain cell types, has the potential to aid in the development of new combination therapies wherein radio-
sensitising drugs can be used alongside radiation treatment and ultimately lead to better outcomes for patients 
undergoing radiation therapy.

Methods
Cell lines.  H460 (ATCC# HTB-177), MCF7(ATCC# HTB-22) and LNCaP (ATCC# CRL-1740) cells were 
obtained as stock solutions from American Type Culture Collection (ATCC, Manassas, VA, USA). Cells were 
cultured as monolayers, at 37◦ C and 5% CO2 . Cells were cultured in RPMI 1640 (H460 and LNCaP) or DMEM 
(MCF7) as previously described7. All media components were purchased from Hyclone Laboratories Inc.(San 
Angelo, TX, USA).

Irradiation.  Cells were harvested and equivalent aliquots were incubated for 4 days at an initial cell density 
determined to achieve 50% confluency at time of irradiation. One hour prior to irradiation, culture media was 
replaced fresh media (SigmaAldrich Canada Co., Oakville, Canada). Cell monolayers were irradiated with a 
single fraction of 6 MV photons from a Varian 21 EX linear accelerator (Vairan Medical Systems, Palo Alto, CA, 
USA) at a dose rate 6 Gy/minute. Single fractions of 0, 2, 4, 6, 8, and 10 Gy were delivered to 3 cultures per dose.

Raman spectroscopic acquisition and spectral processing.  Cell preparation for Raman spectral 
acquisition and processing was performed as described previously7. Briefly, cells were washed with PBS, har-
vested with trypsin and centrifuged into a pellet. Pellets were transferred to a 5 mm thick magnesium fluoride 
window (Janos Technology Inc., Keene, NH, USA) and allowed to air dry for 5 min before spectral acquisition.

Raman spectra were acquired from 20 individual cells from each sample (20 spectra per sample at the radia-
tion doses indicated) over 3 days of analysis performed in triplicate for all 3 cell lines. Cells for analysis were 
chosen at random from the top layer of the cell pellet. Spectral acquisition was performed with an inVia Raman 
microscope (Renishaw Inc., Gloucestershire, UK) with a 100X dry objective ( NA = 0.9 ) (Leica Microsys-
tems, Concord, Ontario, Canada), a 600 lines / mm diffraction grating, a 10 s acquisition time per cell and a 
450–1800 cm−1 spectral window. Spectra were recorded with a thermoelectrically cooled iDus CCD detector 
(Andor Technology, Belfast, UK). A 785 nm laser (Renishaw) was used for excitation. The laser power density 
at the sample was 0.5mW / µm3 with a sampling volume of 2× 5× 10µm to allow single cell Raman spectrum 
acquisition. Each cell spectrum was processed to remove cosmic rays, correct for wavenumber calibration drifts, 
estimate and subtract a baseline arising from the substrate and biological fluorescence, and normalised such that 
the total area under the curve is equal to 1. The fully processed data sets were analysed with principal component 
analysis using standard algorithms in Matlab.

Semi‑supervised non‑negative matrix factorisation and random forest modelling.  Group and 
basis restricted non-negative matrix factorisation (GBR-NMF) was performed on the spectra in order to decom-
pose the data matrix, X , into three lower rank matrices such that X ≈ WAS . These three matrices included the 
chemical bases responsible for variation in the spectra ( S ), a matrix responsible for scaling the bases ( A ), and the 
scores on the bases representing the contribution of each chemical to each spectrum ( W ). GBR-NMF modelling 
was carried out using R version x64 3.6.1. Random forest (RF) modelling was carried out on GBR-NMF scores 
obtained for the 30 chemical bases listed in Table S1 using the open source randomForest package in R (version 
x64 3.6.1). Data was split into a training (75% of the data) and testing set (25% of the data). The random forest 
was constructed using 200 decision trees and 5 randomly selected input variables were used to split each node. 
The testing dataset was then input to the random forest which was constructed using the training dataset, in 
order to obtain the predictions shown in Table 1. The out-of-bag (OOB) estimate of error obtained when the 
entire dataset was used to train the RF model was 0.3% and therefore no improvement on the split testing and 
training method (0.3% classification error), therefore we chose to split the data into training and testing subsets 
to allow for a more robust comparison with other classification methods in any future analyses. The hyperpa-
rameters used in the RF were compared with models consisting of no. of trees used ranging from 100–2000 (in 
increments of 100) and no. of variables used in split ranging from 1–30 (in increments of 1). The results of this 
comparison are displayed as a heat map of the corresponding OOB error (as a percentage, average of 5 models) 
using each combination of conditions in S4. This figure shows that very little performance difference existed 
between number of variables ranging from 4-8 and number of trees ranging from 200 to 1400.

Code availability
Code for GBR-NMF is available on GitHub repository48.
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