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Insufficient performance of optimization-based approaches for the fitting of mathematical models is still a major
bottleneck in systems biology. In this article, the reasons and methodological challenges are summarized as well as
their impact in benchmark studies. Important aspects for achieving an increased level of evidence for benchmark
results are discussed. Based on general guidelines for benchmarking in computational biology, a collection of tailored
guidelines is presented for performing informative and unbiased benchmarking of optimization-based fitting
approaches. Comprehensive benchmark studies based on these recommendations are urgently required for the
establishment of a robust and reliable methodology for the systems biology community.
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Introduction

A broad range of mathematical models is applied in sys-
tems biology. Depending on the questions of interest and
on the amount of available data, the type of models and the
level of detail vary. Most frequently, ordinary differential
equation models (ODEs) are applied because they enable
a non-discretized description of the dynamics of a system
and allow for quantitative evaluation of experimental data
including statistical interpretations in terms of confidence
and significance. In the BioModels Database [1], currently,
83% of all models which are uniquely assigned to a mod-
eling approach are ODE models. In this article, I focus on
the optimization-based fitting of these models although
many aspects are general and also apply to other modeling
types and approaches.

Typical parameters in systems biology such as the abun-
dances of compounds or the strengths and velocities of
biochemical interactions are typically context-dependent,
i.e,, they vary between species, tissues, and cell types.
Hence, they are represented as unknown parameters in
mathematical models. Application-specific calibration of
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the models is therefore required which corresponds to
the estimation of these unknown parameters based on
experimental data.

In most cases, parameter estimation is performed by the
optimization of a suitable objective function such as mini-
mization of the sum of squared residuals for least squares
estimation or maximization of the likelihood for max-
imum likelihood estimation [2]. Both approaches coin-
cide with normally distributed measurement errors. Such
optimization-based fitting of a model requires the selec-
tion of a generic numerical optimization approach as a
core algorithm. In addition, the optimization problem
needs to be defined in terms of initialization, search space,
termination criteria, and hyperparameters that set up and
configure the numerical algorithms. Although parameter
estimation is a central task of modeling, the lack of reliable
computational approaches for fitting is still a bottleneck
in systems biology. The absence of high-performing soft-
ware implementations seems to be a major reason why
ODE-based modeling is not yet a routinely applied com-
putational approach for analyzing experimental data.

The importance of proper designs for benchmark stud-
ies in computational biology has been discussed in several
publications [3-5]. General guidelines have been provided
recently for computational analysis of omics data [6], mul-
tiple alignment of protein sequences [7], and supervised
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classification methods [8] as well as for periodic scientific
benchmarking [9] and general studies in computational
biology [10-12]. In this article, these aspects are dis-
cussed in the context of benchmarking of approaches for
optimization-based fitting of mathematical models in sys-
tems biology. For simplicity, in the following, this task
is sometimes briefly denoted as benchmarking of opti-
mization approaches, although it always refers to the
optimization for the fitting of parameters of ODE models
which is also termed calibration or model calibration in
the literature.

Why is reliable fitting challenging?

A major characteristic of the mathematical models
applied in systems biology is the intention to mirror
the biological process of interest because this facilitates
enhanced possibilities of interpretations and understand-
ing. To this end, molecular compounds such as proteins
and spatial compartments such as cells are defined as
model components. Moreover, biochemical interactions
between the considered compounds are translated as rate
equations into the model. In contrast to phenomenologi-
cal models which describe the empirical relationships in
an abstract and simplified manner, the complexity of these
so-called mechanistic models is dictated by the complexity
of the investigated biological process.

Estimating the parameters of typical models in sys-
tems biology requires data that covers a broad set of
experimental conditions such as multiple time points,
genetic perturbations, and/or treatments. Since the eval-
uation of distinct experimental conditions is elaborate,
the amount of available experimental data for param-
eter estimation is always limited. In such kind of set-
tings, multiple parameter combinations can give rise to
the same model response for experimentally investigated
conditions. A measured steady-state concentration, for
instance, might merely provide information about the
ratio Kprod/kdeg of production and degradation rates.
Because different combinations of the individual param-
eters kprod and kgeg result in the same steady state, all
combinations with the same ratio fit the data equally well.
Such sub-spaces where the objective function is entirely
flat has been termed non-identifiability. Because non-
identifiability is common features of models in systems
biology, the equations which have to be solved during
optimization are ill-conditioned or even have non-unique
solutions which decreases the performance of numerical
algorithms.

The following typical attributes of mechanistic models
in systems biology raise methodological challenges for the
model fitting:

(a) The models are large in terms of the number of
parameters and dynamic variables. Thus,
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optimization has to be performed in
high-dimensional spaces.

(b) Fast and robust numerical optimization algorithms
do not exist for general non-linear problems. Since
the objective functions used for the fitting depend on
the model parameters (strongly) non-linearly,
numerical optimization is intricate and local optima
may exist.

(c) The evaluation of the objective function comprises
the numerical integration of the ODEs which is
computationally demanding and only feasible with
limited numerical accuracy.

(d) Because explicit solutions x(t) for the ODEs x = f (x)
cannot be derived by analytical calculations, all
mathematical calculations requiring x(¢) in an
explicit form are infeasible.

(e) Derivatives of the objective function have limited
numerical accuracy and cannot be calculated naively.

(f) Parameter values vary over several orders of
magnitudes, and usually, only a limited amount of
prior knowledge is available. Therefore, it is difficult
to specify priors, initial guesses, and/or bounds.

(g) Optimization has to cope with constraints like upper
and lower bounds and with non-identifiability,

i.e., with ill-conditioning and entirely flat sub-spaces.

In addition, discontinuities of external inputs (so-called
events) [13] might occur which has to be handled properly.
Sometimes, steady-state constraints for the initial values
have to be implemented numerically which is another
source of performance loss [14].

Existing approaches and benchmark studies

Fitting ODE models requires the combination of several
generic tasks as indicated in Fig. 1. For these individual
tasks, a multitude of methods have been published (e.g., as
summarized in [2, 15, 16]). For a given parameter vector,
the ODEs have to be solved by numerical ODE integra-
tion methods in order to evaluate the objective function.
Moreover, iterative optimization requires a strategy for
suggesting the next trial parameters in each optimiza-
tion step. For this, derivatives have to be calculated or
approximated, or incremental improvement has to be
obtained by an alternative approach. Such iterative local
optimization approaches are typically deterministic and
are usually combined with a stochastic global search strat-
egy in order to enable convergence to the global optimum.
For optimization-based fitting, these generic tasks have
to be combined reasonably in order to obtain a robust
and reliable approach. However, existing benchmark stud-
ies provide only a heterogeneous, fragmentary, and partly
inconsistent picture about the performance and applica-
bility of such model calibration approaches and how the
different numerical tasks are combined most efficiently.
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Fig. 1 Tasks to be accomplished for fitting ODE models. The fitting of ODE models requires several generic tasks. The optimization problem has to
be defined in terms of bounds of the search space and geometry (e.g., linear vs. log scale). Moreover, the selected generic optimization algorithm
applied as the core of optimization-based fitting has to be initialized. There are many ways of combining global and local search strategies. A
prominent global search strategy is random drawing of multiple initial guesses and performing local optimization for each starting point. In each
optimization step of a local optimization run, the ODEs have to be solved for the evaluation of the objective function x2(8). Incremental
improvement strategies are applied for suggesting a new parameter vector for the next iteration step in the core optimization routine which is
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An early publication in systems biology found superior
performance of the so-called multiple shooting [17] for
local optimization. The idea behind multiple shooting is
to reduce the non-linear dependency on the parameters
by partitioning time courses into multiple short inter-
vals. Yet, this method is difficult or even impossible to
apply for partly observed systems with complex observa-
tion functions. It requires a custom implementation of an
ODE integration method, and its combination with global
search strategies has not been considered. Moreover, there
are no implementations publicly available. Consequently,
this methodology disappeared from the systems biology
field during recent years.

Repeating deterministic optimization runs for multi-
ple initial guesses, i.e., so-called multi-start optimiza-
tion, showed superior performance in the Dialogue for
Reverse Engineering Assessments and Methods (DREAM)
benchmark challenges about parameter estimation [18]
and network reconstruction [19]. Here, a trust region
and gradient-based deterministic non-linear least squares
optimization approach [20] has been utilized as a local
optimization strategy, and a global search was performed
by utilizing multiple runs with random initial guesses.
Trust regions are iteratively updated confidence areas
indicating sufficient quality of the local approximation
of the objective function which yields successful opti-
mization steps. This approach is implemented in the
Data2Dynamics modeling framework [21] and proved to
be superior to other approaches in several studies [22—24].

It has been shown that deterministic gradient-based
optimization is superior to a batch of stochastic
algorithms and hybrid approaches which combine
deterministic and stochastic search strategies [22]. In

contrast, other studies found superior performance of
stochastic optimization methods [25-28]. It was con-
firmed that multi-start gradient-based local optimization
is often a successful strategy [29], but on average, a better
performance could be achieved with a hybrid meta-
heuristic [25] combining deterministic gradient-based
optimization with a global scatter search metaheuristic.

Finite differences (F(0 +h)—F(09))/h with step size h are
the most naive way of calculating a derivative of an objec-
tive function F(0) with respect to parameter 6. While
it has been shown that derivative calculation based on
finite differences is inappropriate for ODE models [22, 30],
this outcome has been partly questioned [31], at least if
optimization is performed on a normalized data scale. In
addition, for large models, the so-called adjoint sensitivi-
ties were reported to be computationally most efficient for
derivative calculations [30].

It has been repeatedly stated that parameters are prefer-
ably optimized on the log scale [5, 29, 32]. Nevertheless,
optimization of model parameters is still frequently per-
formed at the linear scale in applications and even in
benchmark studies [31].

In addition to neutral publications that focus primarily
on benchmarking, there are others that are geared towards
introducing a new approach while comparing the per-
formance of alternative approaches less comprehensively.
Despite this rather large amount of studies, there is cur-
rently no consensus and there are no clear rules in the
systems biology community regarding the proper selec-
tion of approaches for the parameter fitting. This demon-
strates that to date, benchmark studies lack convincing
evidence and reveals the need for improved benchmark
analyses.
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Pitfalls of benchmark studies

P1: Unrealistic setup

In order to be able to draw valid conclusions for real
application problems, benchmark studies have to restrict
to identical settings and the same amount of infor-
mation as available in real application settings. In our
context, simulated data deviate from this requirement
because real experimental data in molecular biology typi-
cally contain non-trivial correlations, artifacts, or system-
atic errors which is usually not considered for simulated
data sets. Simulating data for assessing model calibra-
tion approaches requires much more specifications than
in most other fields of computational biology. The rea-
son for this is that realistic combinations of sampling
times, observables, observation functions, error models,
and experimental conditions have to be defined because
this has a great impact on the amount of information pro-
vided by the data. Moreover, in order to successfully reject
incomplete model structures, it is necessary that the fit-
ting of experimental data works for such wrong models
as well. Since simulated data is typically generated with
the same model structure used for fitting, there is usu-
ally no mismatch between the model and the data. Thus,
optimization is only evaluated for settings where a correct
model structure is available. In order to not rely on such
critical assumptions, it is highly preferable to assess fitting
approaches based on real experimental data.

The common advantage of simulated data is the inher-
ent knowledge about the underlying truth because this
usually allows for appraisal in terms of true/false pos-
itives or in terms of bias and variance. In contrast to
most other benchmarking fields, this aspect is hardly
relevant for benchmarking of optimization approaches
because, on the one hand, each simulated data realiza-
tion has a different, unknown optimum. Thus, the global
solution is unknown even for simulated data. On the
other hand, assessment by distance of estimated and
true parameter values is not meaningful because of non-
identifiability. Moreover, the outcomes of several opti-
mization approaches can be assessed by evaluating the
objective function which is feasible without any restriction
for experimental data.

In real applications, there is only limited information
available for initialization and for tuning of hyperpa-
rameters, for instance, integration tolerances or thresh-
olds defining termination criteria of iterative optimiza-
tion. Therefore, default configurations have to be uti-
lized or hyperparameters have to be defined by consis-
tency checks. In benchmark studies, one has to strictly
avoid tuning of such configurations based on the perfor-
mance criteria in order to prevent unrealistic performance
assessment. Instead, it should be prespecified before the
evaluation of the methods of how hyperparameters will be
chosen based on the information that is also available in
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practice. Moreover, tuning of hyperparameters has to be
counted as an additional runtime.

P2: Ignoring covariates

In statistics, covariates denote all attributes which can
have an impact on the results but are not of primary
interest of a study. Improper consideration of relevant
covariates is a common and well-known general problem
in statistics.

In our setting, the performance comparison of generic
optimization approaches as the core of the fitting pro-
cess is usually of primary interest. These approaches are
typically available as different generic algorithms. How-
ever, there are a lot of decisions which have to be made
for applying those generic algorithms in the context of
model calibration and thus appear as covariates: First,
a set of benchmark problems has to be selected. More-
over, a strategy for combining global and local search has
to be specified, and an ODE integration method has to
be selected. In addition, parameter bounds and parame-
ter scales (linear vs. logarithmic) have to be defined and
ODE integration algorithms and tolerances have to be
specified as well as stopping the criteria for iterative opti-
mization. Each of these decisions should be considered as
a covariate.

The fact that these covariates affect the performance of
individual core routines for optimization poses a severe
problem. Wrong conclusions can be drawn since it is
difficult to entirely uncover the origin of observed per-
formance differences. In the example depicted in Fig. 2,
approach A requires properly tuned tolerances control-
ling the accuracy of ODE integration. If properly chosen,
this approach is superior. In contrast, approach B is less
sensitive to these tolerances and outperforms A for most
choices although the approach can never reach the max-
imal performance possible for approach A. This example
illustrates that observing a performance benefit of one
approach for a specific tolerance merely provides a frag-
mentary and possibly misleading picture.

Analyzing multiple effects by a multi-variate statistical
terminology is not yet common for benchmark stud-
ies, but well-established, e.g., for clinical studies where
patient-specific covariables such as gender, age, and smok-
ing occur as covariates. Table 1 summarizes 15 typical
covariates for optimization benchmark studies and illus-
trates that many decisions have to be made for the imple-
mentation of an optimization-based parameter estimation
approach.

For the illustration example in Fig. 2, one could deter-
mine the impact of the integration tolerance as a covariate
by the evaluation of the whole range in a benchmark study.
This strategy is feasible in real application settings for a
single or very few covariates. However, since the number
of combinations increases exponentially, the evaluation of
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Fig. 2 Impact of hyperparameters. Multiple configurations can have an impact on performance. In this illustration example, two optimization
approaches have different sensitivities with respect to the choice of tolerances controlling the numerical error of ODE integration. Moreover, both
approaches have different optimal choices for this hyperparameter. For most integration tolerances, approach B is superior. However, approach A
displays the overall best performance for optimally chosen tolerances. This illustration example highlights the importance of the evaluation of

the full configuration space is not feasible for all relevant
covariates. Nevertheless, the robustness of the conclu-
sions with respect to the covariates has to be addressed,
and limitations of the scope of the conducted studies
should be kept in mind. A pragmatic way to achieve this
is by verifying that changes of the individual covariates
do not alter the outcome dramatically. Moreover, classical
study design principles such as balancing and/or random-
ization can be applied in order to minimize the impact
of covariates [5]. As an example, one could randomly
select many reasonable choices of all the covariates sum-
marized in Table 1. To prevent bias due to imbalanced
random drawings, one could draw the covariates jointly
for all studied optimization algorithms to ensure that all

Table 1 Covariates

optimization algorithms are evaluated for the same set of
covariates.

P3: Performing only case studies

The performance of optimization approaches depends on
the application problem, i.e., on the models and the data
sets which are used for benchmarking. A chosen bench-
mark model determines the intricacy of the optimization
task in terms of dimension (number of parameters), non-
linearity, ill-conditioning, local optima, amount of infor-
mation provided by the data, etc. and thereby affect the
performance. Thus, the choice of application problems
can be interpreted as an additional covariate that exhibits
a strong effect on optimization performance.

Abbreviation Covariate Typical possible choices

@ Application problem Model equations and the data set(s)

Q Primary performance criteria Convergence per computation time, iteration steps

c3 Secondary performance criteria Documentation, user-friendliness, code quality

C4 Parameter scale Linear vs. log scale

5 Global search strategy Multiple initial guesses, scatter search algorithms, stochastic search
6 Initial guess strategy Fixed vs. random, normally distributed vs. uniform vs. latin-hypercube
c7 Parameter constraints Upper and lower bounds

c8 Prior knowledge None vs. (weakly) informative priors

@} ODE integration implementation SUNDIALS, Matlab, R

c10 ODE integration algorithm Stiff vs. non-stiff approaches, Adams-Moulton vs. BDF

C11 Integration accuracy ODE integrator tolerances

c12 Derivative calculation Finite differences, sensitivity equations, adjoint sensitivities

Cc13 Stopping rule Optimization termination criteria

C14 Handling of non-converging ODE integration Termination of optimization vs. infinite loss

c15 Algorithm-specific configurations Cross-over rate, annealing temperature, number of particles

The performance of an optimization approaches depend on many decisions and configurations C1-C15. For the comparison of several approaches, these attributes appear
as covariates. Performance benefits for individual choices do not necessarily indicate a general advantage because benefits might merely originate from the chosen

configurations
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A study where only a single model is evaluated
for benchmarking of multiple approaches provides
only a minor evidence since the behavior of the
applied approaches might be completely different for
another application problem. In terms of evidence,
such a benchmark study constitutes merely a case
report. Therefore, benchmark studies have to be per-
formed based on a comprehensive and representative
set of test problems in order to draw generally valid
conclusions.

P4: Non-convergence and local optima are hardly
distinguishable

Sub-optimal convergence behavior is difficult to be dis-
criminated from local optima since in both cases, the opti-
mization terminates at distinct points in the parameter
space, usually with different objective function values.
In high-dimensional spaces, it is difficult to evaluate
whether a point in the parameter space is a local
optimum, especially if the objective function and its
derivatives can only be evaluated with limited numeri-
cal accuracy. Existing approaches which could be applied
like the profile likelihood [33], reconstruction of flat
manifolds [34], identifiability analysis [35], or methods
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based on a local approximation of the curvatures do
not enable reliable classification in case of convergence
issues and/or numerical inaccuracies. Thus, convergence
issues can easily be confused with local optima. New
methods for proving local optimality and for detect-
ing convergence issues would be very valuable for the
assessment and for future improvements of optimization
approaches.

The upper left panel in Fig. 3 shows a hypothetical out-
come of three optimization runs. “Scenario A” indicates
that both convergence problems and local optima might
generate the same observations. Even if identical values
for the objective function are obtained (scenario B), the
interpretation is ambiguous because there are no reli-
able approaches to distinguish convergence issues from
local optima. Moreover, the third possible explanation
in this scenario is associated with non-identifiabilities,
i.e., optimal sub-spaces. If non-identifiabilities exist,
even high-performing optimization approaches converge
to distinct points in the parameter space. For bench-
mark analyses, this means that it is not reasonable
to measure the similarity of the outcomes of multi-
ple optimization runs by distances in the parameter
space.

Optimization result

Explanation A1: Local optima

Explanation A2: Convergence issues

worst

parameter |

best

Explanation B2: Convergence i

best

parameter i parameter i

ion B3: Non-identifiability

worst

X x Estimated parameters
Scenario A:
Different
- objective functions -
L 2
Q [5}
£ Explanations £
o x -p I
@ [}
Q. Q
X
parameter i
Scenario B:
Same . "
biecti nf1 fi Explanation B1: Local optima
objective functions worst
X

& )

Explanations 3 3

£ £

o o

@ @

Q Q

best

worst

parameter j

best

parameter i

function is achieved in multi-dimensional sub-spaces

best

parameter i parameter i

Fig. 3 Ambiguous interpretation of optimization outcomes. For non-trivial optimization problems, the results of independent optimization runs are
typically not the same. The upper left panel indicates an outcome for three optimization runs, e.g., generated with different starting points. If the
objective function values after optimization are different (scenario A), such an outcome could be explained by local optima (explanation A1) or by
convergence problems of the optimization algorithm (explanation A2). If the same values are obtained for objective function, there might be
several local optima with the same value of the objective function (explanation B1), there might be a convergence problem (B2), or
non-identifiabilities might exist (B3), i.e., the estimated parameters are not uniquely specified by the data and then the same value of the objective
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Guidelines for benchmark studies

I recommend that the guidelines presented below are dis-
cussed in future publications in a point-by-point manner
in order to provide a summary for the readers about the
design of a benchmark study and the resulting evidence in
an easily accessible and clearly structured manner. Mul-
tiple guidelines might be required to prevent a pitfall.
Conversely, an individual guideline might help to prevent
several pitfalls.

General guidelines for benchmark studies in the whole
computational biology field have been recently presented
[12]. Here, I concretize what those general sugges-
tions mean for benchmarking of parameter optimization
approaches and discuss their relevance, feasibility, and dif-
ferences in our context. The terminology and order are
kept as similar as possible to [12].

G1: Clear definition of aim and scope

Benchmark studies which are performed to illustrate the
benefits of a newly presented approach are easily biased
because they are performed to confirm merits. Often,
application problems are utilized where existing methods
have limited performance. Consequently, it should be pre-
cisely stated whether benchmark analyses are performed
for introducing a new approach, or whether the goal is
performing a neutral and comprehensive study based on
previously published computational approaches and test
cases [5, 12].

Since the performance of optimization routines is
context-specific, i.e., depends on the chosen benchmark
problem, it is essential to define the scope of a study
and select representative test cases according to this def-
inition [5]. For mathematical modeling in the systems
biology field, one could define the scope by the bio-
logical background. Models of signaling pathways, for
instance, usually describe the dynamics of activation after
stimulation and show transient dynamic responses. In
contrast, metabolic models usually constitute steady-state
descriptions. Gene regulatory networks, on the other
hand, typically have distinct rate laws because activatory
and inhibitory effects are described by products of Hill
equations, instead of mass action kinetics. Other options
for defining scopes could be based on model attributes like
the amount of data, number of parameters, existence of
events, or steady-state constraints, or based on dynamic
characteristics such as the occurrence of oscillations.

G2: Inclusion of (all) relevant methods

In contrast to other fields of computational biology, it is
currently infeasible to include all relevant optimization
methods in a benchmark study because published opti-
mization methods are only available in distinct software
or programming environments. In addition, optimization-
based fitting of ODE models requires the combination of
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several numerical tasks which do not perfectly coincide in
different programming languages or software package. As
an example, the trust region-based non-linear least square
optimization approaches implemented in Matlab and R
are not identically programmed and produce different
outcomes with distinct performances [36].

Moreover, there is not yet an established standard
for defining an optimization problem comprehensively
including all model equations, data, measurement errors,
priors, constraints, algorithms, and hyperparameters.
Thus, it is very elaborate and partly infeasible to include
approaches which are previously applied in other bench-
mark studies. This limitation demands for standardized
data and documentation formats like COMBINE archives
[37]. Nevertheless, including as many approaches as pos-
sible is an important and indispensible aim. For rea-
sonable interpretation of observed performances, it is
absolutely essential to implement at least one state-of-
the-art approach and to verify that the implementation
or the observed performance is coinciding with previous
benchmark studies.

G3: Selection of realistic and representative test cases
Because the performance of optimization approaches
strongly varies between the application models, a rather
large number of models is required to obtain a repre-
sentative and comprehensive set of test cases. However,
the number of available benchmark problems is very lim-
ited so far. Six benchmark models have been published in
[38]; however, four of them only contain simulated data.
Recently, a set of 20 benchmark problems with exper-
imental data sets has been published [32], but it still
remains difficult to perform larger benchmark studies.
Because of the small number of available test cases, it is
currently only hardly feasible to define a narrow scope of
such a study while still including enough test problems.

Simulation of data is valuable for understanding and
validation of an observed performance loss in bench-
mark studies. However, as argued above as pitfall P1,
simulated data has only limited value for benchmarking
of optimization-based fitting approaches. Hence, bench-
mark studies based on experimental data are more repre-
sentative and thus are strongly recommended.

G4: Appropriate hyperparameters and software versions

Assessment of fitting approaches requires many deci-
sions at the level of the selection of approaches for the
various numerical tasks (e.g., for ODE integration, deriva-
tive calculations, global and local search heuristics) as
well as on the level of numerical hyperparameters (see
Table 1). As discussed above as pitfall P2, these configura-
tions of the optimization approaches commonly strongly
impact the performance. Some optimization approaches,
for instance, have weak performance if the bounds are
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reached during optimization and the performance there-
fore critically depends on the initialization. Therefore, the
strategy for the choice of all configurations (including
hyperparameters and software versions) has to be pre-
specified, and it has to be checked carefully that individual
optimization approaches are not privileged in order to
guarantee fair comparisons.

To the best of my knowledge, existing differences
between subsequent versions of the same software pack-
age as well as their impact have not been investigated
yet. Nevertheless, in order to guarantee full reproducibil-
ity, it is essential to comprehensively describe the applied
approach including software versions. Software tools for
enhancing the reproducibility of computational analyses
have been summarized previously [12].

G5: Evaluation in terms of key quantitative metrics

Optimization is in almost all circumstances assessed by
means of convergence, i.e., in terms of probabilities or
frequencies of finding local or global optima. Although
all local minima with statistically valid objective function
are of interest, commonly, the primary target is revealing
the global optimum. Nevertheless, for proving the appli-
cability and testing performance, it is usually also valid
to consider convergence to any kind of optimum because
whether the global or a local optimum is identified is often
only a question of the chosen initial guess and strongly
depends on the size of the search space. For determinis-
tic optimization, for instance, each optimum has a region
of attraction. Hence, the frequency of finding the global
optimum relative to the frequency of converging to a local
optimum is mainly a question of the size of the search
space and the location of the optimization starting points.

Computational efforts have to be distributed among
global and local search strategies, e.g., computational
efforts can be spent either for an increasing number or
for increasing lengths of the individual optimization runs.
In order to balance this trade-off, it is a very reason-
able strategy to assess the convergence to local/global
optima by calculating the expected runtime for a single
converged run as was recently suggested [29]. It should
be kept in mind, however, that runtimes are also dictated
by the computer system and especially by the degree of
parallelization. Thus, one has to ensure that the rating
of runtimes is fair. Moreover, it should be investigated
whether outcomes depend on the way of parallelization,
i.e., on the number of processors.

An additional issue is the definition of convergence
which is typically done based on thresholds for the objec-
tive function relative to the overall best known solution.
The choice of the threshold is a covariate and it is impor-
tant to investigate its impact. Furthermore, the order of
magnitude has to be chosen properly, i.e., to guarantee
that only the fits which are in statistical agreement with
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data and measurement errors are counted as successfully
converged.

G6: Evaluation of secondary measures

The quality of documentation, user-friendliness, and code
quality are important for diminishing the risk of incor-
rect application of optimization approaches and thus are
valuable as secondary measures.

Other secondary measures mentioned in the literature
are only subordinately relevant since bad convergence
behavior cannot be compensated by other aspects. More-
over, traditional trade-offs, e.g., between precision and
recall or between bias and variance, do not apply when
assessing convergence of optimization algorithms.

Within a model calibration approach, there are many
aspects and details which have to match with each
other comprehensively. Therefore, algorithm develop-
ment requires expert knowledge, and traditional strategies
for tuning optimization approaches should be exploited
until a sufficient convergence behavior is obtained instead
of implementing a weakly tested custom solution. In con-
trast to other fields, the feasibility of user adaptation is
therefore not a secondary aim. From my perspective, cus-
tom heuristics are not recommended and should not be
included in benchmark studies.

G7: Interpretation and recommendation

The fitting of ODE models requires the combination of
several numerical tasks. Optimization only works reli-
ably, if all these components match together and perform
sufficiently well. Proper interpretation thus requires the
evaluation of the impact of all configuration options (see
the “P2: Ignoring covariates” section), and the effect of
these covariates has to be considered, for instance, by
multi-variate analysis of the performances [5].

Benchmark studies should intend to provide recom-
mendation rules about the selection of optimization
approaches for specific scopes of application as explicit
as possible, e.g., by deriving decision trees such as “use
approach A in case X, use B otherwise”.

An advantage of benchmark studies in this field is
that multiple optimization approaches can be applied
subsequently in order to optimize the objective func-
tion. One could therefore apply multiple well-performing
approaches consecutively if explicit rules for selecting
single approaches cannot be derived.

G8: Publication and reproducible reporting of results

For optimization, small technical details might deteriorate
performances and thereby strongly impact the outcomes
of benchmark studies. Thus, it is critically essential to
publish the source code of the performed analyses as
well as details and versions of programming environ-
ments, operating systems, and software packages. This
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also permits to subsequently extend the benchmark study
by additional optimization approaches as well as new test
problems. Thereby, continuous updates and refinements
are enabled that prevents studies from getting outdated.

Conclusions

Several methodological challenges appear for optimi-
zation-based parameter fitting of ODE models. The
available benchmark studies indicate that ODE models
from the systems biology field demand such a variety
of methodological requirements that each optimization
approach is prone to failing. Unfortunately, existing stud-
ies provide only a fragmentary and inconsistent picture
about the applicability of existing approaches, and there is
no consensus about the proper selection of optimization
approaches in the systems biology field. Thus, reliable fit-
ting of mathematical models remains a limiting bottleneck
in systems biology.

In this article, four major pitfalls for the design, analysis,
and interpretation of benchmark studies have been dis-
cussed. Moreover, general guidelines from the literature
were tailored to the optimization-based parameter esti-
mation setting. The presented pitfalls and guidelines indi-
cate conceptional needs: Standards for exchanging results
of model analyses have to be improved in order to per-
mit comparisons over multiple software environments. In
addition, approaches for discriminating between numeri-
cal convergence issues and local optima have to be estab-
lished. Moreover, there is an urgent need for further
realistic benchmark questions and challenges.

In order to obtain consensus within the community, it
seems a very promising strategy to make the entire fitting
environments available for the community, e.g., as online
tools where users can upload their models and data. This
would also guarantee the reproducibility of performance
assessment studies and enable future extensions by new
optimization methods or additional benchmark problems.
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