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Abstract

Sarcopenia is age‐related muscle wasting that lacks effective therapeutic interventions.

We found that systemic ablation of tumor necrosis factor‐α (TNF‐α) prevented sarcope-

nia and prevented age‐related change in muscle fiber phenotype. Furthermore, TNF‐α
ablation reduced the number of satellite cells in aging muscle and promoted muscle cell

fusion in vivo and in vitro. Because CD68+ macrophages are important sources of

TNF‐α and the number of CD68+ macrophages increases in aging muscle, we tested

whether macrophage‐derived TNF‐α affects myogenesis. Media conditioned by TNF‐α‐
null macrophages increased muscle cell fusion in vitro, compared to media conditioned

by wild‐type macrophages. In addition, transplantation of bone marrow cells from wild‐
type mice into TNF‐α‐null recipients increased satellite cell numbers and reduced num-

bers of centrally nucleated myofibers, indicating that myeloid cell‐secreted TNF‐α
reduces muscle cell fusion. Transplanting bone marrow cells from wild‐type mice into

TNF‐α‐null recipients also increased sarcopenia, although transplantation did not restore

the age‐related change in muscle fiber phenotype. Collectively, we show that myeloid

cell‐derived TNF‐α contributes to muscle aging by affecting sarcopenia and muscle cell

fusion with aging muscle fibers. Our findings also show that TNF‐α that is intrinsic to

muscle and TNF‐α secreted by immune cells work together to influence muscle aging.
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1 | INTRODUCTION

Aging skeletal muscle undergoes a gradual decline in mass, termed

“sarcopenia.” In humans, sarcopenia causes a 30%–50% reduction in

muscle mass from the fourth to the eighth decade of life and muscle

functional capacity declines at the rate of up to a 3% annually after

age 60 (Evans & Lexell, 1995; Melton et al., 2000; Metter, Conwit,

Tobin, & Fozard, 1997). Sarcopenia is also associated with decreased

muscle regenerative capacity that can further exacerbate loss of

function. Together, these changes lead to increased risk of falling,

loss of physical independence, and increased morbidity and mortality

(Landi et al., 2012; Patel et al., 2014; Xue, Walston, Fried, & Beamer,

2011). Although sarcopenia is influenced by intrinsic changes in mus-

cle (Sousa‐Victor et al., 2014) and by extrinsic factors from other

systems (Carlson & Faulkner, 1989; Fry et al., 2015), the specific

mechanisms that drive sarcopenia are largely unknown.

Inflammaging, the increase in chronic low‐grade systemic inflam-

mation that occurs during aging, is associated with sarcopenia and

frailty (Jo, Lee, Park, & Kim, 2012; Visser et al., 2002) and involves
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an increase in resident macrophage populations within aging muscles

(Wang, Wehling‐Henricks, Samengo, & Tidball, 2015). Macrophages

are primary sources of inflammatory cytokines, including tumor

necrosis factor‐alpha (TNF‐α), that have the potential to affect mus-

cle mass and function. TNF‐α increases in the serum of men during

aging (Léger, Derave, Bock, Hespel, & Russell, 2008) which correlates

with the loss of muscle mass and strength (Greiwe, Cheng, Rubin,

Yarasheski, & Semenkovich, 2001; Visser et al., 2002). Moreover, in

other models of muscle atrophy that include cachexia and injury‐in-
duced muscle atrophy, administration of exogenous TNF‐α to mice

decreases muscle mass and regenerative capacity (Coletti, Moresi,

Adamo, Molinaro, & Sassoon, 2005; Song, Saeman, Libero, & Wolf,

2015). Those data suggest that macrophage‐secreted TNF‐α may

play an important role in muscle aging.

TNF‐α may contribute to sarcopenia by regulating the number or

regenerative capacity of satellite cells. Satellite cells are specialized

myogenic stem cells that are located beneath the basement mem-

branes of muscle fibers and are required for muscle regeneration

and growth (Sambasivan et al., 2011). In response to injury, satellite

cells exit their quiescent state and then proliferate, differentiate, and

fuse with existing myofibers to provide new myonuclei and replace

or repair injured cells (Relaix & Zammit, 2012). These regenerative

functions of satellite cells can be affected by TNF‐α which reduces

myogenic differentiation through transcriptional activation of NF‐κB
and decreases protein stability of MyoD, a transcription factor that

plays a key role in regulating myoblast transition from proliferation

to differentiation (Guttridge, Mayo, Madrid, Wang, & Baldwin, 2000;

Langen et al., 2004). In addition, in vitro observations show that

TNF‐α has bimodal effects on myogenesis, promoting myoblast pro-

liferation at early stages of myogenesis while repressing myoblast

differentiation (Chen, Jin, & Li, 2007; Langen, Schols, Kelders, Wou-

ters, & Janssen‐Heininger, 2001; Palacios et al., 2010).

Coinciding with elevated serum concentration of TNF‐α, the myo-

genic capacity of satellite cells declines during aging (Conboy, Con-

boy, Smythe, & Rando, 2003; Sousa‐Victor et al., 2014), suggesting

the unexplored possibility that TNF‐α may contribute to sarcopenia

by influencing the regenerative capacity of aging satellite cells.

Intriguingly, whether the age‐related impairment of satellite cell func-

tion is caused by changes intrinsic to satellite cells or by extrinsic fac-

tors is disputed. For example, previous studies of transplanted

muscles showed impaired regeneration of young muscles trans-

planted into old animals but improved regeneration of old muscles

when incorporated into young animals (Carlson & Faulkner, 1989;

Roberts, McGeachie, & Grounds, 1997). Those observations indicated

a role for the tissue environment extrinsic to muscle cells in regulat-

ing their regeneration. Similarly, heterochronic parabiosis experiments

showed that exposure of aged satellite cells to a youthful environ-

ment could enhance the regenerative capacity of the skeletal muscle

from old animals (Conboy et al., 2005). However, other investigators

reported that transplanting old satellite cells into a young environ-

ment failed to restore the phenotype or myogenic capacity of satel-

lite cells (Bernet et al., 2014; Cosgrove et al., 2014). Despite the

apparent discrepancies that may be caused by different experimental

approaches, these data together suggest that both intrinsic and

extrinsic factors contribute to muscle aging. Interestingly, TNF‐α is

expressed in both myofibers and tissue‐resident macrophages in

aging muscle, suggesting that TNF‐α might serve as one of the nodes

integrating intrinsic and extrinsic factors affecting sarcopenia.

In this study, we used a mouse model with systemic genetic

ablation of TNF‐α (TNF‐α‐null mice) to test the hypothesis that

TNF‐α regulates sarcopenia and satellite cell function. We found that

ablating TNF‐α resulted in reduced sarcopenia and produced hyper-

nucleation of aging myofibers. Furthermore, our in vitro experiments

showed that TNF‐α intrinsic to satellite cells and TNF‐α secreted by

macrophages both influence myogenesis. We then specifically tested

the importance of myeloid‐cell‐secreted TNF‐α in vivo by performing

transplantation of wild‐type bone marrow cells (BMCs) into TNF‐α‐
null mice and found that myeloid‐cell‐derived TNF‐α contributed to

sarcopenia and reduced muscle cell fusion, establishing the role of

myeloid‐cell‐derived TNF‐α in influencing muscle aging.

2 | RESULTS

2.1 | Genetic ablation of TNF‐α prevents sarcopenia
and muscle fiber type composition switch in aging
muscle

QPCR analysis of quadriceps muscles from adult (12 months old) and

old (24 months old) wild‐type mice and showed that aging is associ-

ated with greater expression of TNF‐α (Figure 1a). We then tested

whether genetic ablation of TNF‐α affected age‐related changes in

muscle. TNF‐α‐null mice had no detectable expression of TNF‐α in

muscles at 12 or 24 months of age (Figure 1a). Quadriceps, soleus,

and gastrocnemius muscles showed significant decreases in wet mus-

cle mass in old wild‐type mice compared to adult wild‐type mice.

However, no change in muscle mass occurred during aging in TNF‐α‐
null mice (Figure 1b–d). Similarly, the decrease in quadriceps mass‐to‐
body mass ratio observed during aging in wild‐type mice was ablated

in TNF‐α‐null animals (Figure 1e). Because reductions in muscle mass

could reflect changes in the tissue other than changes in muscle

fibers themselves, we also assayed for changes in the cross‐sectional
area (CSA) of muscle fibers. Using this more specific assay, we found

that significant sarcopenia occurred by 20 months of age (Figure 1f).

Although quadriceps muscle fiber CSA decreased significantly

between 10 and 20 months of age in wild‐type mice, no reduction in

fiber size occurred in TNF‐α mutant mice during that period (Fig-

ure 1f). In addition, muscle fibers in 20‐month‐old, TNF‐α‐null mice

were significantly larger than age‐matched wild‐type mice (Figure 1f).

Preferential atrophy and loss of fast‐twitch fibers increase the

ratio of slow‐twitch fibers to total fibers in aging muscle (Deschenes,

Gaertner, & O'Reilly, 2013; Larsson, Sjödin, & Karlsson, 1978). We

performed slow myosin heavy chain (sMHC) staining on cross sec-

tions of soleus muscle and found that the percentage of sMHC+

fibers/total fibers increased in wild‐type mice from 10 to 20 months

of age. This age‐related change of fiber composition ratio was pre-

vented by TNF‐α ablation (Figure 1g,h). Together, these data show
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that TNF‐α contributes to muscle wasting and preferential loss of

fast‐twitch fibers during aging.

2.2 | Genetic ablation of TNF‐α promotes satellite
cell activation in aging muscle

Because satellite cell senescence during aging can contribute to sar-

copenia, we tested whether TNF‐α affects satellite cell activation in

aging muscle. At 10 months of age, the number of satellite cells per

unit volume (Figure 2a,b) was similar in wild‐type and TNF‐α‐null
mice. However, at 20 months, TNF‐α‐null mice had fewer Pax7+

cells, while Pax7+ cell number in wild‐type mice remained at a simi-

lar level compared to 10‐month‐old mice (Figure 2b). Our qPCR anal-

ysis results showed that at 20 months of age, quadriceps muscle

isolated from TNF‐α‐null mice had lower expression of Pax7 and

myogenin and increased expression of MyoD, compared to muscle

from wild‐type mice at the same age (Figure 2c).

2.3 | TNF‐α‐deficient mice have more myonuclei in
aging muscle and regenerative muscle

Activated satellite cells proliferate, differentiate, and then fuse with

existing muscle fibers to contribute to myogenesis following muscle

injury, creating centrally nucleated fibers that provide an index of

muscle regeneration. The number of centrally nucleated fibers was

very low in healthy noninjured quadriceps muscle of both adult and

old wild‐type mice (Figure 3a,b,d). However, more than 30% of the

muscle fibers in old, TNF‐α‐null mice quadriceps muscles were cen-

trally nucleated fibers (Figure 3c,d). Furthermore, many of the cen-

trally nucleated fibers showed more than one central nucleus in a

single plane of section, indicating an abnormal, hypernucleated state

(Figure 3c). The percentages of fibers with 1, 2, 3, or 4 and more

central nuclei increased significantly in old TNF‐α‐null mice compared

to old wild‐type mice (Figure 3e). Because the observed increase in

central nuclei in old TNF‐α‐null muscles could be caused by increased

F IGURE 1 Genetic ablation of TNF‐α prevents sarcopenia and age‐related change in muscle fiber type composition. (a) QPCR analysis of
TNF‐α expression in 12‐ and 24‐month‐old quadriceps muscles showed an increase in TNF‐α with aging. Values normalized to 12‐month‐old
mice. (b–d) TNF‐α deficiency prevented age‐related decrease in mass of quadriceps (b), soleus (c), and gastrocnemius muscles (d). (e)
Quadriceps muscle mass normalized to body mass declined from 12‐ to 24‐month‐old in wild‐type mice, but not in TNF‐α‐null mice. (f) TNF‐α
mutation prevented the decrease in fiber cross‐sectional area of the quadriceps muscles in wild‐type mice from 10 to 20 months old. (g, h)
Representative cross sections of soleus muscles of 20‐month‐old, wild‐type (g) and TNF‐α‐null (h) mice labeled with antibodies to sMHC.
Bars = 50 µm. (i) The percentage of sMHC+ fibers/total fibers in soleus muscles increased from 12‐ to 24‐month‐old in wild‐type mice, but not
in TNF‐α‐null mice. *Significant difference from young, genotype‐matched muscles at p < 0.05. #Significant difference from age‐matched, wild‐
type muscles at p < 0.05. N = 5 per data set
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muscle cell fusion and by translocation of myonuclei from their nor-

mal location near the fiber surface to a central location, we mea-

sured total number of myonuclei in muscle cross sections, including

both central and peripheral nuclei in the counts (Figure 3f,g). Total

number of myonuclei per muscle fiber in cross sections increased in

TNF‐α‐null mice, which validated an increase in fusion caused by the

TNF‐α mutation (Figure 3g). These results suggested that TNF‐α

deficiency increases muscle cell fusion with muscle fibers, leading to

more central‐nucleated fibers as well as increased nuclei per fiber.

We then performed acute injury to muscles of healthy, adult

TNF‐α‐null mice to test whether the increase in central nucleation

was restricted to aging muscle. Quadriceps muscles of 12‐month‐old
wild‐type and TNF‐α‐null mice were injured by BaCl2 injection and

central nucleation was quantified 21 days after injury. Our results

showed that injured muscles from TNF‐α‐null mice had more cen-

trally nucleated fibers compared to wild‐type muscles (Figure 3h,i).

2.4 | Myoblasts isolated from TNF‐α‐null mice are
more fusogenic than wild‐type myoblasts

We tested whether muscle‐derived TNF‐α inhibited satellite cell

fusion by analyzing in vitro primary cell cultures. First, we validated

that wild‐type myoblasts expressed TNF‐α in vitro (Figure 4a). We

then found that myoblasts isolated from TNF‐α‐null mice started fus-

ing and forming myotubes more rapidly than myoblasts from wild‐
type mice and at Day 6 after induction of differentiation myotubes

formed by myoblasts from TNF‐α‐null mice had more nuclei (Fig-

ure 4b). These data support our in vivo observation that TNF‐α defi-

ciency promotes muscle cell fusion and increases myonuclei numbers.

However, our qPCR analysis of primary muscle cells showed no sig-

nificant differences in Pax7, MyoD, or myogenin expression between

wild‐type and TNF‐α‐null mice (Figure 4c). Together, these findings

indicate that TNF‐α deficiency in satellite cells contributes directly to

their increased fusion capacity, without affecting their expression of

key transcription factors that influence muscle differentiation.

2.5 | TNF‐α secreted by macrophages affects the
fusion capacity of muscle cells

Our previous investigations showed that macrophage numbers

increase in aging muscle, consistent with a systemic increase in

proinflammatory cytokines during aging (Wang et al., 2015). We

assayed for TNF‐α expression in old muscle by immunofluorescence

and found that CD68+ macrophages in the muscle of healthy old

mice express TNF‐α (Figure 5a–c). We also observed that TNF‐α
accumulated in the connective tissue surrounding muscle fibers.

Moreover, necrotic fibers that were infiltrated by CD68+ macro-

phages also showed high expression of TNF‐α (Figure 5d–f). Unsur-
prisingly, TNF‐α was not detectable in TNF‐α‐null muscles (data not

shown). There was no difference in either CD68 mRNA expression

or the number of CD68+ macrophages in old wild‐type and TNF‐α‐
null mice (Figure 5g,h). We also tested whether TNF‐α ablation

affected the expression of other inflammatory cytokines that can

affect myogenesis (Authier et al., 1999; Lieskovska, Guo, & Derman,

2003). Our qPCR results showed that the expression of IFNγ, IL‐6,
and IL‐1β did not differ significantly in 24‐month‐old, TNF‐α‐null
muscles compared to age‐matched wild‐type muscles (Figure 5i).

Thus, TNF‐α‐null mice have normal expression of other proinflamma-

tory cytokines that can influence myogenesis, despite the deficiency

of TNF‐α. The results also show that changes in muscle fiber size
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and satellite cell numbers during aging that were caused by TNF‐α
ablation were not attributable to changes in macrophage numbers or

levels of other inflammatory cytokines. We next tested whether

TNF‐α deficiency in macrophages can contribute to increased activa-

tion and fusion of muscle cells. Conditioned media were collected

from bone marrow‐derived macrophage (BMDM) cultures from adult

wild‐type and TNF‐α‐null mice. Muscle cells were treated with condi-

tioned media for 2 days before induction of differentiation, followed

by another 5 days of treatment with conditioned media after induc-

tion of differentiation. Muscle cells receiving conditioned media from

BMDMs isolated from TNF‐α‐null mice had more nuclei per fiber

than cultures receiving media conditioned by wild‐type BMDMs

(Figure 5j). This shows that macrophage production of TNF‐α influ-

ences muscle cell fusion although changes in the expression of other,

untested proteins that occurred as a result of TNF‐α deletion could

also be involved in the treatment effects we observed.

2.6 | Transplantation of wild‐type BMCs into
TNF‐α‐null mice reduced myonuclei numbers and
increased sarcopenia

Because macrophages from TNF‐α‐null mice increased myoblast

fusion, we tested whether TNF‐α secreted by myeloid cells is impor-

tant in muscle aging by cross‐genotype bone marrow transplantation
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(BMT; Figure 6a). QPCR analysis and immunofluorescence showed

that TNF‐α‐null mice that received wild‐type BMCs had elevated

expression of TNF‐σ in skeletal muscle (Figure 6b,c). Wild‐type BMT

into TNF‐α‐null mice did not affect mRNA expression of pro‐ and

anti‐inflammatory cytokines or macrophage‐related genes (Fig-

ure 6d).

Twenty‐month‐old TNF‐α‐null mice that received wild‐type BMT

showed a partial restoration of sarcopenia. Although TNF‐α ablation

caused 49% larger CSA of quadriceps muscle fibers in 20‐month‐old
mice compared to wild‐type mice, BMT of TNF‐α‐expressing BMCs

into TNF‐α‐null recipients produced fiber CSAs that were only 33%

larger than controls (Figure 6e). However, the decrease in sMHC+

fiber percentage in soleus muscles induced by TNF‐α deficiency was

not prevented by wild‐type BMT (Figure 6f). In addition, wild‐type
BMT into old TNF‐α‐null mice reduced the number of centrally

nucleated fibers compared to old, nontransplanted, TNF‐α‐null mice

(Figure 6g). We also found that wild‐type BMT into old TNF‐α‐null
mice prevented the reduction in satellite cell numbers observed in

nontransplanted, old TNF‐α‐null mice compared to old wild‐type mice

(Figure 6h). In summary, these results indicate that BMCs from wild‐
type mice maintained satellite cell numbers and reduced cell fusion

while increasing sarcopenia.

3 | DISCUSSION

Relationships between elevations in serum TNF‐α in chronic diseases

and the occurrence of more rapid muscle wasting have been known

for many years (Beutler & Cerami, 1986). Similarly, associations

between elevated levels of circulating, proinflammatory cytokines

and the loss of muscle mass and function during aging are well‐
established (Visser et al., 2002). However, whether changes in circu-

lating, proinflammatory cytokines cause or merely correlate with

muscle wasting during aging is not established. The primary, novel

finding of the present investigation is that TNF‐α expression in nor-

mal, healthy, aging animals plays a significant role in influencing sar-

copenia and satellite cell numbers. In the systemic absence of

TNF‐α, sarcopenia is slowed and satellite cell numbers decline. Fur-

thermore, our findings show that TNF‐α expressed by myeloid cells

contributes significantly to sarcopenia and is sufficient to maintain

satellite cell numbers in aging, TNF‐α‐null mice. Thus, the systemic

shift of the innate immune system to a more proinflammatory status

that occurs during inflammaging may cause loss of muscle mass and

satellite cell numbers through mechanisms driven by TNF‐α pro-

duced by myeloid cells.

The finding that the systemic ablation of TNF‐α resulted in more

central nuclei and total nuclei in aging muscle fibers was particularly

intriguing to us. Adult skeletal muscle is a fully differentiated tissue

with little turnover of nuclei and central nucleation of muscle fibers

typically occurs only in muscle fibers that have regenerated after

injury or disease (Charge & Rudnicki, 2004). Our observation that

over 30% of myofibers in noninjured quadriceps muscles of TNF‐α‐

null mice were central‐nucleated suggests that in a TNF‐α‐deficient
environment, satellite cells undergo increased fusion with existing

myofibers without exogenous stimuli such as muscle injury. This

interpretation is supported by our in vitro findings that TNF‐α‐null
muscle cells show greater numbers of nuclei per cell than wild‐type
muscle cells. Furthermore, 20‐month‐old TNF‐α‐null mice showed

45% fewer Pax7+ satellite cells in comparison with age‐matched,

wild‐type mice, which may also reflect a more avid fusion with mus-

cle fibers in the absence of TNF‐α.
The increased nucleation of muscle fibers in old, TNF‐α‐null mice

and the slowing of sarcopenia suggest that the two outcomes may

be mechanistically related, although our in vivo data cannot
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definitively address the question. However, linkage of myonuclei

number and muscle fiber size is the basis of the “myonuclear

domain” hypothesis which asserts that a single myonucleus controls

the translational and transcriptional regulation of protein synthesis

for a limited cell volume known as the myonuclear domain. Although

more recent studies indicate that age‐related myofiber atrophy

results primarily from reductions in myonuclear domain size instead

of the loss of myonuclei numbers (Karlsen et al., 2015; Schwartz,

Brown, McLaughlin, Smith, & Bigelow, 2016), other findings show

that increased myonuclear fusion facilitates muscle hypertrophy,

especially when the myonuclear domain size exceeds a certain

threshold (Jo et al., 2012; Petrella, Kim, Cross, Kosek, & Bamman,

2006). The findings in the current study support the possibility that

the ablation of TNF‐α contributes to increased myofiber size in aging

muscle by increasing the frequency of muscle cell fusion with aging

muscle fibers.
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Our finding that slowing sarcopenia in TNF‐α‐null mice occurred

while there was an accelerated loss of satellite cells also relates to

our developing understanding of the relationships between satellite

cell numbers and the regulation of muscle mass during aging.

Although the age‐related decline in satellite cell number contributes

to the reduced regenerative capacity of injured, aging muscle (Brack,

Bildsoe, & Hughes, 2005; Fry et al., 2015), whether satellite cell loss

is sufficient to cause reduction in muscle mass in uninjured, aging

muscle is controversial. Targeted ablation of Pax7+ satellite cells that

produced a lifelong reduction in satellite cell numbers by approxi-

mately 70%–90% did not increase sarcopenia in sedentary mice (Fry

et al., 2015) and findings in the current study show that satellite cell

numbers can be reduced by about 45% in aging muscle, which leads

to a reduction in sarcopenia. However, neither investigation com-

pletely eliminated satellite cells. In addition, genetic ablation of Pax7‐
expressing cells caused deletion of satellite cells early in their myo-

genic lineage (Fry et al., 2015), while the current investigation

caused significant reductions in satellite cell numbers only in older

mice, apparently by biasing them toward a more differentiated state.

Thus, the relationship between satellite cell numbers and sarcopenia

may be influenced by the presence of injury, the magnitude and age

at which satellite cell numbers are reduced and by the method used

for their reduction.

Although the mechanisms through which TNF‐α ablation con-

tributes to loss of satellite cell numbers in vivo are unknown, we

hypothesize that the bimodal role of TNF‐α in regulating myogenesis

may underlie this effect. TNF‐α promotes myoblast proliferation at

early stages of myogenesis while repressing myoblast differentiation

(Chen et al., 2007; Guttridge et al., 2000; Langen et al., 2001; Li,

2003). Administration of TNF‐α to primary myoblast cultures

increased number of primary myoblasts incorporating BrdU (Li,

2003) and increased myoblast proliferation in C2C12 cultures

(Alvarez et al., 2002). However, administration of TNF‐α to myoblast

cultures after induction of differentiation inhibited the formation of

myotubes, decreased the total protein content, and decreased differ-

entiation (Langen et al., 2001). Thus, loss of TNF‐α expression in

aging muscle in vivo could reduce the proliferation of satellite cells

and promote their differentiation and fusion, which could produce

the phenotype we observe in old, TNF‐α mutant muscles.

The effects that we observe in aging muscle where there has

been a systemic ablation of TNF‐α or where TNF‐α has been partially

restored through BMT of wild‐type BMCs are consistent with TNF‐α
‐mediated effects on satellite cell proliferation and differentiation.

However, manipulation of TNF‐α levels either by TNF‐α mutation or

by BMT of TNF‐α‐expressing cells will likely have other effects on

muscle fibers that would also influence the phenotype that we

observe. For example, TNF‐α affects muscle mass through its cata-

bolic role in regulating muscle protein content. TNF‐α treatment of

differentiated myotubes activates NFκB, which can lead to reduc-

tions in protein content (Li, Schwartz, Waddell, Holloway, & Reid,

1998). TNF‐α also induces the ubiquitin‐proteasome system in

cachexia, which can be attenuated by blocking the activation of

NFκB signaling (Reid & Li, 2001). TNF‐α can also decrease muscle

protein content by inhibiting protein synthesis through the induction

of IL‐6 or inhibition of insulin‐like growth factor‐I signaling (Alvarez

et al., 2002; Frost, Lang, & Gelato, 1997). Increased TNF‐α levels can

induce apoptosis in disease models and during muscle aging through

the increase in cell death‐inducing receptor, Fas (CD95), and the

interaction of the TNF‐α receptor complex and the Fas‐associated
protein with death domain (Lees, Zwetsloot, & Booth, 2009; Li et al.,

1998). Thus, multiple mechanisms may underlie the reduction in sar-

copenia in TNF‐α‐mutant mice, in addition to the effects we report

concerning influences on satellite cell function and muscle cell fusion

during aging.

Another intriguing finding in the present study is that we showed

that TNF‐α secreted by both satellite cells and macrophages plays

important roles in regulating myogenesis. An increased fusion index

and ability to form myotubes in vitro was seen in both primary myo-

blast isolated from TNF‐α‐null mice and C2C12 myoblast cells cul-

tured with conditioned media from BMDMs isolated from TNF‐α‐null
mice. These data suggest that TNF‐α can regulate satellite cell func-

tion through both autocrine and paracrine regulation. Moreover, we

showed that TNF‐α‐null mice that received BMT of wild‐type BMCs

exhibited smaller muscle fiber size at 20 months of age compared to

TNF‐α‐null mice without BMT. Transplantation of wild‐type BMCs

into TNF‐α‐null mice also restored the number of satellite cells in

aging muscle and inhibited the hyperfusion of muscle cells seen in

nontransplanted TNF‐α‐null mice. These results indicate that myeloid

cell‐derived TNF‐α contributes to muscle aging by regulating satellite

cell function. However, transplantation of wild‐type BMCs into

TNF‐α‐null mice was insufficient to restore the age‐related changes

in fiber type, showing that TNF‐α derived from other cell types, like

aging muscle cells, also contributes to muscle aging.

Our study indicates a novel strategy for reducing age‐related
changes in muscle, especially sarcopenia, by manipulating the

immune system. Experimental or therapeutic modulation of TNF‐α,
which plays an important role in regulating satellite cell fusion in

aging muscle, may provide a particularly useful target for reducing

age‐related changes in muscle. Future investigations are needed to

fully elaborate the mechanism through which TNF‐α contributes to

muscle aging and the translational potential of reducing sarcopenia

through TNF‐α‐related therapies.

4 | EXPERIMENTAL PROCEDURES

A more detailed account of experimental procedures can be found in

the online Supporting Information Appendix S1 accompanying this

article.

4.1 | Animal treatments

Experiments involving mice were conducted according to the

National Institutes of Health (NIH) Guide for the Care and Use of

Laboratory Animals and were approved by the University of Califor-

nia, Los Angeles Institutional Animal Care and Use Committee. Fol-

lowing euthanasia, muscles were collected from wild‐type mice (C57
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BL/6) and TNF‐α‐null mice, weighed and then flash‐frozen for subse-

quent sectioning and histological evaluation or used for RNA isola-

tion. Other mice were used for BMT in which donor mice were 2‐
month‐old, female mice, and recipient mice were 12‐month‐old male

mice. Recipient mice were subjected to myeloablative irradiation

prior to BMT. Muscles and blood were collected from recipient mice

8 months following BMT.

4.2 | Histology and immunohistochemistry

Frozen cross sections were cut from the midbelly of quadriceps mus-

cles at a thickness of 10 μm. Hematoxylin‐stained sections were

used to quantify muscle fiber CSA and central nucleation. Total

nucleation was quantified in sections immunolabeled with antidys-

trophin and propidium iodide staining, as described in Supporting

Information Appendix S1.

Other frozen sections were immunolabeled with rabbit anti‐
sMHC, rat anti‐CD68, or mouse anti‐Pax7 and then used to quantify

numbers of slow muscle fibers, macrophages, or satellite cells,

respectively. Sections were also double‐labeled with anti‐CD68 and

mouse anti‐TNF‐α to identify TNF‐α‐expressing macrophages, as

described in Supporting Information Appendix S1.

4.3 | RNA isolation and quantitative PCR

Frozen muscles were homogenized and RNA was isolated, cDNA

generated, and QPCR performed as described previously (Villalta

et al., 2011). Primers used for QPCR are listed in Supporting Infor-

mation Table S1.

4.4 | Primary myoblast isolation and fusion assay

Primary myoblasts were isolated following a previous protocol

(Wehling‐Henricks et al., 2016) and detailed in Supporting Informa-

tion Appendix S1 and then cultured on coverslips. After 6 days of

growth in differentiation medium to induce cell fusion, cells on the

coverslips were immunolabeled with rabbit antidesmin. The number

of myonuclei per myotube was counted for 500 myotubes sampled

randomly on the coverslips, to determine a fusion index.

4.5 | Muscle cell fusion assay with conditioned
media from BMDMs

Bone marrow cells were isolated following a previously described

protocol (Wang et al., 2015; detailed in Supporting Information

Appendix S1) and differentiated to form BMDMs. The BMDMs were

then stimulated for 24 hr with activation media containing 10 ng/ml

MCSF. Conditioned media were collected following activation and

added to myoblast cultures. Two days after culture in conditioned

media, cells were cultured in DMEM only overnight followed by cul-

ture in BMDM‐conditioned media for 5 days, with media changed

every 36 hr. Coverslips were then collected for desmin staining and

fusion index quantification.

4.6 | Statistics

Data are presented as mean ± SEM. One‐way analysis of variance

was used to test whether differences between three or more groups

were significant at p < 0.05. Significant differences were identified

using Tukey's post hoc test. Comparisons of two groups of values

were analyzed using the unpaired, two‐tailed t test.
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