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Perfect flat band with chirality and charge ordering
out of strong spin-orbit interaction
Hiroki Nakai1✉ & Chisa Hotta 1✉

Spin-orbit interaction has established itself as a key player in the emergent phenomena in

modern condensed matter, including topological insulator, spin liquid and spin-dependent

transports. However, its function is rather limited to adding topological nature to band

kinetics, leaving behind the growing interest in the direct interplay with electron correlation.

Here, we prove by our spinor line graph theory that a very strong spin-orbit interaction

realized in 5d pyrochlore electronic systems generates multiply degenerate perfect flat bands.

Unlike any of the previous flat bands, the electrons in this band localize in real space by

destructively interfering with each other in a spin selective manner governed by the SU(2)

gauge field. These electrons avoid the Coulomb interaction by self-organizing their localized

wave functions, which may lead to a flat-band state with a stiff spin chirality. It also causes

perfectly trimerized charge ordering, which may explain the recently discovered exotic low-

temperature insulating phase of CsW2O6.
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E lectronic flat bands in momentum space are an ideal plat-
form for achieving the highest correlation in a zero-
bandwidth-limit1–3. A long history tells us that such flat

bands naturally arise in a class of geometrically frustrated lattices
like kagome, pyrochlore, and checkerboard lattices, which are
well-understood based on the line graph theory and its analogs4.
Recently, the importance of having flat bands in real correlated
materials is highlighted in twisted bilayer graphene5–7, where the
relationship between superconductivity and magnetism has been
extensively discussed. On top of finely tuning a magic ’twisting’
angle, a flat band arises by structurally introducing a pseudo
magnetic field onto a graphene layer8.

There is another trend to add some topological nature to these
flat bands9–11, expecting emergent fractional quantum Hall states
without a magnetic field, as they have a nonzero Chern number
and mimic the Landau levels. A small spin–orbit coupling (SOC)
helps to realize such nearly flat bands12, which are experimentally
observed in kagome lattice materials like CoSn13 and twisted
multilayer silicene14. Unfortunately, all these examples show that
the perfect flatness of bands is sacrificed if the system gains
topological properties15.

Indeed, SOC rather enhances an itinerancy of electrons. Its
major role had been to introduce some topological nature to the
kinetic motion of particles. In SOC electronic systems16–18, Berry
phase is introduced to energy bands, which had been serving as a
source of spin-dependent transports like anomalous Hall effect19

and spin Hall effect20,21. A surface state of topological
insulator22,23 is a Dirac state, which is another distinguishing
feature of energy bands induced by a weak SOC. When strong
electronic interactions are present, the topological band insulator
is transformed into a topological Mott insulator with a gapless
surface spinon excitations24. In Kitaev materials25, a very strong
SOC creates a more exotic spin liquid phase26 hosting Majorana
fermions, and antiferromagnets with topological magnons27,28.
Despite all these hallmark studies, there had been no example that
the SOC gives an impact on the electronic correlation effect.

Here, we prove analytically that a SOC-induced spin-depen-
dent hopping, which previously made the bands dispersive, per-
fectly flattens the energy bands of pyrochlore and kagome lattices
when it becomes comparable to other transfer integrals. Most
importantly, the SOC generates an SU(2) gauge field29 and
strictly selects the relative angles of electron spins. When electron
wave functions have these spin angles, they destructively
interefere30 and localize in real space. We obtain an analytical
form of such spin-twisted flat band wave function, allowing us to
access the important but most unreachable physical regime, the
strongest correlation. In analogy to the flat band ferromagnetism,
the SOC flat band may select its form by polarizing its spins in a
site-dependent manner avoiding the loss of on-site Coulomb
energy, resulting in a stiff spin chirality. When the nearest
neighbor Coulomb energy is introduced at quarter-filling, the
wave function further optimizes its form to a trimerized shape by
fully occupying half of the flat band wave functions, and
becoming a spin-singlet state. This mechanism may explain the
exotic trimerized charge ordering found in 5d pyrochlore
CsW2O6

31, where one-quarter of the pyrochlore sites become
perfectly vacant. The present model may provide a platform for
testing the interplay of strong correlation and spin topology.

Results
Model system. We introduce a minimal microscopic model for
5d pyrochlore oxides32 (see Fig. 1a) with CsW2O6 as a specific
example. A metallic W5.5+ ion on a pyrochlore lattice is sur-
rounded by a slightly distorted oxygen octahedron, and its elec-
tronic state is understood by considering the lowest Kramers

doublet of this ion (E2 in Fig. 1b). The E2 doublet comes out as
the mixture of t2g triplet in a trigonal crystal field by introducing
the strong SOC typical of the 5d electrons33. Its effective
momentum deviates from the values of the regular octahedra,
Jeff ¼ 3=2; Jzeff ¼ ± 1=2, by more than 10%. However, as in the
case of Iridates, the Jeff-picture works well34. In the present
quarter-filled case, the doublet carries 0.5 electrons on an average,
where the energy levels are well separated as E1− E2 ~ 200 meV
(see Supplementary A and B). For such doublet described by a
pseudo-spin, α= ↑, ↓, a conventional Hubbard type of
Hamiltonian35,36 is written as a sum of hopping terms with
spatially uniform transfer integral t and Coulomb interaction V
between the nearest neighbor sites, 〈i, j〉, as well as the on-site U

H ¼ Hkin þHI ;

Hkin ¼ ∑
hi;ji

∑
α;β

�tδαβc
y
iαcjβ þ iλcyiαðνij � σÞαβcjβ

� �
þ h:c:;

HI ¼ ∑
j
Unj"nj# þ ∑

hi;ji
Vninj;

ð1Þ

where cjα annihilates an electron with pseudospin α at site-j, and
njα and nj= nj↑+ nj↓ are their number operators. Eq. (1) has the
same shape as an effective Hamiltonian for Iridates targeting E3
doublet with Jeff= 1/2 and Jzeff ¼ ± 1=236. This is because both E3
and E2 consist of a1g and eπg orbitals, and their difference appears
only in the value of λ/t (see Supplementary A Eq. (S8) and C). We
note that due to small trigonal distortion, t and λ become slightly
bond-dependent. For simplicity, we first approximate them as
uniform and finally examine the effect of distortion. A bare
atomic SOC which may amount to ζ ~200–300 meV manifests as
a spin-dependent hopping integral λ. A vector νij is a coefficient
of Pauli matrices, σ= (σx, σy, σz), which is bond-dependent and is
determined by the crystal symmetry. For a uniform pyrochlore

lattice, we find νij ¼
ffiffiffi
2

p bij ´ dij
jbij ´ bijj with vectors bij and dij pointing

from the center of the tetrahedron to the bond center and along
the bond, respectively (see Fig. 1a). A mean-field phase diagram
of a model similar to Eq. (1) is studied at half-filling for Ir-
oxides37 showing that a strong SOC generates a topological band
insulator, a topological semimetal, and a topologically nontrivial
Mott insulator in increasing U. There, an overall evolution of
energy band structures in varying λ/t and U/t is studied in the
context of finding a good Weyl point near the Fermi level35,36. In
the present work, we notice that the SOC can drive another exotic
phenomena, a perfect flat band and a trimerized charge ordering.

Let us first set HI ¼ 0 and write down the energy bands by
varying λ/t in Fig. 1c. One finds a perfect flat band at the bottom
when λ/t=−2. There is another case, λ/t= 0, with a flat band at
the top, which is understood from the line graph theory.
Introducing the SOC is known to destroy the perfectness of this
top flat band12 as one can see from the band structure for
λ/t=−0.5. In the same context, it is shown that a perfect flat
band cannot have a nonzero Chern number15. Notice that among
the 32 bands, half contribute to the top flat band at λ/t= 0 which
gradually gains a bandwidth by λ < 0, while at the same time the
other dispersive half starts to shrink and finally becomes perfectly
flat at λ/t=−2.

The flat bands at both λ/t= 0 and −2 touch the other
dispersive bands at Γ-point. This band touching is neither an
accidental degeneracy nor a typical symmetry-protected band
degeneracy38. It is necessitated by the perfect flatness of bands,
combined with some symmetry of the lattice39,40. When the
perfect flatness of bands is lost at λ <−2t, the band touching
disappears and a gap opens (see Supplementary D), and at half-
filling, the system becomes a topological insulator.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28132-y

2 NATURE COMMUNICATIONS |          (2022) 13:579 | https://doi.org/10.1038/s41467-022-28132-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


We also show in Fig. 1d the band structure of a hyper-kagome
lattice at the same λ/t=−2, obtained by depleting 1/4 of the
pyrochlore sites, where we also find an 8-fold degenerate flat band
at the same location.

Phase diagram. The SOC-induced flat band clarifies the origin of
the trimerized charge ordering observed in CsW2O6

31. Figure 1e
shows a mean-field phase diagram at quarter-filling, corre-
sponding to two electrons per tetrahedron. We approximate the
Coulomb interaction termsHI using a Hartree-type of mean-field
and denote the solutions with n-charge-rich sites per tetrahedron
as n-in-(4− n)-out. A trivial paramagnetic metallic state with
uniform charge and spin distribution are dominant when the
Coulomb interaction is small. There is an emergent 3-in-1-out
state extending at around λ/t=−2, which has 2/3 electrons per
hyper-kagome site, keeping 1/4 of the site almost perfectly empty
(see the inset of Fig. 1e). The 2-in-2-out phase with about
0.35:0.15 charge disproportionation is stabilized only at λ/t≲−2.

The reason why 3-in-1-out is stable is understood by
comparing the band energies hHkini in Fig. 1f when pyrochlore
and hyper-kagome lattices host 8Nc electrons, where Nc is the
number of unit cells. A band-energy-gain is always larger for a
pyrochlore lattice with a larger coordination number and thus
having the larger bandwidth. Indeed, the λ > 0 region of the phase
diagram is dominated by a trivial metallic phase even for large U
and V. However, at λ/t=−2, the pyrochlore and hyper-kagome
band energies become degenerate because all the electrons fill the
bottom flat bands for both cases. The mean-field interaction

energy is roughly evaluated by hand as Emetal
I ¼ U þ 12V and

E3i1o
I ¼ 4U=3þ 32V=3 per unit cell for metal and 3-in-1-out,

respectively, which is consistent with our numerical evaluation
based on a mean-field approximation(see Supplementary E).
Then, the introduction of V/t≳ 1 stabilizes the 3-in-1-out state
against the metallic phase.

Spinor line graph theory. The perfect flat band at λ/t=−2
cannot be explained within any of the previous frameworks. Here,
we develop a spinor line graph theory to prove the existence of
SOC-induced flat bands, which can be applied to general line-
graph-related lattices. To this end, we first overview the flat band
theory for line graphs. Figure 2a, b shows the relationships
between the original lattice and its dual lattice described by red
circles. The pyrochlore lattice is a line graph of its dual lattice, a
diamond lattice, and by connecting pyrochlore and diamond
sites and deleting pyrochlore bonds, one reaches a bipartite
graph with blue bonds. The same relationship holds between the
kagome–honeycomb lattices.

Let us introduce an incidence matrix of a graph theory, TOD, to
describe the relationship between the original lattice and its dual
lattice. It is an N ×ND matrix and has one row for each
pyrochlore site and one column for each diamond site, where
N= 16Nc and ND= 8Nc denote the number of pyrochlore and
diamond lattice sites, respectively. The entry in row-i and
column-m is 1 if pyrochlore-site-i and diamond-site-Cm are
connected by a blue bond. If we take a product of the incidence
matrix with its transpose matrix TDO= t*TOD as (TODTDO), its ij-

-5

0

5

10

15

8-fold

-2 hyper kagome

-5

0

5

-10

0

-5

0

5

10
-0.5

-5

0

5

10 -1

-5

0

5

10

15

20

c

16-fold

-2
d pyrochlore

e

-2.6 -2.4 -2.2 -2 -1.8 -1.60

0.1

0.2

0.3

0.4

0

1

2

3

4

-3 -2 -1 0

metal

3in1out22iiinnn222ooouuuttt

f

pyrochlore
hyperkagome
breathing hyperkagome

-5

-4

-3

-2

-1

-3 -2 -1 0 1 2

5.5+W

+SOCoctahedron trigonal
undistorted

1 2

3 4

5
6

7 8

9 10

11 12

13 14

15 16

a

b

Fig. 1 Nature of energy bands and the ground state of the pyrochlore electron systems with strong SOC. a Unit cell of the pyrochlore/hyper-kagome
lattice based on the W-ions, which includes four primitive pyrochlore cells. Filled and open circles represent the occupied and unoccupied sites in the
trimerized charge order phase of CsW2O6, where the former forms a hyper-kagome lattice. bij and dij are vectors defined for bond i-j, determining the form
of the SOC. b Energy scheme of single W-5d surrounded by the oxygen ligand. c Noninteracting band structure (Eq. (1) with U= V= 0) of the pyrochlore
lattice for λ/t= 0, −0.5, −1, −2. The k-paths are chosen as in the left side panel. d Noninteracting band structure of the hyper-kagome lattice obtained by
depleting 1/4 of the lattice sites from the pyrochlore lattice with λ/t=−2. e Mean-field phase diagram of Eq. (1) on the plane of λ/t and V/t for U/t= 5.
Circles/triangles represent the boundary where the energy of the 3-in-1-out becomes lower than the metallic state and 2-in-2-out state, respectively.
(inset) Charge density 〈nj↑〉= 〈nj↓〉 of charge rich and poor sites at V/t= 3 of the mean-field solution. f Noninteracting band energy hHkini of the
pyrochlore, hyper-kagome, and the breathing hyper-kagome lattices.
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entry becomes 1 when there is a connection between ith and jth
pyrochlore sites mediated via the diamond site through two blue
bonds. The diagonal element of (TODTDO) has entry-2 since each
pyrochlore site can be transferred to its two neighboring diamond
sites and come back. Using this product form, a matrix
representation of a tight-binding Hamiltonian of the pyrochlore
lattice is written as

Ĥpyrochloreðλ ¼ 0Þ ¼ 2tÎ � tTODTDO; ð2Þ
where Î is a unit matrix. According to this equation, if there is an
N-dimensional vector φl that fulfills TDOφl= 0, it also satisfies
Ĥpyrochloreφl ¼ 2tφl . A set of such vector forms a kernel (null-
space) {φl} of TDO. Since TDO is non-square, the number of
independent φl, namely the dimension of the kernel is at least
N−ND= 8Nc(> 0). It means that there exist at least (N−ND)/
Nc= 8 flat bands in the pyrochlore lattice with an energy 2t,
which is the one found in Fig. 1c at λ/t= 0, where considering the
spin degeneracy, the number of flat bands is doubled.

The extension of the line graph theory to λ ≠ 0 is not
straightforward, since the hopping term is rewritten as

Hkin ¼ ∑
hi;ji

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ 2λ2

p
cyi Uijcj; Uij ¼ e�iθ2ν̂ij�σ ; ð3Þ

and includes a non-Abelian SU(2) gauge field Uij
29, where cyj ¼

ðcyj"; cyj#Þ and ν̂ ¼ ν=jνj is a unit vector. The gauge field along j→ i
enforces an SU(2) spin rotation about the νij-axis by an angle
θ ¼ 2 arctan ð ffiffiffi

2
p

λ=tÞ. We want to construct another incidence
matrix ~TOD, whose jn-entry represents a spin-rotating hopping of
an electron from the jth pyrochlore site to the Cn th diamond site.
It should be such that the ij-entry of ð~TOD

~TDOÞ will reproduce the
complex hopping of Eq. (3). In hopping twice along the blue
bonds, electron spin is rotated twice, ending up with the same
state as rotated by θ about the ν-axis. As we show in Fig. 2c,
considering the symmetry of the tetrahedron, the rotation axis in
hopping 1→ C1 is uniquely chosen along the bond pointing from
the vertex to the center of the tetrahedron, which we denote as
rC11

. The rotation angle is also uniquely chosen as π. Resultantly,

an incidence matrix ~TOD including the effect of SU(2) gauge field
for λ ≠ 0 is given as

ð~TODÞjCn
¼ �iðrjCn

� σÞ ¼ jrjCn
je�iπ2r̂jCn �σ ðconnectedÞ

0 ðotherwiseÞ

(
ð4Þ

As shown in the caption of Fig. 2, we take jrjCn
j ¼ ffiffiffi

3
p

for
convenience, while this value only influences the coefficient of the
second term of Eq. (5). Since the spin degrees of freedom is
explicitly included, the matrix has twice as large dimension as
TOD, and fulfills ~TDO ¼ t� ~TOD.

In the similar manner as Eq. (2), the incidence matrix is related
to a hopping matrix Ĥpyrochlore, i.e., a real-space matrix
representation of Eq. (3), as

Ĥpyrochloreðλ=t ¼ �2Þ ¼ �6tÎ þ t~TOD
~TDO; ð5Þ

when and only when λ/t=−2. To understand why λ/t needs to
take this value, we show in Fig. 2d an example; consider a spin at
site-1 pointing inside the 1− C1− 2 triangular plane with angle
−φ. For the present geometry of the pyrochlore lattice, we have
an angle θ0 ¼ arccosð

ffiffiffiffiffiffiffiffi
2=3

p
Þ spanned by 1→ 2 and 1→ C1.

When the spin is transferred by (~TOD
~TDO) it rotates by π twice,

takes the angle ðφþ 2θ0Þ at site-C1 and points to ð�φ� 4θ0Þ at
site-2. When θ0 ¼ �θ=4, this operation replaces the θ-rotation
about the ν-axis. This geometrical condition gives λ/t=−2, and
is a unique solution to fulfill Eq. (5). A kernel of ~TDO is a
manifold of eigenstate of Ĥpyrochloreðλ=t ¼ �2Þ with a constant
energy −6t, and has a dimension 2(N−ND). Therefore, we find
2(N−ND)/Nc= 16 flat bands at the energy bottom −6t.

A guide to design such SOC flat band is simple. The above
mentioned geometrical condition for angle θ can be generalized
to

riCn
´ ð�rjCn

Þ
riCn

� ð�rjCn
Þ ¼ � tan

θ

2
ν̂ij ¼ � λ

t
νij; ð6Þ

which is schematically shown in Fig. 2e. Using Eq. (6), one may
search for a lattice geometry that gives a reasonable vaule of λ/t.
Another expression for this condition uses a Wilson loop operator
AjCni

around the closed loop i→ Cn→ j. Eq. (6) is equivalent to

having A2C11
¼ U12U2C1

UC11
¼ e�iθ2ν̂12�σe�iπ2r̂2C1 �σe�iπ2r̂C11�σ ¼ �I.

The condition means that for two dimensional lattices, the SOC
vector ν shall point in the out-of-plane direction, and also when
θ= π, the ij-bond takes t= 0 and λ ≠ 0. Since such parameter
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Fig. 2 Spinor line graph theory. a Pyrochlore lattice and its dual diamond
lattice (Cj) in the red circle. The two lattices are connected and form a
bipartite graph on the right panel. b Kagome and its dual honeycomb lattice,
where νij= (0, 0, ±1). Noninteracting band structures for λ/t= 0 to

ffiffiffi
3

p
are

shown. c Unit tetrahedron. Hopping 1→ 2 rotates the spin orientation by θ
about the ν21-axis, whereas hopping through 1→ C1→ 2 rotates the spin
orientation twice by π each about the rC11

¼ ð1;�1; 1Þ and rC12 ¼ ð�1; 1; 1Þ
axes for site-1 and 2 in Fig. 1a. Here, jrC1 1j is 8 times larger than the true
1→ C1 vector when taking the length of the cell as unity. d Example of spin
rotation along two paths that fulfill Eq. (5). e Condition to have SOC flat
band in Eq. (6).
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values may not easily be realized, the edge-shared lattices like
square, checkerboard, and honeycomb lattices may not be
considered as realistic examples.

The spinor line graph theory is applied to kagome and hyper-
kagome lattices. For a kagome lattice, as shown in Fig. 2c, a usual
λ= 0-flat band at +2t starts to gain bandwidth with λ ≠ 0, while a
dispersive bottom band shrinks and becomes a SOC flat band at
−4t when λ ¼ ±

ffiffiffi
3

p
. (See Supplementary F for details).

Destructive interference. Although treating a quantum many-
body model beyond a mean-field level is too challenging in
general, our case with a zero-bandwidth at λ=−2t may become
simpler since it practically corresponds to a strong coupling limit
which can be partially treated analytically. Among the one-body
flat bands orbitals, φlα (l= 1,⋯ 16Nc, α= ↑, ↓), half are filled
when we consider CsW2O6. The set of one-body flat bands is
chosen as their linear combinations, such that they minimize the
interaction energy loss in total when they are combined to form a
many-body flat band wave function.

The mth one-body flat-band eigenstate of Hkin including SOC
is written as ψm

�� � ¼ ∑j;αφ
m
jαc

y
jα 0j i, where the complex coefficients

φm
jα are the elements of 32Nc -dimensional vector ~φm that fulfills
~TDO~φm ¼ 0. This condition is factorized to the condition for each
tetrahedron; it prohibits a net propagation of electrons from four
pyrochlore sites labeled by j∈ n to an nth diamond site as

∑
j2n
ð�irCnj

� σÞ
φm
j"

φm
j#

 !
¼ 0; ð7Þ

which should be fulfilled for all tetrahedra n= 1,⋯,ND. In
visualizing this equation, we first set a fictitious SU(2) spinor χn
(two-dimensional vector) at the n-th tetrahedron center pointing
somewhere as in Fig. 3a. Suppose that the spins on four
pyrochlore sites point in the directions rotated by π from this
spinor about the blue-bonds. Among these four spins, if some
have finite weight φm

jα in the wave function, they need to be
canceled out by Eq. (7).

When considering the two adjacent tetrahedra, a spin shared
by them should fulfill the two conditions. This spin shares the
same π-rotation axis in hopping to the diamond sites on both
sides. Therefore, if it has a finite population in the wave function,
the two fictitious spinors on both sides are enforced to point in
the same direction. One example of ψm

�� �
is given as such that

they form a closed loop consisting of an even number of bonds,
shown in Fig. 3b. By assigning +1 and −1 weights alternatively
along the loop while fixing their spin direction in a way
mentioned above, a single electron is perfectly localized on the
loop. This is because if it wants to hop outside the loop, its
weights are canceled out by Eq. (7), which is the physical meaning
of a destructive interference30 or a kinetic frustration. The
product of one-body flat band wave functions becomes an
eigenstate ofHkin, which is also an eigenstate ofHI , namely of the
whole Hamiltonian.

We now consider a trimerized charge-ordered state based on a
flat band wave function. There are (16Nc+ 2) linearly independent
one-body states that belong to the pyrochlore flat band including
the pseudo-up/down-spins and band touching ones. Among them,
one can choose 4Nc × 2-independent ones, forming a loop
consisting of ten sites that belong to the hyper-kagome lattice
which we call loop-10 as shown in Fig. 3c (see Supplementary G).
A 3-in-1-out many body flat band wave function is thus given in a
factorized form, Ψ3in1out

�� � / Qn;σψ̂
10
n;σ 0j i, using a single electron

operator of loop-10, where ψ10
nσ

�� � ¼ ψ̂10
nσ 0j i. The index σ= ↑, ↓ of

ψ̂10
n;σ corresponds to χn= (1, 0) and (0, 1). In the present quarter-

filled case, since we need to put two electrons per tetrahedron,
namely 8Nc electrons on 4Nc × 2-independent loop-10 states, they
accomodate both pseudo-up and down spins and are fully
occupied. Therefore, Ψ3in1out

�� �
is a nonmagnetic singlet state.

These loop-10’s have finite overlap and distribute uniformly over
the whole hyper-kagome lattice with all sites having the same
electron occupancy of 2/3.

Apart from the case of CsW2O6, there is purely theoretical
interest in lower fillings. For no more than half-filling of flat
bands, one can prepare a many-body wave function consisting of
a product of loops, e.g., loop-6 state written in Fig. 3b that fulfill
Eq. (7). Here, by selecting the spin orientation for each, the whole
wave function is constructed as such that it gives the lowest hHIi.
When all these constituent one-body functions have finite overlap
with some others and cannot be disconnected into two groups,
one can fully avoid the double occupancy of electrons on all sites
by polarizing χn for all n in the same direction, which gives
〈Uni↑ni↓〉= 0. When V= 0, this wave function becomes the exact
and unique ground state of the Hamiltonian. This context is
analogous to the mechanism of flat band ferromagnetism of a
Hubbard model1,2; electrons choose which of the localized one-
body flat-band wave functions to occupy by fully polarizing their
spins at finite-U since Pauli’s principle helps the electrons to
avoid double occupancy in space.

When χn for all tetrahedra point in the same direction, the
many-body flat band state exactly keeps the relative angles of the
spins on four sublattices, which indicates the stiff chiral ordering.
As shown in Fig. 3d there are eight species of triangles in a unit
cell, whose spin orientations are shown for the case where the
fictitious spinor points in the +z-direction. These pseudo-spins
are exposed to an internal magnetic field generated by an SU(2)
gauge field, and its flux equals half of the solid angle Ωijk

subtended by the spin directions around the triangle. We
evaluated Ωijk= ni ⋅ (nj × nk) for four independent triangles in
Fig. 3d as a function of angle Θ of the fictitious spinor about the
+z-axis. We define a unit vector nj parallel to the pseudo spins
with the right-hand rule about +z-axis. At Θ= 0, π we find
maximum amplitude, Ω321= ± 16/27. In this case, this scalar
chirality contributes to a xy-component of an anomalous thermal
Hall conductivity for insulators or it might affect σxy for
metals41,42.

Discussion
Concerning the experimental findings, an important question is
whether the actual material parameters really fit to our scenario.
It is known that the 5d electrons are more extended in space with
a reduced value of on-site Coulomb repulsion U ~ 1− 2 eV5 and
an enhanced bandwidth, which may favor a metallic state32,34.
However, a large atomic SOC, ζ, comparable to transfer inte-
gral(t) usually dominates the t2g orbitals and splits them into
higher Jeff= 1/2 doublet and lower 3/2 quartet. A Mott insulating
Sr2IrO4 is reported to have t ~ 0.3 eV and ζ ~ 0.5 eV43, and
parameters of a honeycomb Kitaev material Na2IrO3 are eval-
uated as t ~ 0.27 eV and ζ ~ 0.39 eV from the first principles
calculation44. In CsW2O6, the value of SOC should be
ζ ~ 200− 300 meV, which is considered to be about half of that of
5d Iridates. A trigonal distortion of the crystal further splits the
Jeff= 3/2 quartet into two, and the lowest E2 doublet with Jzeff �
± 1=2 and Jeff ~3/2 is focused(see Fig. 1b).
In CsW2O6 the distortion angle, α= 55.71°, is slightly larger

than the regular octahedron 54.74°. Based on this information, we
examined in detail the energy-level splitting of W-5d in a trigonal
crystal field in Supplementary A and B, and by associating the
results with the energy band structure of the first principles cal-
culations without SOC, we estimated a set of material parameters
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as t ~ 0.06 eV, 10Dq ~ 2 eV, and Δ1 ~ 0.23 eV. By introducing
ζ ~ 0.1− 0.15(10Dq), the energy levels of the three doublets are
obtained and we find E1− E2 ~ 0.1(10Dq)= 0.2 eV, which is
reasonably large to justify our approximation dealing with only E2
doublets.

At ζ= 0 and in a trigonal crystal field, the E2 doublet has a
character of a1g, while with increasing ζ the contribution from eπg
levels becomes the same order as a1g. The spin-dependent hop-
ping integral λ originates from the direct and oxygen-mediated
indirect hoppings between eπg and a1g, and has different signs
from t coming from the a1g–a1g and eπg –e

π
g hoppings. We made a

microscopic evaluation of λ/t of CsW2O6 based on the Slater-
Koster parameter and found that the ratio ranges between
λ/t ~−3 to −1 depending on the ratio of direct hopping against
indirect hopping(see Supplementary C). Our SOC-induced flat
band can thus be reasonably realized in the material. We also
notice that in our theory, one does not need strictly λ/t=−2 to
have a trimerization, as the phase diagram shows that there is
some sort of pinning effect to the flat bands when the electronic
interactions are finite.

In the Jeff-picture the t2g orbital momentum Leff= 1 resembles
the p-orbital representation with its sign taken as minus, where
we find Jeff=− Leff+ S as good quantum numbers45. Then, the
magnetic moment M= 2S− Leff becomes zero for the undis-
torted octahedron, while for the present case the admixture of
levels coming from small trigonal distortion gives finite moment
〈Mz〉 still about half of that of the full moment of the electron,
while it is difficult to compare this directly with the available
experimental results.

In the low-temperature phase II, we expect the trimerized flat
band state, which has a Mott gap. This explains the sharp increase
of the resistivity at the transition temperature31. The many-body
flat band state on a hyper-kagome lattice we obtained is non-
magnetic, which may explain a finite spin gap.

Before the recent discovery of trimerized charge ordering that
keeps the Anderson condition31, CsW2O6 was considered to
undergo a Peierls-type of metal-insulator transition46. This was
partially because the DFT calculation showed a large enhance-
ment of the density of states near the Fermi level47, which was
ascribed to the electronically driven structural-metal-insulator

Fig. 3 Spin-dependent real space configurations of the SOC flat band states. a Relative spin configuration of flat band states. Spins on the vertices of the
tetrahedra are created from the center spin(red arrow) via SU(2)-rotation by π about the axes pointing from the center toward the vertex. The orientation of
fictitious spins at the center of two adjacent tetrahedra, Ci and Cj, point in the same direction as far as they are connected by a finite population of spins at the
vertex between Ci and Cj. b Schematic illustration of a one-body flat band wave function of loop-6. Weights of electrons on these sites align in a staggered
manner+ 1,− 1,⋯ , and spins are oriented in different directions marked with different colors, which are relatively fixed. c Schematic illustration of a loop-10
one-body flat band wave function on a hyper-kagome lattice. The product of these loop-10 gives the 3-in-1-out state. d Four different directions of spins in
different colors, which form eight different types of triangles in the many-body flat band wave function. The solid angle is evaluated for four pairs of triangles
separately as a function of angle Θ about a+ z-direction, and its summation given in broken line takes the maximum amplitude for Θ= 0, π.
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transition to a zig-zag-like one-dimensional structure. Other first-
principles calculations supported this picture arguing that the
SOC enhances the nesting instability48. Also, a certain amount of
lattice distortion takes place at the transition, and a hyper-
kagome lattice based on the charge-rich sites shows breathing
into large and small triangles with the difference in their bond
length by 2%31, which seemingly supports the Peierls transition.

To clarify that the SOC is the driving force of the trimerized
charge ordering, we finally show that it is difficult to attain such
perfect charge disproportionation solely by the lattice distortion
and without λ. Considering the type of structural distortion
taking place in the material, we modify the originally uniform t to
three classes: t0 shown in broken lines that connect the charge-
rich and poor sites, and t ± δ which form small/large triangles of a
hyper-kagome lattice. Figure 4a shows the density plot of charges
on the plane of λ and t0 for δ= 0. Only near λ ~−2t, one can
attain a nearly perfect (2/3: 0)-ratio of charge disproportionation
at t0 ≲ t. Notice that in general, t0 can never be smaller than even
half of t with such lattice distortion, although we examined the
whole range of t0=t ¼ 0 to 1. Figure 4b, c is the variation of rich/

poor 〈ni〉 as functions of t0 and δ, and a bandgap at the Fermi
level. There are two notable features. The charge density can be
very close to the flat band ones even though λ is off −2t, once we
decrease t0 slightly from 1. In contrast, the breathing effect, δ,
typical of the “Peierls transition”, does not change the charge
density, even when the bandgap increases as we see for the case of
λ= 0; the gap opening at δ= 0.1 with the disappearance of the
Fermi surface on the left panel is shown in Fig. 4d.

In revisiting the aforementioned previous works, the enhanced
density of states does not mean the Peierls instability but may
rather fit the scenario of possible SOC induced flat band, which
may not be perfect, but would be enough to drive the system to a
trimerized charge ordering. According to our theory, this charge
order is different from the conventional ones driven mostly by the
Coulomb interaction V. The interplay of SOC and transfer inte-
gral is its main source. U and V only indirectly support it, since
the flat-band wave function has an advantage over trivial elec-
tronic states in that, they could self-organize their shape freely
within the manifold of flat-band eigenstates and optimize their
charge configuration to avoid the Coulomb interactions.
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Fig. 4 Examination of the effect of lattice distortions: U=V= 0 and the transfer integrals being modified for t ! t0; t± δ. a Charge density
〈nj〉= 〈nj↑+ nj↓〉 for δ= 0 on the plane of λ/t and t0=t. Contour lines with charge rich/poor densities are drawn. b, c 〈nj〉 as function of t0=t and δ. Right
panel is the band gap for δ≥ 0 when t0=t ¼ 0:75 and 0.5. d Band structures for λ= 0 with t0=t ¼ 0:75 comparing the cases with δ= 0 (solid) and 0.1
(broken line). Right panel is the Fermi surface for the δ= 0 case.
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The present picture might be examined by an anomalous
thermal Hall measurement in the insulating phase or an anom-
alous Hall electronic transport in the metallic state by the hole-
doping to the material. In the previously known cases of the
intrinsic anomalous Hall effect, often the SOC acting on the
conducting electrons42 or the localized moments working as
spatially coplanar internal field onto the conducting electrons41

was considered as a source of the emergent gauge field. In our
case, the SOC is playing a more crucial role, as it works to kill
their momentum k and strictly selects the orientation of pseudo-
spin moments. These electrons may virtually propagate in space
since it is on a flat band. It is thus beyond the scope of the present
transport theories on how such features may appear in the
transport phenomena.

Data availability
The data that support the findings of this study are available on request from the authors.
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