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Cardiac remodeling consisted of ventricular hypertrophy and interstitial fibrosis is the

pathological process of many heart diseases. Fibroblasts as one of the major cells in

the myocardium regulate the balance of the generation and degeneration of collagen,

and these cells transform toward myofibroblasts in pathological state, contributing

to the remodeling of the heart. Peroxisome proliferator-activated receptor-γ (PPAR-γ)

coactivator-1α (PGC-1α) is vital to the function of mitochondria, which contributes to the

energy production and reactive oxidative species (ROS)-scavenging activity in the heart.

In this study, we found that fibroblast-specific PGC-1α KO induced cardiac remodeling

especially fibrosis, and Angiotensin II (AngII) aggravated cardiac fibrosis, accompanied

with a high level of oxidative stress response and inflammation.
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INTRODUCTION

Cardiac remodeling is the main pathological mechanism of heart failure which is characterized
by left ventricular hypertrophy and interstitial fibrosis (1, 2). Hypertension is the most common
cause of cardiac remodeling, in which the renin–angiotensin system (RAS) plays an important
role. AngII is a key trigger of heart remodeling, which stimulates the expression of TGF-β
through the angiotensin type 1 receptor, contributing to cardiac hypertrophy and fibrosis (3).
The myocardium is composed of several cell types and vascular and neuronal networks. The
types of cells include cardiomyocytes, cardiac fibroblasts (CFs), and endothelial cells. Also, there
is abundant and complex extracellular matrix (ECM) in the interstitium, including several types of
collagen proteins. Among these, type I collagen proteins account for more than 70% (4), which is
critical to maintaining the structural integrity of the heart and generates a stress-tolerant network.
CFs are a key source of ECM and are responsible for the homeostasis of the ECM, contributing
to tissue repair and fibrosis (5). Acute stimulation or progressive damage induces necrosis
or apoptosis of cardiomyocytes, followed by phagocytosis of neighboring cells. Myofibroblasts
surround the injury area and produce interstitial collagen, resulting in cardiac remodeling (6, 7),
but extensive ECM accumulation will lead to the dysfunction of the myocardium and finally
result in heart failure. In fact, there are no activated myofibroblasts in the healthy myocardium,
and CFs transfer to myofibroblasts and migrate to the injured area upon cardiac damage (8). In
addition, myofibroblasts are also derived from epithelial and endothelial cells through the process
of epithelial–mesenchymal transition (EMT) and endothelial–mesenchymal transition (EndMT),
respectively (9, 10). Moreover, myofibroblasts are characterized by the expression of alpha-smooth
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muscle actin (α-SMA), Cofilin, Palladin 4lg, and other markers
(11–13). As mentioned above, in physiological conditions,
the synthesis and degeneration of collagen are in dynamic
equilibrium. CF has been reported to secrete the collagenase
and stromelysin, which have the ability to degrade surrounding
interstitial collagens (14). In an injured heart, increased synthesis
of collagen that exceeds the rate of degradation can lead to cardiac
fibrosis. CFs are crucial in regulating the process of cardiac
remodeling, but the exact mechanism remains unclear.

Peroxisome proliferator-activated receptor gamma (PPARγ)
coactivator-1 alpha (PGC-1α) is an important coactivator of
several nuclear receptors and regulates mitochondrial function
in various organs and tissues, including the heart, brain, and
liver (15). Initially, PGC-1α was found in the brown adipose
tissue and skeletal muscle of the mice exposed to cold conditions,
and it plays a key role in thermogenesis (16). As the research
of PGC-1α moves along, researchers found that activated PGC-
1α stimulates mitochondrial oxidative metabolism. Thus, PGC-
1α is highly expressed in the heart, brain, and kidney (17–19).
The decreased expression of PGC-1α has been found in many
diseases, which is often accompanied by a change of metabolic
substrate from fatty acid to glucose (20, 21). Previous study
has reported that the reduction of PGC-1α exacerbated non-
alcohol fatty liver disease which eventually evolved into liver
fibrosis. Moreover, this pathological process was accompanied
by increased inflammation and oxidative damage (22). In terms
of the heart, PGC-1α knockout mice exhibit lower treadmill
running times and cardiac function decline after exercise
compared to wild-type (WT) mice (23, 24). The synthesis and
degeneration of collagen are energy-consuming and enzyme-
dependent processes. The myocardium is mainly composed
of cardiomyocytes and CFs, and both of them express PGC-
1α. Although whole-body PGC-1α knockout mice have been
reported to have heart dysfunction, the role of CF-specific PGC-
1α in the heart is still unclear.

In the present study, we investigated the role of PGC-1α in CF.
The activated fibroblasts have been considered the primary cause
of cardiac fibrosis, and PGC-1α is essential to maintaining the
function of CFs. Thus, we suppose that PGC-1α in CFs takes part
in regulating the process of heart remodeling. Herein, we utilized
the Cre-Loxp system to construct CF-specific PGC-1α knockout
mouse and further examined its effects on the heart. In addition,
we cultured CFs in vitro to study the function of PGC-1α.

MATERIALS AND METHODS

Animal Study
PGC-1αflox (C57BL/6J background), SM22αCre/ER (C57BL/6J
background) mice were obtained from the Jackson Laboratory
(Bar Harbor, ME, USA). PGC-1αflox/flox mice were bred
with SM22αCre/ER mice to produce SM22αCre/ER;PGC-1αflox/−

heterozygote mice. Then, heterozygote mice were bred with
PGC-1αflox/flox mice to produce SM22αCre/ER;PGC-1αflox/flox

(SP) homozygote mice. TheWTmice and SP mice we used in the
study are all 2- to 3-month-old male mice. The animal study was
approved in accordance with institutional guidelines established

by the Committee of Ethics on Animal Experiments at Shanghai
Jiao Tong University School of Medicine.

Identification of Transgenic Mice
SP mice were identified by tail DNA PCR using primers for
SM22α and PGC-1α (Supplementary Table 2). Mouse tail DNA
was extracted by Mouse Tail Genomic DNA Kit (CWBIO).
PCR was performed for 34 cycles with each cycle at 95◦C
for 30 s, 62◦C for 30 s, and 72◦C for 30 s. Finally, DNA
agarose gel electrophoresis was used to identify mouse genotype
(Supplementary Figure 1).

AngII-Induced Cardiac Remodeling
WT mice and SP mice were assigned to sham group and
AngII group, respectively. AngII group mice were implanted
subcutaneously with osmotic mini-pumps (Alzet, model: 2004,
ALZET R© Osmotic Pumps, Cupertino, CA, USA) to deliver AngII
(1.44 mg/kg/day) for 28 days. The sham group received the same
amount of saline.

Cell Culture
Primary CFs were isolated from 3 to 4-day-old male mice, as
described previously (25). Cells were cultured in DMEM with
20% FBS and 1% penicillin and streptomycin. Then, CFs in the
AngII group were stimulated by AngII (10−7 M) for 12 h.

Recombinant Lentiviruses
Lentiviruses carrying small hairpin RNA (shRNA) were
produced and purified by GeneChem. The PGC-1α shRNA
sequence was ACTATTGAGCGAACCTTAA, and the no-target
control shRNA sequence was TTCTGCGAACGTGTCACGT.
The viruses were used to infect CFs for 72 h (MOI= 10).

Histology and Immunostaining
Aortas fixed in formalin and embedded in paraffinwere sectioned
at 5µm. Masson or wheat germ agglutinin (WGA) staining was
performed using standard procedures. For immunofluorescence
staining, the paraffin-embedded and frozen sections of the heart
were incubated with primary antibodies for α-SMA (1:100)
(19245S, CST, Danvers, MA, USA), Col1a1 (1:100) (GB11022,
Servicebio, Wuhan, China), and F4/80 (1:100) (ab6640, Abcam,
Cambridge, UK). Antigen retrieval of the paraffin section was
obtained by heating the tissue slides in 0.01M citrate buffer, pH
6.0, at 100◦C for 5 min.

Quantitative Real-Time PCR
Total RNA was extracted from tissues and cultured cells using
TRIzol (Invitrogen, Carlsbad, CA, USA) followed by chloroform
extraction according to the manufacturer’s protocol. Total RNA
was reverse transcribed into single-stranded cDNA by incubation
with reverse transcriptase (EZBioscience, Roseville, MN, USA).
Real-time qRT-PCR was performed with SYBR Premix Ex
Taq kits with ROX (TaKaRa) according to the manufacturer’s
instructions. Signals were detected on an ABI PRISM 7900
machine (Applied Biosystems, Foster City, CA, USA). β-Actin
was used as a standard reference. Reactions were done at 95◦C
for 30 s followed by 40 cycles of 95◦C for 5 s and 60◦C for
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30 s. Sequences of primers used in this study are provided in
Supplementary Table 1.

Western Blotting
Frozen tissues were powdered and then homogenized in ice-
cold RIPA buffer (50mM Tris–HCl (pH 7.4); 10% Nonidet P-
40; 0.25% sodium deoxycholate; 150mM NaCl; 1mM EDTA;
0.5M NaF; 10mM sodium pyrophosphate) supplemented
with Protease Inhibitor Cocktail (BioTool Swiss, Kirchberg,
Switzerland) and a phosphatase inhibitor (BioTool). Cultured
cells were directly lysed in RIPA buffer. Proteins were applied
into 10% SDS-PAGE gel and blotted onto a PVDF membrane
(Merck Millipore, Burlington, MA, USA). Furthermore, blots
were incubated with α-SMA (1:1,000) (19245S, CST), TGF-β
(1:1,000) (3711S, CST), Col1a1 (1:1,000) (GB11022, Servicebio),
iNOS (1:1,000) (ab178945, Abcam), and GAPDH (1:1,000)
(5174S, CST) antibodies overnight at 4◦C and then incubated
with an HRP-conjugated antibody for 2 h at room temperature.
The signal was detected by chemiluminescence.

Statistics
Differences between two independent groups were determined
using Student’s t-test (two-tailed). To compare more than two
groups, one-way analysis of variance (ANOVA) was conducted
followed by post-hoc Dunnett’s testing for multiple-group
comparison by GraphPad Prism (GraphPad Software, San Diego,
CA, USA). Data represent mean± SEM. The significant level was
set at p < 0.05.

RESULTS

CF-Specific PGC-1αKO Aggravates
Cardiac Fibrosis
To determine whether the absence of PGC-1α in CFs could
impact on heart health, WT and CF-specific PGC-1α KO
mice were treated with AngII for 28 days. SM22αCre/ERT;PGC-
1αflox/flox (SP) mice were utilized to study the role of CF-specific
PGC-1α KO in cardiac remodeling, including interstitial fibrosis
and cardiac hypertrophy. Masson’s trichrome (Masson) staining
was performed to analyze interstitial fibrosis. Histology analysis
showed that WT mice developed significant heart fibrosis under
administration of AngII for 28 days. More importantly, dramatic
cardiac fibrosis was observed in both SP mice with and without
the stimulation of AngII, and the SP-AngII group exhibited a
higher level of fibrosis. Furthermore, SP mice developed more
severe fibrosis than WT mice after AngII infusion (Figure 1A).
In immunofluorescent staining of Col1a1 and α-SMA, increased
expressions of Col1a1 and α-SMA were detected in WT mice
after the stimulation of AngII. CF-specific PGC-1α KO induced
collagen deposition in the heart, and AngII infusion aggravated
it (Figure 1B). Then, qPCR was performed to explore the level of
gene expression. The mRNA levels of fibrosis markers including
collagen type I alpha 1 chain (Col1a1), collagen type III alpha 1
chain (Col3a1), TGF-β , and α-SMA were increased in specific
PGC-1αKO mice compared to WT mice. Under the stimulation
of AngII, the heart of SP-AngII mice presented upregulation

of fibrosis-associated genes compared with that of control-
AngII mice (Figure 1C). PGC-1αKO promoted the expressions
of Col1a1, TGF-β, and α-SMA in heart (Figure 1D). These results
indicated that PGC-1α plays an important role inmaintaining the
normal function of CFs, which can further influence heart health.

CF-Specific PGC-1αKO Aggravates
Cardiac Hypertrophy
To study the possible influence of fibroblast-specific knockout
of PGC-1α in cardiac hypertrophy, the following experiments
were carried out. Both AngII treatment and CF-PGC1a KO
induced the increase in the heart weight to body weight ratio,
but there was no significant difference between the SP-sham
and SP-AngII groups (Figure 2A). Masson and WGA staining
results showed that ventricular wall thickness and cardiomyocyte
size were increased in both WT mice and SP mice after the
stimulation of AngII. Without the infusion of AngII, there were
elevated ventricular wall thickness and cardiomyocyte size in
SP mice compared with WT mice (Figure 2B). Besides, CF-
specific PGC-1α KO resulted in elevated mRNA expression of
hypertrophic relative factors, including atrial natriuretic peptide
(ANP), atrial natriuretic peptide (ANP), brain natriuretic peptide
(BNP), Gata4, and myosin heavy chain β (βMHC) compared
with WT mice (Figure 2C). These findings suggested that CF-
specific PGC-1α KO aggravated cardiac hypertrophy, which was
independent of the stimulation of AngII.

CF-Specific PGC-1αKO Activates the
Oxidative Stress Response in the Heart
PGC-1α is considered as a suppressor in oxidative stress response
(26). To explore whether the knockdown of PGC-1α in CFs could
aggravate the oxidative stress in heart, the following experiments
were carried out. Dihydroethidium (DHE) staining was utilized
to examine the level of ROS. The results showed that the intensity
and the proportion of DHE-positive cells were elevated in both
WT mice and CF-PGC-1αKO mice after the stimulation of
AngII. The heart of SP mice exhibited a higher level of ROS
production than that of WT mice in both sham and AngII
infusion (Figures 3A,B). The protein expression of inducible
nitric oxide synthase (iNOS) was increased in both WTmice and
SP mice after the stimulation of AngII. Moreover, the content of
iNOS was at a higher level in SP mice compared to WT mice
without the treatment of AngII (Figure 3C). In addition, the
mRNA level of iNOS in the heart was measured. The results of
analysis were identical to the expression of protein (Figure 3D).
These data showed that PGC-1α knockdown in CFs aggravated
the oxidative stress response in the heart.

CF-Specific PGC-1αKO Aggravates the
Inflammatory Response in the Heart
Inflammation is an important process in cardiac remodeling.
The accumulation of inflammatory cells in the heart is closely
associated with development of cardiac fibrosis. Furthermore,
the activation of fibroblasts is responsive for elevated pro-
inflammatory cytokines, which promotes the proliferation and
migration of myofibroblasts and accelerates the synthesis of
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FIGURE 1 | Cardiac fibroblast-specific PGC-1αKO aggravates cardiac remodeling. (A) Representative cross sections of the heart stained for Masson and quantitative

analysis of the area of fibrosis (Masson staining). (B) Representative immunofluorescent staining of Col1a1 and α-SMA and quantitative analysis of immunofluorescent

staining of Col1a1 and α-SMA. (C) qPCR analysis of mRNA expression levels of PGC-1α and fibrotic genes (Col1a1, Col3a1, α-SMA, TGF-β). (D) Representative

Western blot and analysis of the expression of fibrotic proteins (Col1a1, α-SMA, TGF-β). N.S. indicates no significant difference. *p < 0.05, **p < 0.01, ***p < 0.001,

****p < 0.0001. Data represent mean ± SEM (n = 5 per group).
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FIGURE 2 | Cardiac fibroblast-specific PGC-1αKO aggravates cardiac hypertrophy. (A) Quantitative analysis of the ratio of the weight of mouse heart to body weight.

(B) Representative cross sections of the heart stained for Masson and WGA. Quantitative analysis of the thickness of ventricular wall (Masson staining) and

cardiomyocyte size (WGA staining). (C) qPCR analysis of mRNA expression levels of hypertrophic markers (ANP, BNP, Gata4, βMHC). N.S. indicates no significant

difference. *p < 0.05, **p < 0.01. Data represent mean ± SEM (n = 5 per group).

collagen (12, 27). To confirm the effect of PGC-1αKO in CFs on
inflammation, qPCRwas carried out to examine themRNA levels
of genes coding pro-inflammatory cytokines, including tumor
necrosis factor-α (TNF-α), interleukin 6 (IL-6), macrophage
inflammatory protein (MIP-1α), and monocyte chemotactic

protein 1 (MCP-1). After the treatment of AngII, the levels of
the above genes were elevated dramatically in WT mice. CF-
PGC1a KO mice showed upregulation of TNF-α, IL-6, MIP-
1α, and MCP-1 compared to WT mice, and AngII enhanced
the MCP-1 expression in SP-AngII mice (Figure 4A). Consistent
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FIGURE 3 | Cardiac fibroblast-specific PGC-1αKO activates the oxidative stress response in the heart. (A) Representative cross sections of the heart stained for DHE.

(B) Quantitative analysis of reactive oxidative stress as assessed by DHE staining. (C) Representative Western blot and analysis of the expression of iNOS. (D) qPCR

analysis of the mRNA expression levels of iNOS. N.S. indicates no significant difference. *p < 0.05, **p < 0.01. Data represent mean ± SEM (n = 3–5 per group).
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FIGURE 4 | Cardiac fibroblast-specific PGC-1αKO aggravates the inflammatory response in the heart. (A) qPCR analysis of the mRNA expression levels of

inflammatory genes (TNF-α, IL-6, MCP-1, MIP-1α). N.S. indicates no significant difference. (B) Representative cross sections of the heart stained for F4/80 and

quantitative analysis of the number of positive cells. *p < 0.05, **p < 0.01, ***p < 0.001. Data represent mean ± SEM (n = 5 per group).

with this, there was more amount of macrophage infiltration in
the heart of SP mice than WT mice. Moreover, AngII induced
inflammation response (Figure 4B). Based on the results, we

concluded that PGC-1α in CFs might take part in the regulation

of inflammation.

PGC-1α KO in CF Promotes the Expression
of Fibrosis-Related Genes
To rule out the effect of cardiomyocytes, CFs were cultured
in vitro to find direct evidence that PGC-1α plays a vital role
in maintaining the function of CFs. Lentivirus PGC-1α RNA
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FIGURE 5 | PGC-1α KO in cardiac fibroblast promotes the expression of fibrosis-related genes. (A) Representative CF treated with PGC-1α-knockdown lentivirus (LV)

and control virus (Con). (B) qPCR analysis of the mRNA expression levels of PGC-1α in the LV and Con CF groups. (C) qPCR analysis of mRNA expression levels of

fibrotic genes (Col1a1, α-SMA, TGF-β). N.S. indicates no significant difference. *p < 0.05, **p < 0.01, ***p < 0.001. Data represent mean ± SEM (n = 3

independent experiments).
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interference (RNAi) was used to knock down PGC-1α expression
in CFs (Figures 5A,B). Without the stimulation, cells knocked
down of PGC-1α were detected to have higher mRNA levels
of Col1a1, TGF-β , and α-SMA at baseline. AngII stimulation
resulted in an increased expression of fibrosis markers, including
Col1a1, TGF-β , and α-SMA in both experimental group and
control group. Also, there is no significant difference in the
expression of TGF-β and α-SMA between Con-AngII and LV-
AngII cells (Figure 5C). These results indicated that PGC-1αmay
be involved in mediating the activation of CFs.

DISCUSSION

An increasing number of studies have emphasized the
relationship between heart remodeling and metabolism.
PGC-1α is an important regulator of mitochondrial biology and
energy metabolism, and the repression of PGC-1α accelerates
cardiac dysfunction and the clinical signs of heart failure (24).
Some mechanistic studies have shown that the protective role
of PGC-1α in heart requires the activation of Sirtuin 1 (SIRT1),
which is a redox-sensitive enzyme. Furthermore, the SIRT1-
PGC-1α axis is vital to the performance of cardiac protection
through decreasing inflammation, oxidative stress, fibrosis,
and so on (28, 29). However, the underlying mechanism of
PGC-1α-mediated cardiac remodeling is still unclear. Herein,
we unveil the specific role of PGC-1α in regulating the function
of CFs, which accelerates cardiac remodeling including cardiac
fibrosis and cardiomyocytes hypertrophy.

Reduced PGC-1α is associated with impaired mitochondrial
biology in heart diseases and energy expenditure (30). PGC-1α
is also considered as a vital regulator of the scavenging of ROS.
There is research reporting that ROS accelerates the deposition
of collagen through the activation of p53, which results in
severe fibrosis (31). In this study, ROS levels were increased
in WT mice after AngII infusion, which has been proved
to be associated with inhibition of PGC-1α-activated catalase
expression (32). Our data showed a slight increase in PGC-1α
expression in the heart of WT mice after treatment with AngII.
More importantly, AngII failed to enhance PGC-1α expression
in the heart of SP mice, which suggested that AngII-induced
the PGC-1α upregulation in whole heart tissue which might be
attributed to the impact of CF on other cells. Hence, we proposed
that the absence of PGC-1α in CFs exerts impact on other cells
in the heart, leading to the aggravation of cardiac remodeling.
In addition, PGC-1α is an essential component of inflammatory
response. Overexpression of PGC-1α inhibits the production
of pro-inflammatory cytokines and promotes the secretion of
anti-inflammatory cytokines in the heart, preventing the heart
from getting damaged (33–35). In our study, CF-specific PGC-
1α knockdown promoted the expression of pro-inflammatory
cytokines in the heart, which indicated that PGC-1α in CFs
took part in the inflammatory response. Previous report has
demonstrated that pro-inflammatory cytokines facilitated the
transition of CFs tomyofibroblasts (8). According to the research,
there are only ∼2% activated CFs in the adult heart (36).
Our data shows that in CF-specific PGC-1α KO mice, plenty

of activated CFs convert into myofibroblasts even without
the stimulation of AngII by detecting the high expression of
fibrosis markers and cardiac hypertrophy markers. All these data
show that PGC-1α in CFs, as a versatile factor, plays a vital
role in regulating cardiac remodeling. On the contrary, several
researches demonstrate that overexpression of PGC-1α beyond
physiological content leads to mitochondrial proliferation and
myofibrillar displacement, which finally contributes to cardiac
failure (30, 37). Thus, maintaining PGC-1α in a physiological
stage is crucial for cardiovascular health. Our results exhibited
that both AngII and PGC-1α KO have an influence on cardiac
remodeling, which may indicate that PGC-1α and AngII perform
through an overlapping pathway. The aforesaid SIRT1 is an
essential protein in regulating the fibrosis-related pathway
in many organs through regulating gene transcription (38,
39). AngII-induced cardiovascular remodeling is reported to
be closely related to the reduction of SIRT1. On the other
hand, overexpression of SIRT1 suppresses the ROS-induced
p38/mitogen-activated protein kinase (MAPK) pathway, which
promotes the activation of CFs (40, 41). Moreover, as mentioned
before, PGC-1α plays a protective role through cooperating with
the activated SIRT1 (29). AngII and PGC-1α might affect the
function of SIRT1, leading to the activation of the p38/MAPK
pathway and the transition of CFs. There are some limitations
in our study. It remains uncertain whether overexpression of
PGC-1α could improve cardiac remodeling. Furthermore, the
underlying mechanism that CF-specific knockout of PGC-1α
participates in cardiac remodeling remains unclear, which still
needs further study.

In conclusion, we have discovered the PGC-1α-mediated
pathology of cardiac remodeling, especially cardiac fibrosis.
We propose that the absence of PGC-1α in CFs impairs
the balance of the synthesis and degeneration of collagen
through regulating ROS production and inflammation, leading
to deposition of collagens and cardiac remodeling. Our findings
reveal that PGC-1α is critical for the cardiac fibrosis by multiple
fibrogenic pathways.
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