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Abstract

Background: The unusual heterodimeric leishmanial DNA topoisomerase |IB consists of a large
subunit containing the phylogenetically conserved "core" domain, and a small subunit harboring the
C-terminal region with the characteristic tyrosine residue in the active site. RNA. silencing of any
of both protomers induces a non-viable phenotype in the hemoflagelate Trypanosoma brucei.
Unfortunately, this approach is not suitable in Leishmania where gene replacement with an
antibiotic marker is the only approach to generate lack-of-function mutants. In this work, we have
successfully generated null mutants in the small subunit of the L. major DNA topoisomerase IB using
two selection markers, each conferring resistance to hygromycin B and puromycin, respectively.

Results: We have successfully replaced both topS loci with two selection markers. However, to
achieve the second transfection round, we have had to rescue the null-homozygous with an
episomal vector carrying the Leishmania major topS gene. Phenotypic characterization of the L. major
rescued strain and a L. major strain, which co-overexpresses both subunits, shows few differences
in DNA relaxation and camptothecin cytotoxicity when it was compared to the wild-type strain.
Studies on phosphatidylserine externalization show a poor incidence of camptothecin-induced
programmed cell death in L. major, but an effective cell-cycle arrest occurs within the first 24 h. S-
Phase delay and G,/M reversible arrest was the main outcome at lower concentrations, but
irreversible G, arrest was detected at higher camptothecin pressure.

Conclusion: Results obtained in this work evidence the essentiality of the topS gene encoding the
L. major DNA topoisomerase IB small subunit. Reversibility of the camptothecin effect points to the
existence of effective checkpoint mechanisms in Leishmania parasites.

Background mosquito's bite-place [1]. The existing first-line therapies
Leishmania major is the aetiological agent of cutaneous  based on pentavalent antimonium salts are antiquated
leishmaniasis, a zoonotic neglected tropical disease char-  and toxic [2]. Paromomycin-based ointments and triazole

acterized by the presence of ulcerative skin lesions at the  antifungal agents (fluconazole, itrakonazole and ketoco-
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nazole) have variable and limited efficacy [3] whereas, the
clinical trials carried out with the promising alkyl-phos-
pholipid miltefosine [4] are scarce. A very recent report
carried out in Iran concluded that oral miltefosine was
apparently as good as pentavalent antimonium salts for
the treatment of L. major cutaneous leishmaniasis [5].

In this scenario there is an urgent need for new antileish-
manial drug targets. DNA topoisomerases (Top) catalyze
changes in the superhelicity of duplex DNA during repli-
cation, transcription, recombination and DNA repair
processes [6,7]. Two families and two subfamilies of DNA
topoisomerases play a pivotal role preserving DNA integ-
rity in all living organisms. Type I Top (Topl) are ATP-
independent monomeric enzymes introducing transient
single-stranded breaks in DNA, followed by passage and
rejoining. Type Il Top (Topll) are multimeric ATP hydro-
lyzing proteins that generate temporary double-stranded
breaks in the double helix, followed by passage and
rejoining. Topll not only relaxes positively supercoiled
DNA, but also displays catenation/decatenation and knot-
ting/unknotting activities. TopIA subfamily produces
transient covalent bonds at the 5' end of the broken DNA,
whereas TopIB subfamily has a specific cleavage polarity
at the 3' end [8].

Unlike all the organisms studied at present, TopIB from
trypanosomes and leishmanias are heterodimeric
enzymes [9-11]. Genetic analyses identified a gene,
located on the L. donovani chromosome 34, which
encodes a large subunit (LdTopIL) with an estimated
molecular mass of 73 kDa. This protein contains both the
non-conserved N-terminus as well as the conserved cen-
tral core domain of the enzyme, which includes all the res-
idues that interact with DNA, except the DNA-cleaving
tyrosine. On the other hand, the small subunit (LdTopIS)
is encoded by a second ORF located at chromosome 4.
This ORF encodes a 262-long polypeptide with a pre-
dicted molecular mass of 28-kDa. This polypeptide con-
tains the phylogenetically conserved "SKxxY" motif,
which includes the Tyr-222 that plays a role in DNA cleav-
age. [12]. This genomic organization was confirmed soon
after in African trypanosomes [13] and two genes encod-
ing for each TopIB protomer are annotated into the T.
cruzi Genome Project [14].

As in most eukaryotic cells, TopIB and ToplI are essential
to cell life [15,16]. Enzyme silencing of T. brucei Topll by
small RNA interference (RNAi) produces a singular phe-
notype lacking kKDNA, called dyskinetoplasticy that leads
to cell death [17]. Furthermore, RNAi-mediated silencing
of gene expression of each subunit of TopIB results in a
drastic reduction of both DNA and RNA synthesis in Afri-
can trypanosomes, mimicking the inhibition of nucleic
acid biosynthesis observed when bloodstream trypano-
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somes are treated with the specific inhibitor camptothecin
(CPT) [18].

Inhibitors of DNA topoisomerases represent a major class
of anti-cancer drugs and a growing number of them are in
clinical use [19]. Several studies have shown that CPT has
strong anti-trypanosomal and anti-leishmanial activities
in vitro, inducing DNA-cleavable complexes at the sub-
micromolar range [20]. The outcome of stable DNA cleav-
age is the generation of single- or double-stranded breaks,
which are believed to cause point mutations, fragmenta-
tion of the genome and eventually programmed cell death
(PCD) [21].

Since the mechanism for RNAi-mediated gene attenua-
tion is not functional in Leishmania parasites [22], the gen-
eration of null-mutants is only feasible through gene
replacement techniques that warranty the total disruption
of the target gene. The present work describes the pheno-
type of a null-mutant in the small subunit of the L. major
ToplIB, its sensitivity to CPT as well as the PCD induced by
this inhibitor in the aetiological agent of cutaneous leish-
maniasis L. major.

Results

Double targeted gene replacement of LmTopS

To asses the biological involvement of LmTopIB in relax-
ation of supercoiled DNA and CPT susceptibility, we tried
to create a null-mutant knockout in the topS locus by dou-
ble-targeted replacement with antibiotic resistant cassettes
[23], which were kindly provided by S.M. Beverley (Uni-
versity of Washington at St. Louis, Mo USA). Since topS
gene encodes the catalytic active site of LmToplIB, the
effective disruption of this gene should nullify the biolog-
ical function of the entire enzyme. To that purpose, we
created the targeting plasmids pSK-topS-KO-HYG and
pSK-topS-KO-PAC. They contain the respective antibiotic
resistance cassettes flanked by a 1000-bp region that
includes both the 5' and the 3' flanking regions of the topS
gene (Fig. 1A). First, topS-allele was replaced by HYG-
resistance cassette to create the heterozygous strain
(4topS::HYG). Hybridization with the external probe (EP)
shows a 1.7-kb Xhol fragment present in the genomic
DNA from WT promastigotes and an additional 2.6-kb
fragment corresponding to the effective first allele replace-
ment. Colonies isolated from this heterozygous strain
were perfectly viable and were used to perform the second
replacement round. When this strain was electroporated
with lineal pSK-topS-KO-PAC to create the homozygous
(AtopS::HYG/AtopS::PAC), a set of double resistant HYG/
PAC colonies were obtained (clones 1 to 5), which were
able to growth under antibiotics selective pressure. South-
ern analysis of the isolated clones shows that besides the
predicted 2.6 kb corresponding to the first allele replace-
ment, a second 2.2 kb-long band corresponding to the
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Figure |

Construction of L. major topS-null mutants (AtopS::HYG/AtopS::PAC), by double targeted gene replacement. A) Strategy for tar-
geted gene replacement. (Upper) The topS gene locus, the location of the upstream (UST) and downstream (DST) segments
used to target homologous recombination and 1.7-kb Xbal restriction fragments. The disruption constructs are shown imme-
diately below, including the UST and DST fragments, the Xbal and EcoRV terminal polylinker restriction sites. The targeted
gene replacement event is indicated below the thick arrow, showing the structure of the resulting chromosomal locus and the
predicted 2.6-kb and 2.2-kb Xbal restriction fragments that are diagnostic of the correct homologous integration events. X,
indicate Xbal restriction sites. Generation of the null-mutant required a second targeted gene replacement using a similar gene
disruption cassette containing a PAC marker. B) Southern blot containing 10 g of genomic DNA from WT parasites, hetero-
zygous knockout line after integration of the HYG gene disruption construct (+/-), (AtopS/AtopS) after integration of the PAC,
and (AtopS/AtopS+topS)after integration of the PAC in a clone previously transfected with an episomal vector pXG-top$ carry-
ing the topS genehybridized with a radiolabeled probe represented by a white box and located outside of the disruption region
(external probe, EP). C) The same blot shown in B after elution of the EP and rehybridization to the topS probe. The numbers
indicate the positions and sizes (kb pairs) of DNA molecular weight markers.

second gene substitution, was present (Fig. 1B). However, = pXG-topS construct, an episomal plasmid which expresses
the 1.7-kb Xhol fragment, which hybridizes with the EP,  the topS through the presence of the DHFR/TS locus of L.
still remains, showing an unexpected trisomy in the topS  major. This new strain was used for the second replace-
locus in clones 1, 3, 4 and 5. To remove this band, the het-  ment. Under these circumstances the 1.7-kb band effec-
erozygous (AtopS::HYG) clone was transfected with the  tively disappeared from the isolated clones showing only
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the 2.2 and 2.6-kb expected bands. They correspond to the
correct homologous integrations upstream and down-
stream of the topS locus. A Southern analysis of the clones
obtained in these experiments using the whole topS gene
as a probe, shows the effective replacement of both topS
alleles (lanes 8 to 12 of Figure 1C), in addition to the very
intense 3 kb band corresponding to the episomal topS
gene required to complement the topoisomerase defi-
ciency. One clone representing this new L. major strain
was called (A4topS/AtopS) + topS indicating the rescued
null-topS genotype.

Western analyses from WT, (dtopS/AtopS) + topS and
LmToplIB overexpressing strains were carried out to assess
the expression rate of the TopIB genes. For this purpose,
heterologous LdTopIL and LdTopIS polyclonal rabbit
antisera were used to hybridize with the transferred pro-
teins after SDS-PAGE. Figure 2A shows the results
obtained after hybridization with LdTopIL antiserum,
which evidences a significant 7-fold increase of the immu-
noreactive band corresponding to the LmTopIB-overex-
pressing strain. Figure 2B shows a similar Western blot,
but in this case the nylon membrane was hybridized with
LdToplIS rabbit antiserum, showing a ca. 7-fold overex-
pression of the small subunit, in both LmTopIB-overex-
pressing and (A4topS/AtopS) + topS extracts.

Phenotypic characterization of genetically manipulated L.
major strains

The phenotypic outcome of genetic manipulation on topS
locus was evaluated in the rescued (AtopS/AtopS) + topS,
LmTopIB overexpressing and WT L. major strains. The
growth rate of these strains was analyzed during a 96 h
span-time, 12 h stepwise, in the presence of different con-
centrations of CPT (0.5 to 25 uM). The proliferation rate
was measured by cell counting (Fig. 3A-C) using a Coul-
ter apparatus. No significant differences in growth rate
were noticed among the three strains under study. The
higher growth found in the WT promastigotes may be due
either to the genetic manipulation exerted over the other
two strains, or more probably to the continuous antibiotic
selection pressure exerted in the culture medium to main-
tain the strains. CPT was equally effective on the three
strains; dose-response curves determined after 48 h sub-
passages provided ICs, values of 0.56 uM, 0.39 uM and
0.30 uM for WT, (A4topS/AtopS) + topS and LmTopIB over-
expressing strains, respectively.

To evaluate the topoisomerase activity displayed by these
leishmanial strains, standard relaxation assays were per-
formed with WT, (4topS/AtopS) + topS and LmTopIB over-
expressing lysates coming from log-phase cultures. Time-
course (left lanes) and lysate dilution (right lanes) experi-
ments were carried out at 37°C. Under these experimental
conditions a clear distributive relaxation pattern was
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obtained (Fig. 5) in the three leishmanial strains. The WT
strain showed the slower and less active relaxation activity
(Fig. 4A). Most of the substrate was relaxed to different
topoisomers but perceptible supercoiled DNA still
remained after 20 min at the higher protein concentra-
tion. The relaxation activity of the other two strains was
faster and higher than that shown by the control. Figure
4B shows a fully relaxed DNA after 5 min in the LmTopIB-
overexpressing strain, and a 4-fold higher activity (com-
paring lane 3 in set B with lane 1 in set A). When the
LmTopIB-overexpressing strain was compared with the
rescued (AtopS/AtopS) + topS knockout (Fig. 4C), no differ-
ences in both time and protein dilution were observed. It
is remarkable that the scarce differences in relaxation
activity among strains were in accordance with the lack of
significant differences in CPT cytotoxicity.

To determine the phase of the cell cycle at which CPT
exerts its growth inhibitory effect, exponentially growing
L. major promastigotes were treated with different concen-
trations of CPT for 24 h and analyzed by flow cytometry.
Submicromolar concentrations of CPT did not appear to
exert any effect. A significant 51% of S-phase arrest
appeared after treatment with 1 uM CPT in the (AtopS/
AtopS) + topS strain, which was increased up to 64% in the
presence of 50 uM CPT (Fig. 5).

To determine whether or not CPT-induced S-phase arrest
is reversible, L. major promastigotes were treated for 24 h
to induce S-phase arrest. Then CPT was washed out and
cells were further incubated in fresh medium for an addi-
tional period of 24 h (R24) or 48 h (R48). CPT-treated WT
cells were able to revert the cell-growth arrest at the lower
drug concentration (5 uM) after 24 h, but the arrest was
irreversible at 50 uM CPT even after 48 h of drug with-
drawal (Fig. 6A). In case of LmToplIB-overexpressing and
rescued-mutant (AtopS/AtopS) + topS strains, CPT induced
irreversible S-phase arrest at any concentration tested
(Figs. 6B and 6C).

Progression of the cell cycle after chemical synchroniza-
tion was studied in the three L. major promastigotes
strains. The use of 5 mM HU, an inhibitor of ribonucle-
otide reductase, to reversibly arrest DNA synthesis, has
been previously reported [24]. After a 12-h exposure to
HU, the percentages of L. major promastigotes in the dif-
ferent cell cycle phases were: 65% in G;, 23% in S and
12% in G,/M. Promastigotes underwent cell cycle progres-
sion after HU removal, being the time required to com-
plete the first cell cycle dependent on the genetic
manipulation carried out into topS locus. Thus, the WT
phenotype needs 24 h to complete a cell cycle; this time
was longer for the LmToplB-overexpressing strain,
whereas the rescued-mutant (AtopS/AtopS) + topS com-
pleted the cell-cycle progression in a shorter period of 9 h.
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Figure 2

Expression of LmTopIB under different genetic manipulations
A) Western analysis measuring ToplL protein abundance of
WT, LmToplB-overexpressing and (AtopS/AtopS) + topS res-
cued strain, using a heterologous LdToplL polyclonal antise-
rum B) Similar to A but hybridizing to a heterologous
LdToplS polyclonal antiserum €) Similar to A and B but
hybridizing to a heterologous B-actin polyclonal antiserum.

These effects were independent of CPT treatment, which
strongly suggest, that they were due to the genetic manip-
ulation of the strains (Fig. 7).

Quantification of PS externalization in L. major
promastigotes

As a measure of CPT-induced PCD in L. major, a FACS pro-
cedure was carried out combining PI/annexin V double
stain. Promastigotes were cultured in presence of different
concentrations of CPT and at different time-points to find
the optimal conditions for PCD. Figure 8 shows the trans-
location of PS to the outer surface of plasma membrane of
drug-treated promastigotes at 0.1 uM, 0.5 uM, 1 uM, 5 uM
and 10 pM CPT. The three L. major strains used in the
study were incubated with different CPT concentrations
during a period of 24 h and then they were submitted to
the double stain protocol. Panels show a slight increase of
early and late apoptosis (bottom and upper-right sections
of each panel, respectively) regarding the untreated cul-
tures, which barely rose with CPT concentration. This
effect was also studied in the (AtopS/AtopS) + topS and
LmToplIB-overexpressing strains, which scarcely increased
this parameter. Since CPT did not significantly induce
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PCD at 24 h, we extended the incubation period up to 48
h using 10 uM CPT. Apoptosis was assessed after this time
(Fig. 9). Surprisingly, no significant differences were
observed in the three strains. These results indicate that
CPT is not inducing PCD in L. major cultures under the
experimental conditions using in our lab.

Discussion

Double targeted gene replacement is the method of choice
to create defective null-mutants in Leishmania parasites
[22]. A L. major TopIB-null mutant defective in the small
subunit of this enzyme (which contains the DNA-cleaving
tyrosine) was created to assess the role played by this
enzyme in parasite survival and CPT resistance. Since no
colonies were obtained repeatedly after a second round of
replacement, we suspected this gene was essential to Leish-
mania and its activity was not made up for other Top
enzymes. The outcome of incomplete replacement of
both LmTopIB alleles by selectable antibiotics was the
emergence of trisomies for the topS locus (lanes 1, 3, 4 and
5, Fig. 1), which is a non-atypical phenomenon in kineto-
plastids because of the plasticity of their genome [25].
Therefore, we decided to perform a previous transforma-
tion with a plasmid carrying the target gene for episomal
expression and genetic complementation before the sec-
ond round of genomic replacement. In this case, we suc-
cessfully obtained several colonies, in which the topS
allele was replaced by the antibiotic marker. Essentiality
of TopIB has been described in Drosophila [15] and mouse
[16], where the outcome of TopIB gene disruption is a
dead phenotype. The budding yeast is a remarkable excep-
tion to this phenomenon [26]. S. cerevisiae-deficient
ToplIB is viable and it is currently used as an important
tool for gene expression of foreign recombinant TopIB,
because the expression of these enzymes in bacteria is dif-
ficult and sometimes not feasible.

Gene silencing of TbTopIL and TbToplS genes was carried
out by Bakshi and Shapiro [18] using RNAi. These authors
found indistinct phenotypes when separately silenced
TbTopIL or TbToplS genes; detectable reduction in ribos-
omal RNA as well as in levels of specific messengers,
growth arrest, decrease in total nucleic acid biosynthesis
attributable to reductions in both DNA- and RNA-specific
synthesis. Absolute levels of nuclear and mitochondrial
transcripts were reduced. In L. major the single replace-
ment of one of the alleles originated a heterozygous phe-
notype that was no differentiable from the WT in both cell
growth and CPT sensitivity.

Neither the promastigotes from the genetically rescued
topS-null mutant nor the ones from TopIB overexpressing
strain, showed different growth rates or significant ICs,
values to CPT. These unexpected results correlated well
with the relaxation activities found in the extracts
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Sensibility of L. major WT (A), the rescued (AtopS/
AtopS+topS) strain (B) and the LmToplIB overexpresing
strain (C) to the specific ToplB inhibitor CPT. Cell density
was monitored at growing concentrations: (O) control; (V)
0.125 uM; (@) 0.25 uM; (V) 0.5 uM; (M) | uM; () 5 uM and
-25 (0) uM CPT by Coulter. Experiments were carried out
by triplicate and error bars represent standard deviations.

obtained from the different strains, where scarce differ-
ences were accounted. One likely explanation to this find-
ing is the possible degradation of the overexpressed
subunit, unless it is assembled with the large subunit
building an active enzyme. There are evidences showing
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that a coordinated expression of both subunits is neces-
sary in African trypanosomes. RNAI silencing of any one
of the TbTopIB protomers causes coordinated loss of both
subunits [18]. The authors have speculated that individual
proteins are stable only in association with each other,
becoming unstable when separated.

Several reports conclude that TopIB overexpression does
not involve higher relaxation activity or CPT susceptibility
in mammalian cells [27]. A recent paper describing the
transfection of human TopIB gene into OVCAR-3 cultures
- an ovarian cancer cell line — shows that, despite an effec-
tive seven-fold TopIB overexpression, the sensitivity to
topotecan - a CPT hydrosoluble analogue - was not
improved compared with control untransfected cells [28].
This observation agrees with the similar levels of TopIB
activity found in control and overexpressing cells, point-
ing to an effective post-translational down-regulation
mechanism that is limiting TopIB activity to supportable
values. These authors were tempted to speculate that
TopIB overexpression produces an alteration in the phos-
phorylation state of the protein that limits its activity and
prevents improvement of CPT response [29,30]. It is very
likely that the dispensable 40 amino acids-long sequence
comprised between Ser-96 and Ser-135 within the N-ter-
minal extension of LmTopIB small subunit which con-
tains 27 serine residues [31,32], may be suitable of
phosphorylation/dephosphorylation processes thus act-
ing as a post-translational switch mechanism.

CPT toxicity depends on the ability of DNA repair systems
to restore the basic cellular functions. TopIB overexpres-
sion may trigger the repair mechanisms linked to this
enzyme such as tyrosyl diphosphodiesterase I (Tdpl),
which prevents the formation of ternary complexes with
DNA in presence of CPT as well as the ubiquitination/
sumoylation pathways [33]. Ubiquitination is a down-
regulation mechanism that takes place with the hyper-
phosphorylated enzyme. TopIB degradation by 26S pro-
teasome may be useful to increase tolerance to DNA-
cleaving poisons, facilitating the phosphodiesterase activ-
ity of Tdp1 to excise Top1 from cleaved DNA [34]. On the
other hand, sumoylation seems to be a stimulatory system
via relocation of TopIB from nucleoplasm to the nucleo-
lus preventing the ubiquitin-mediated enzyme degrada-
tion [35].

Flow-cytometric analysis of 12 h HU-arrested L. major pro-
mastigotes shows a different cell-cycle recovering pattern
after drug withdrawal. The LmTopIB-overexpressing strain
shows a S-phase delay of the cell cycle, which is not fully
completed 24 h after chemical arrest. On the contrary, the
rescued-mutant (AtopS/AtopS) + topS completes the cell
cycle in a shorter period of 9 h, three hours before the WT.
Synchronized L. major promastigotes were exposed to dif-
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Figure 4

DNA relaxation activity of the L. major WT and the strain
genetically manipulated at the top$ locus. 0.2 Micrograms of
leishmanial extracts were incubated with 0.125 pg of Rfl
®X174 supercoiled DNA for 30 min at 37°C. Lanes | to 6
correspond to time-course experiments (0.5, I, 5, 10, 15, 20
min). Lanes 7 to 12 correspond to a two-fold serial dilution
assay of leishmanial extracts. A) WT; B) LmToplIB-overex-
presing strain; C) (AtopS/AtopS) + topS strain; N, nicked plas-
mid; R, relaxed plasmids; S, supercoiled plasmids.

ferent concentrations of CPT for a period of 24 h and then
they were washed and incubated up to 48 h in a CPT-free
medium. No differences were detected amongst the dis-
tinct strains at CPT concentrations below submicromolar
range. However, 1 uM CPT produced S-phase delay in WT
and (AtopS/AtopS) + topS strains and reversible G2 arrest at
5 uM CPT. The constant pressure (up to 24 h) following
CPT removal induces the activation of an S-phase check-
point in mammalian cells. Checkpoint activation pro-
vides additional time for DNA repair before starting a new
cell cycle [36]. Twenty four hours after 5 uM CPT removal
results in a complete recovery of the cell cycle in WT pro-
mastigotes, but a large percentage of (AtopS/AtopS) + topS
and LmToplIB-overexpressing  promastigotes  still
remained arrested at G,/M phase. However, 50 uM CPT
produced a clear irreversible arrest in G,/M in the three
strains analyzed.

Like other DNA damaging agents, CPT is an efficient
inducer of PCD [37,38]. Sen and coworkers [39] have
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described that CPT-mediated leishmanicidal effect in L.
donovani promastigotes appears after the mitochondrial
function is inhibited, which is in turn followed by an
increase in mitochondrial membrane potential. These
authors showed that CPT increases the intracellular con-
centration of reactive oxygen species (ROS), with the con-
comitant rise in lipid peroxidation and decline in the
concentration of the free radical scavenger glutathione. In
a second report, these authors described the involvement
of caspase-3 and poly-(ADP-ribose) polymerase (PARP)
cleavage in CPT-mediated apoptosis after depletion of
intracellular K+ and DNA fragmentation, in the same time
span [40]. These results were no reproducible in L. major
promastigotes under the assay conditions expressed in
Materials and Methods. Expanded time points and con-
centrations were not able to produce the effects described
by these authors. Unlike the aforementioned results,
where more than 50% apoptosis was found after an early
4-h exposure to 5 uM CPT, we could only detect — using
the PS/PI double stain assay — a scant 12% apoptosis after
48 h exposure to CPT. According to the current knowledge
on trypanosomatids genome, the apoptosis pathway
described by the authors downstream CPT-induced ROS
production, is very unlikely. No genes involved in the cas-
pase cascade and PARP cleavage have been annotated in
the Leishmania genome Project and the metacaspase-like
proteins recently described are not responsible for the cas-
pase-like activities in PCD [37,41]. Time and concentra-
tion experiments showed that the episomal
overexpression of the complete LmTopIB had poor
impact in CPT-mediated L. major apoptosis. These results
disagree with previous experiments carried out in COS
cells transfected with the yeast topIB encoding gene
(ScTopIB), since CPT treatment resulted in preferential
killing via apoptosis of those cells expressing the yeast
enzyme rather than in "mock" transfected cells [42]. A
possible explanation of these differences might consist in
the high differences in relaxation activity (ca. 100-fold)
produced by the transient transfection of ScTopIB gene in
COS cells.

Conclusion

The topS gene is essential for L. major survival, since the
previous genetic rescue with an episomal plasmid carrying
the topS gene was necessary to obtain a complete double
replacement of both topS alleles. Rescued (AtopS/AtopS) +
topS and LmToplIB-overexpressing strains had no charac-
teristic phenotype in both relaxation activity and CPT
resistance. This lack of phenotype can be due to post-
translational modifications or because the threshold that
may be needed to alter its function was not reached. How-
ever, CPT treatment and subsequent removal produced a
recovery of the arrested cell-cycle in G,/M, which was
delayed in the overexpressing strain. The poor CPT-
induced PCD observed in the three L. major promastigote
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Figure 5

FACS analysis of cell cycle progression and CPT-induced growth arrest in L. major promastigotes. Dose-response effect of
CPT-inducing cellular arrest. Fluorescence intensity representing the cellular DNA content is shown on the X axis, and cell
count is shown on the Y axis. A total of 20,000 events were collected in FACS analysis. The left-hand peak in each panel repre-
sents G, cells, the right-hand peak represents G, cells and the points in between, represent S-phase cells. Exponential growing
cultures were treated with the indicated concentrations of CPT for 24 h (T24). After drug removal (by rinsing the cultures in
drug-free medium), cells were further incubated in fresh medium for 24 hours (R24) or 48 hours (R48). Cells were collected at

each time point, and DNA content was analyzed.

strains suggests alternative cytotoxic mechanisms other
than those previously shown in L. donovani.

Methods

Parasite cultures

L. major LV39¢5 promastigotes (WT strain) were cultured
at26°Cin M199 supplemented with 10% (v/v) heat-inac-
tivated fetal calf serum (FCS).

Drug solutions

CPT (Sigma Chemical Co. St. Louis USA) was dissolved in
dimethylsulfoxide (DMSO) at 20 mM final concentration
and stored at -20°C.

Cloning of LdTopS and LdTopL genes and molecular
constructs

The gene encoding the catalytic subunit of LmToplIB (topS
a 789-bp fragment) was amplified by PCR from L. major
genomic DNA using the primers 5'-tcccccgggecaccAT-
GCAGCCTGTTCAAAGTCCT-3', and 5'-cgcggatcct-
caaaaatcgaagttctcgge-3' (capitalized letters are from topS).
Sequence of these primers was extracted from the L. major

Genome Database [43]. The resulting fragment was
digested with Smal and BamHI and cloned into the expres-
sion vector pXG [44] to make pXG-topS. The integrity of
this plasmid was confirmed by sequencing.

Two topS deletion constructs were created: pSK-topS-KO-
HYG and pSK-topS-KO-PAC. The topS ORF upstream
(UST) and downstream (DST) sequences (1.0 kb each)
were amplified by PCR using primers that incorporated
restriction sites suitable for subsequent insertion into the
polylinker region of the pSK Bluescript (Stratagene) vector
in a "head-to-tail" manner. The DNA fragments corre-
sponding to hygromycine B (HYG) and puromycin (PAC)
selection antibiotics were based on the Leishmania expres-
sion vector series pXG-HYG and pXG-PAC [45]. HYG and
PAC ORFs were obtained by digestion with BamHI and
Spel and cloned in between the UST and DST sequences of
the topS ORF. The resulting constructs (pSK-topS-KO-
HYG, and pSK-topS-KO-PAC) were digested with NotlI-
EcoRV to obtain linear topS deletion fragments (3.0 kb for
HYG-cassette and 2.6 kb for PAC-cassette, respectively).
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Figure 6
The same experiment to that shown in figure 5 was performed. B) WT; C) LmToplB-overexpressing strain and D) rescued
(AtopS/AtopS) + topS strain. Cells were collected at each time point, and DNA content was analyzed.
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Analysis of DNA content in L. major promastigotes after reversible arrest with HU. Cells obtained from 12 h-arrest with 5 mM
HU (time 0) were harvested and incubated in fresh media in presence or absence of 5 UM CPT. After the time periods indi-
cated, cells were stained with propidium iodide (Pl) and analyzed by flow-cytometry. The graphs represent the relative Pl fluo-
rescence plotted against the frequency of events per channel. Each plot represents data collected from 20,000 events/sample.

LmTopL encoding gene corresponds to the large DNA-
binding subunit of leishmanial TopIB. It was amplified
from L. major genomic DNA using the oligonucleotides 5'-
tcceccgggccaccATGAAGGTGGAGAATAGCAAGATG-3!
and 5'-cgcggatccCTACACCCTCAAAGCTGCAAGAGG-3'
(capitalized letters are from topL). The resulting fragment
was digested with Smal-BamHI and cloned into the
expression vector pXG-HYG, thus constituting the plas-
mid pXG-HYG-topL. An overexpressing LmTopIB strain
was obtained by double transformation with pXG-topS
and pXG-HYG-topL.

Deletion of the L. major topS gene
In order to replace first topS allele, L. major WT promastig-
otes, were grown up to 5 x 106 per ml, washed in cold

cytomix (120 mM KCl, 0.15 mM CacCl,, 10 mM K,HPO,,
25 mM Hepes pH 7.6, 2 mM EDTA, 5 mM MgCl,) [46]
and resuspended in the same solution at a concentration
of 1 x 108 promastigotes per ml. Five hundred-microliter
aliquots were electroporated twice with 5 ug of the linear
3.0-kb NotI-EcoRV topS::HYG fragment (1.5 kV, 25 pF
using a Bio-Rad Gene Pulser II apparatus) in 0.4 cm elec-
trode gap cuvettes, transferred to 10 ml of M199 plus 10%
FCS and incubated at 26°C for 8 h in absence of antibiot-
ics. Cells were spun down, and the pellet was resuspended
in 100 pl of fresh M199 plus 10% FCS and plated on sem-
isolid medium containing 30 pg/ml HYG. Heterozygotes
showing the replacement of one of the alleles topS (+/-)
were subjected to the second round of gene disruption.
With this purpose, they were electroporated with 5 pg of
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PS externalization as a consequence of CPT exposure; WT, LmToplB-overexpressing and rescued (AtopS/AtopS)+topS strains
were treated with different concentrations of CPT for 24 h and analyzed for PCD. Dead cells were excluded by Pl incorpora-

tion. Dot plots are representative of three independent assays.

the 2.6-kb NotI-EcoRV topS::PAC fragment. Five clones
(topS-1-5) that grew in the presence of 30 pg/ml HYG and
30 pg/ml PAC were selected as topS-null mutants
(AtopS::HYG/AtopS::PAC). Successful integration of both
cassettes was achieved in four out of the five clones. How-
ever, the replacement of the topS alleles was incomplete in
all the clones.

A new approach to get a double gene replacement was car-
ried out using topS heterozygous clones, which were trans-
fected with pXG-topS. Those clones that were resistant to
30 pg/ml HYG and 10 pg/ml G418 were selected and
named (-/+)/+ topS. This new clone was used to perform
the second round of gene disruption. Electroporation was
performed with 5 pg of the 2.6-kb NotI-EcoRV topS::PAC
fragment. Five clones that grew in the presence of 30 pg/

ml HYG, 10 pg/ml G418 and 30 pg/ml PAC were selected
as rescued topS-null mutants (AtopS::HYG/AtopS::PAC) +
topS, (this strain will be called: (AtopS/AtopS) + topS from
now on), since they have the episomal plasmid pXG-topS.

SDS-PAGE and Western Blotting

L. major promastigotes were harvested at different times
during the growth and washed twice with PBS. After soni-
cation and centrifugation at 10,000 x g for 20 min, the
supernatant was removed. Five micrograms of protein
from each time point were diluted in the loading buffer
(60 mM Tris-HCI, pH 6.8, 2% SDS, 5% 2-mercaptoetha-
nol, and 5% glycerol), boiled for 5 min, and analyzed by
SDS-PAGE (12% acrylamide, 2.7% bisacrylamide). Pro-
teins were electrotransferred onto PVDF membranes
(Sigma) for 12 h at 25-30 V/cm, and the blots were
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Time-course experiment of PS externalization due to CPT exposure. WT, LmToplB-overexpressing and rescued (AtopS/
AtopS)+topS strains were exposed to 5 pM CPT treatment for 24, 36 and 48 h. PS externalization was monitored by FACS.
Dead cells were excluded by Pl incorporation. Dot plots are representative of three independent assays.

blocked by incubation in 10 mM Tris-HCI, pH 7.5, 1 M
NaCl, 0.5% Tween 20, 5% non-fat milk powder (w/v) for
1 h at room temperature. Polyclonal primary rabbit anti-
bodies against L. donovani large LdToplIL, small LdTopIS
subunits and B-actin were added to this buffer and the
blot was incubated for 2 h. The filter was washed thor-
oughly in 10 mM Tris-HCI, pH 7.5, 1 M NaCl, 0.5%
Tween 20 and then incubated with an anti-rabbit anti-
body conjugated to horseradish peroxidase (Sigma Chem-
ical Co. St. Louis USA). Antibodies were detected using
3,3'-diamino benzidine as substrate (Biorad).

Assays for ToplB-mediated relaxation of plasmid DNA
The relaxation activity of LmTopIB was assayed at the
indicated time points using 2-fold serial dilutions of leish-

manial lysates. Each reaction contained 125 ng of super-
coiled close circular DNA from the virus ® X-174 (RfI) in
20 pl of reaction buffer (100 mM KCI, 10 mM Tris-HClI,

Platting cells
for 24 hr
7 911 14 24 hr
v 12 hr 2 hr L1l |
| HU 5mM |
A
5 uM CPT
75 min
Reference
Figure 10

Scheme of the culture synchronization with 5 mM HU and
CPT treatment.
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pH 7.5, 1 mM DTT, 1 mM EDTA). The reactions were
incubated at 37°C for 20 min and then stopped by the
addition of 5 pul of 5 x stop buffer (2.5% SDS, 25 mM
EDTA, 25% Ficoll 400, 0.08% bromophenol blue, 0.08%
xylene). The products were analyzed by electrophoresis in
1% agarose gel, stained with ethidium bromide, and visu-
alized with a UV transilluminator.

Flow-cytometric analysis of DNA content

For flow-cytometric analysis, 4 x 10° promastigotes were
harvested by centrifugation at 660 x g, washed twice with
PBS, resuspended in 1 ml of fixative solution (30% PBS/
70% methanol) and incubated at 4°C for 1 h. Afterwards,
parasites were collected by centrifugation, resuspended in
PBS containing 20 pg/ml of RNaseA (Roche, Mannheim,
Germany) and incubated for 20 min at 37°C. After incu-
bation, the cells were harvested, resuspended in 1 ml of
citrate buffer (45 mM MgCl,, 30 mM sodium citrate, 20
mM Mops, pH 7.0, 0.1% Triton X-100), and stained by
the addition of 50 pg of propidium iodide (PI) (Sigma, St.
Louis, MO, U.S.A.) followed by incubation at 37°C for 20
min. Fluorescence was determined by flow cytometry on
an FACSCalibur flow cytometer (Becton Dickinson, San
Jose, CA, U.S.A.).

Cell cycle synchronization and CPT treatment

For the synchronization of DNA replication, exponen-
tially growing L. major promastigotes (5 x 10° cells/ml)
were arrested with 5 mM hydroxyurea (HU) for 12 h.
Afterwards parasites were harvested, washed twice with
PBS and resuspended in fresh medium for 2 h before use.
Cells were then treated with 5 uM CPT for 75 min and
finally incubated in a CPT-free medium for the time indi-
cated in the scheme of Figure 10.

Determination of apoptosis

Apoptosis was detected by translocation of phosphatidyl
serine (PS) to the cell surface with the annexin V-FITC rea-
gent (BD Pharmigen). Fraction of annexin V-positive cells
was measured with CellQuest software (BD Biosciences,
San Jose, CA).
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nal probe (EP); Fluorescence Activated Cell Sorting
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(PS); Small RNA interference (RNAi); Reactive Oxygen
Species (ROS); type IB DNA topoisomerase (TopIB); type
I DNA topoisomerase (Topll); yeast DNA topoisomerase
(ScToplIB); wild-type (WT).

http://www.biomedcentral.com/1471-2180/8/113

Authors' contributions

RBF and RMR conceived the study, participated in its
design and performed the deletion and complementation
of the LmTopS gene. YPP and CGE participated in the con-
struction of plasmids and performed the phenotypical
analyses. RBF, CGE, YPP and RMR drafted the manuscript
and RMR revised the article. All authors read and
approved the final manuscript.

Acknowledgements

This research was partially supported by MEC (grant AGL2006-07420/
GAN) and Instituto de Salud Carlos Ill (grant PI06302 and RICET) from
Ministerio de Salud y Consumo from the Spanish Kingdom.

References

I. Bailey M, Lockwood DN: Cutaneous leishmaniasis. Clin Dermatol
2007, 25:203-21 1.

2.  Balafia-Fouce R, Cubria JC, Reguera RM, Ordoéiiez D: The pharma-
cology of leishmaniasis. Gen Pharmacol 1998, 30:435-443.

3. Reithinger R, Dujardin JC, Louzir H, Pirmez C, Alexander B, Brooker
S: Cutaneous leishmaniasis. Lancet Infect Dis 2007, 7:581-596.

4.  Berman J: Clinical status of agents being developed for leish-
maniasis. Expert Opin Invest Drugs 2005, 14:1337-1346.

5. Mohebali M, Fotouhi A, Hooshmand B, Zarei Z, Akhoundi B, Rah-
nema A, Razaghian AR, Kabir MJ, Nadim A: Comparison of milte-
fosine and meglumine antimoniate for the treatment of
zoonotic cutaneous leishmaniasis (ZCL) by a randomized
clinical trial in Iran. Acta Trop 2007, 103:33-40.

6. Champoux JJ: DNA topoisomerases: Structure, function, and
mechanism. Ann Rev Biochem 2001, 70:369-413.

7.  Wang)C: Cellular roles of DNA topoisomerases: A molecular
perspective. Nat Rev Mol Cell Biol 2002, 3:430-440.

8.  Corbett KD, Berger JM: Structure, molecular mechanisms, and
evolutionary relationships in DNA topoisomerases. Ann Rev
Biophys Biomol Struct 2004, 33:95-118.

9.  Bakshi RP, Shapiro TA: DNA topoisomerases as targets for anti-
protozoal chemotherapy. Mini Rev Med Chem 2003, 3:597-608.

10. Reguera RM, Redondo CM, Gutierrez de Prado R, Perez-Pertejo Y,
Balafia-Fouce R: DNA-topoisomerase | from parasitic proto-
zoa: a potential target for chemotherapy. Biochim Biophys Acta
2006, 1759:117-131.

I'l1. Balafa-Fouce R, Redondo CM, Pérez-Pertejo Y, Diaz-Gonzilez R,
Reguera RM: Targeting atypical trypanosomatid DNA topoi-
somerase |. Drug Discov Today 2006, 11:733-740.

12. Villa H, Otero-Marcos AR, Reguera RM, Balafia-Fouce R, Garcia-
Estrada C, Pérez-Pertejo Y, Tekwani BL, Myler PJ, Stuart KD, Bjornsti
MA, Ordéiiez D: A novel active DNA topoisomerase | in Leish-
mania donovani. | Biol Chem 2003, 278:3521-3526.

13. Bodley AL, Chakraborty AK, Xie S, Burri C, Shapiro TA: An unusual
type IB topoisomerase from African trypanosomes. Proc Natl
Acad Sci USA 2003, 100:7539-7544.

14.  [http://www.tigr.org/tdb/e2kl/tcal].

15. Lee MP, Brown SD, Chen A, Hsieh TS: DNA topoisomerase | is
essential in Drosophila melanogaster. Proc Natl Acad Sci USA
1993, 90:6656-6660.

16.  Morham SG, Kluckman KD, Voulomanos N, Smithies O: Targeted
disruption of the mouse topoisomerase | gene by camp-
tothecin selection. Mol Cell Biol 1996, 16:6804-6809.

17. Wang Z, Englund PT: RNA interference of a trypanosome
topoisomerase Il causes progressive loss of mitochondrial
DNA. EMBO J 2001, 20:4674-4683.

18.  Bakshi RP, Shapiro TA: RNA interference of Trypanosoma bru-
cei topoisomerase IB: Both subunits are essential. Mol Bio-
chem Parasitol 2004, 136:249-255.

19. Pommier Y: Topoisomerase | inhibitors: Camptothecins and
beyond. Nat Rev Cancer 2006, 6:789-802.

20. Bodley AL, Shapiro TA: Molecular and cytotoxic effects of
camptothecin, a topoisomerase |l inhibitor, on trypanosomes
and Leishmania. Proc Natl Acad Sci USA 1995, 92:3726-3730.

Page 13 of 14

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17350500
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9580315
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9580315
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17714672
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17586452
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17586452
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17586452
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11395412
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11395412
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12042765
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12042765
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12871162
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12871162
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16757380
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16757380
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16846801
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16846801
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12444094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12444094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12810956
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12810956
http://www.tigr.org/tdb/e2k1/tca1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8393572
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8393572
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8943335
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8943335
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8943335
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11532932
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11532932
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11532932
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15478803
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15478803
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16990856
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16990856
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7731973
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7731973
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7731973

BMC Microbiology 2008, 8:113

21.

22.

23.

24.

25.

26.

27.
28.

29.
30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Lee N, Bertholet S, Debrabant A, Muller |, Duncan R, Nakhasi HL:
Programmed cell death in the unicellular protozoan parasite
Leishmania. Cell Death Differ 2002, 9:53-64.

Balafia-Fouce R, Reguera RM: RNA interference in Trypano-
soma brucei: a high-throughput engine for functional
genomics in trypanosomatids? Trends Parasitol 2007, 23:348-351.
Cruz AK, Coburn CM, Beverley SM: Double targeted gene
replacement for creating null mutants. Proc Natl Acad Sci USA
1991, 88:7170-7174.

Soto M, Quijada L, Alonso C, Requena JM: Histone synthesis in
Leishmania infantum is tightly linked to DNA replication by
a translational control. Biochem J 2000, 346:99-105.

Cruz A, Titus R, Beverley SM: Plasticity in chromosome number
and testing of essential genes in Leishmania by targeting.
Proc Natl Acad Sci USA 1993, 90:1599-1603.

Goto T, Wang JC: Cloning of yeast TOPI, the gene encoding
DNA topoisomerase |, and construction of mutants defec-
tive in both DNA topoisomerase | and DNA topoisomerase.
Proc Natl Acad Sci USA 1985, 82:7178-7182.

Larsen AK, Gobert C: DNA topoisomerase | in oncology: Dr
Jekyll or Mr Hyde? Pathol Oncol Res 1999, 5:171-178.

St-Amant C, Lussier S, Lehoux ], Laberge RM, Boissonneault G:
Altered phosphorylation of topoisomerase | following over-
expression in an ovarian cancer cell line. Biochem Cell Biol 2006,
84:55-66.

Samuels DS, Shimizu Y, Shimizu N: Protein kinase C phosphor-
ylates DNA topoisomerase I. FEBS Lett 1989, 259:57-60.
Pommier Y, Kerrigan D, Hartman KD, Glazer RI: Phosphorylation
of mammalian DNA topoisomerase | and activation by pro-
tein kinase C. | Biol Chem 1990, 265:9418-9422.

Diaz Gonzilez R, Pérez-Pertejo Y, Orddiiez D, Balafia-Fouce R,
Reguera RM: Deletional study of DNA topoisomerase IB from
Leishmania donovani: searching for a minimal functional
heterodimer. PLoS ONE 2007, 2:el 177.

Diaz-Gonzilez R, Pérez-Pertejo Y, Redondo CM, Pommier Y, Balafa-
Fouce R, Reguera RM: Structural insights on the small subunit
of DNA topoisomerase | from the unicellular parasite Leish-
mania donovani. Biochimie 2007, 89:1517-1527.

Pommier Y: Camptothecins and topoisomerase I: A foot in the
door. Targeting the genome beyond topoisomerase | with
camptothecins and novel anticancer drugs: Importance of
DNA replication, repair and cell cycle checkpoints. Curr Med
Chem Anticancer Agents 2004, 4:429-434.

Desai SD, Li TK, Rodriguez-Bauman A, Rubin EH, Liu LF: Ubiquitin/
26S proteasome-mediated degradation of topoisomerase |
as a resistance mechanism to camptothecin in tumor cells.
Cancer Res 2001, 61:5926-5932.

Mo YY, Yu Y, Shen Z, Beck WT: Nucleolar delocalization of
human topoisomerase | in response to topotecan correlates
with SUMOylation of the protein. | Biol Chem 2002,
277:2958-2964.

Pommier Y, Redon C, Rao VA, Seiler JA, Sordet O, Takemura H,
Antony S, Meng L, Liao Z, Kohlhagen G, Zhang H, Kohn KW: Repair
of and checkpoint response to topoisomerase I-mediated
DNA damage. Mutat Res 2003, 532:173-203.

Lee N, Gannavaram S, Selvapandiyan A, Debrabant A: Characteri-
zation of metacaspases with trypsin-like activity and their
putative role in programmed cell death in the protozoan
parasite Leishmania. Eukaryot Cell 2007, 6:1745-1757.

Sordet O, Khan QA, Kohn KW, Pommier Y: Apoptosis induced by
topoisomerase inhibitors. Curr Med Chem Anticancer Agents 2003,
3:271-290.

Sen N, Das BB, Ganguly A, Mukherjee T, Tripathi G, Bandyopadhyay
S, Rakshit S, Sen T, Majumder HK: Camptothecin induced mito-
chondrial dysfunction leading to programmed cell death in
unicellular hemoflagellate Leishmania donovani. Cell Death
Differ 2004, 11:924-936.

Sen N, Das BB, Ganguly A, Mukherjee T, Bandyopadhyay S, Majumder
HK: Camptothecin-induced imbalance in intracellular cation
homeostasis regulates programmed cell death in unicellular
hemoflagellate Leishmania donovani. | Biol Chem 2004,
279:52366-52375.

Duszenko M, Figarella K, Macleod ET, Welburn SC: Death of a
trypanosome: a selfish altruism.  Trends Parasitol 2006,
22:536-542.

42.

43.
44,

45.

46.

http://www.biomedcentral.com/1471-2180/8/113

Hann C, Evans DL, Fertala ], Benedetti P, Bjornsti MA, Hall Dj:
Increased camptothecin toxicity induced in mammalian cells
expressing Saccharomyces cerevisiae DNA topoisomerase I.
J Biol Chem 1998, 273:8425-8433.
[http://www.sanger.ac.uk/Projects/L_major/].

Ha DS, Schwarz JK, Turco §J, Beverley SM: Use of the green fluo-
rescent protein as a marker in transfected Leishmania. Mol
Biochem Parasitol 1996, 77:57-64.

Freedman DJ, Beverley SM: Two more independent selectable
markers for stable transfection of Leishmania. Mol Biochem
Parasitol 1993, 62:37-44.

Robinson KA, Beverley SM: Improvements in transfection effi-
ciency and tests of RNA interference (RNAIi) approaches in
the protozoan parasite Leishmania. Mol Biochem Parasitol 2003,
128:217-228.

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

Publish with Bio Med Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and published immediately upon acceptance
« cited in PubMed and archived on PubMed Central

O BioMedcentral

« yours — you keep the copyright

Page 14 of 14

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11803374
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11803374
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11803374
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17604223
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17604223
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17604223
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1651496
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1651496
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10657245
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10657245
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10657245
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8381972
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8381972
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2997777
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2997777
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10491013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10491013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16462890
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16462890
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16462890
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2557245
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2557245
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2160979
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2160979
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2160979
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18000548
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18000548
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18000548
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17900785
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17900785
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17900785
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15379698
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15379698
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15379698
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11479235
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11479235
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11709553
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11709553
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11709553
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14643436
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14643436
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14643436
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17715367
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17715367
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17715367
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12769773
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12769773
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15118764
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15118764
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15118764
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15355995
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15355995
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15355995
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16942915
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16942915
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9525954
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9525954
http://www.sanger.ac.uk/Projects/L_major/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8784772
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8784772
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8114824
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8114824
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12742588
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12742588
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12742588
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Double targeted gene replacement of LmTopS
	Phenotypic characterization of genetically manipulated L. major strains
	Quantification of PS externalization in L. major  promastigotes

	Discussion
	Conclusion
	Methods
	Parasite cultures
	Drug solutions
	Cloning of LdTopS and LdTopL genes and molecular constructs
	Deletion of the L. major topS gene
	SDS-PAGE and Western Blotting
	Assays for TopIB-mediated relaxation of plasmid DNA
	Flow-cytometric analysis of DNA content
	Cell cycle synchronization and CPT treatment
	Determination of apoptosis

	List of abbreviations
	Authors' contributions
	Acknowledgements
	References

