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The blood–brain barrier (BBB) generally consists of endothelial tight junction barriers that

prevent the free entry of blood-derived substances, thereby maintaining the extracellular

environment of the brain. However, the circumventricular organs (CVOs), which are

located along the midlines of the brain ventricles, lack these endothelial barriers and have

fenestrated capillaries; therefore, they have a number of essential functions, including

the transduction of information between the blood circulation and brain. Previous

studies have demonstrated the extensive contribution of the CVOs to body fluid and

thermal homeostasis, energy balance, the chemoreception of blood-derived substances,

and neuroinflammation. In this review, recent advances have been discussed in

fenestrated capillary characterization and dynamic tissue reconstruction accompanied

by angiogenesis and neurogliogenesis in the sensory CVOs of adult brains. The sensory

CVOs, including the organum vasculosum of the lamina terminalis (OVLT), subfornical

organ (SFO), and area postrema (AP), have size-selective and heterogeneous vascular

permeabilities. Astrocyte-/tanycyte-like neural stem cells (NSCs) sense blood- and

cerebrospinal fluid-derived information through the transient receptor potential vanilloid

1, a mechanical/osmotic receptor, Toll-like receptor 4, a lipopolysaccharide receptor,

and Nax, a Na-sensing Na channel. They also express tight junction proteins and

densely and tightly surround mature neurons to protect them from blood-derived

neurotoxic substances, indicating that the NSCs of the CVOs perform BBB functions

while maintaining the capacity to differentiate into new neurons and glial cells. In addition

to neurogliogenesis, the density of fenestrated capillaries is regulated by angiogenesis,

which is accompanied by the active proliferation and sprouting of endothelial cells.

Vascular endothelial growth factor (VEGF) signaling may be involved in angiogenesis

and neurogliogenesis, both of which affect vascular permeability. Thus, recent findings

advocate novel concepts for the CVOs, which have the dynamic features of vascular and

parenchymal tissues.

Keywords: neural stem cells (NSCs), angiogenesis, TRPV1, TLR4, homeostasis, inflammation, VEGF, blood-brain

barrier (BBB)
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INTRODUCTION

The blood-brain barrier (BBB) is generally composed of
endothelial tight junctions and maintains the chemical
composition of the neuronal environment for the proper
functioning of neuronal circuits by preventing the entry of blood-
derived substances in adult brains. Therefore, dysfunctions in
the BBB result in the diffusion of blood-derived substances
into the brain parenchyma and subsequent neuronal damage
(Zlokovic, 2011). In 1958, the brain regions located around
brain ventricles were accordingly named “circumventricular
organs (CVOs)” (Hofer, 1958). The CVOs were subsequently
referred to as the “windows of the brain” because they have
distinct features, such as fenestrated capillaries, relatively large
perivascular spaces, and highly specialized ependymal cells
(Weindl, 1973; Gross and Weindl, 1987). Three sensory and four
secretory CVOs have been identified to date (Leonhardt, 1980;
Cottrell and Ferguson, 2004). The sensory CVOs, including the
subfornical organ (SFO), organum vasculosum of the lamina
terminalis (OVLT), and area postrema (AP), permit brain
cells to monitor blood- and cerebrospinal fluid (CSF)-derived
information, which is then transmitted to other brain regions
(Johnson and Gross, 1993; Sisó et al., 2010a,b). The secretory
CVOs, the so-called neurosecretory regions consisting of the
neurohypophysis (NH), median eminence (ME), and pineal
gland, release large amounts of brain-derived hormones into
the blood circulation from brain neurons (Miyata et al., 2001;
Miyata and Hatton, 2002; Ciofi et al., 2009). In addition to
these regions, the choroid plexus, which is present in most
ventricular systems and produces cerebrospinal fluid (CSF), is
regarded as a CVO because it has fenestrated capillaries, but lacks
neurons. The subcommissural organ has also been proposed as
a CVO, but does not possess fenestrated capillaries (Petrov et al.,
1994). Therefore, the fenestrated capillaries of the CVOs permit
communication between the brain parenchyma and blood (for a
review, see Johnson and Gross, 1993; Rodríguez et al., 2010; Sisó
et al., 2010a,b; Sladek and Johnson, 2013; Noda and Hiyama,
2015; Figure 1).

The sensory CVOs play important roles in body fluid
homeostasis by sensing plasma Na+ levels and osmotic pressure
(Sladek and Johnson, 2013; Noda and Hiyama, 2015). SFO
neurons have been shown to respond to increases in angiotensin
II and Na+ levels in plasma and the CSF (Fitzsimons, 1975;
Ishibashi et al., 1985; Tiruneh et al., 2013). These CVOs
detect circulating hormones such as cholecystokinin, amylin,
and ghrelin (McKinley et al., 2003; Fry and Ferguson, 2009).
Disruptions to the sensory CVOs were found to markedly
attenuate thermal tolerance, such as attenuated salivation, and
also impair cardiovascular responses to heat stress (Johnson
and Gross, 1993; Whyte and Johnson, 2005; Sladek and
Johnson, 2013). A previous study reported that emetic chemicals
stimulated chemosensitive receptors in the AP and solitary
nucleus in order to induce vomiting and nausea (Hornby, 2001).
Toll-like receptor 4 (TLR4) mRNA was previously reported
to be strongly expressed in the sensory CVOs of adult mice
(Laflamme and Rivest, 2001; Chakravarty and Herkenham, 2005;
Nakano et al., 2015). Furthermore, the peripheral administration

FIGURE 1 | Schematic illustration showing localization of the sensory

and secretory CVOs in adult rodent brains.

of lipopolysaccharide (LPS) activated the signal transducer and
activator of transcription factor 3 (STAT3) in the sensory CVOs
(Harré et al., 2002, 2003; Rummel et al., 2005; Nakano et al.,
2015).

In the secretory CVOs, oxytocin (OXT), and arginine-
vasopressin (AVP) are secreted into the blood circulation from
axonal terminals in the NH (Miyata and Hatton, 2002) and
adenohypophyseal hormone-releasing factors are secreted from
hypothalamic axonal terminals in the ME (Müller et al., 1999;
Prevot et al., 2007). The axonal terminals of hypothalamic
neurons have been shown to exhibit neurovascular and neuroglial
structural plasticity in the ME during the estrous cycle (Prevot,
2002; Ojeda et al., 2008) and the NH during dehydration and
lactation (Miyata et al., 2001; Miyata and Hatton, 2002). In the
NH, Notch signaling has been associated with neurovascular
and neuroglial plasticity (Miyata et al., 2004, 2005; Mannari and
Miyata, 2014).

Thus, the CVOs are specialized brain regions that permit
the direct sensing of blood information and secretion of
hypothalamic neuropeptides via their fenestrated capillaries.
Accumulating evidence has demonstrated the crucial roles of
the CVOs in many physiological regulatory pathways, such as
the homeostasis of osmolarity, Na+ levels, body temperature,
energy balance, the chemoreception of blood-derived substances,
and neuroinflammatory responses. Moreover, the CVOs
have been implicated in several diseases, such as sepsis,
stress, trypanosomiasis, autoimmune encephalitis, systemic
amyloidosis, and prion infections (for review, see Sisó et al.,
2010a,b), suggesting that more attention needs to be paid to
these organs. In this review, recent advances in the CVOs
have been discussed, with a focus on the sensory CVOs. The
fenestrated capillaries of these regions have size-selective and
low permeabilities, which are markedly different from those of
peripheral tissues. Furthermore, fenestrated capillaries undergo
continuous angiogenesis and reconstruct their architecture
and density depending on the signaling of vascular endothelial
growth factor (VEGF), which largely affects blood-brain
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communication. Tanycyte- and/or astrocyte-like neural stem
cells (NSCs) are present in the sensory CVOs, in which they
produce new neurons and glial cells and respond to blood- and
CSF-derived information by sensing proteins and surrounding
mature neurons as a barrier to protect them from blood- and
CSF-derived toxic substances.

SIZE-SELECTIVE VASCULAR
PERMEABILITY

A consensus has not yet been reached regarding the definition
of and methods for examining vascular permeability (Nagy
et al., 2008). Most fluorescent tracer substances are taken up by
brain endothelial cells (Antohe et al., 1997; Miyata and Morita,
2011; Gonnord et al., 2012) and, thus, the immunohistochemical
staining of capillaries is essential for accurately determining
vascular permeability (Daneman et al., 2010). Moreover, the
most commonly used low-molecular-weight (LMW; MW <

10,000) fluorescent tracers, fluorescein (MW = 332; Hawkins
and Egleton, 2008) and Evans blue (MW = 961; Del Valle
et al., 2008), dislocate and diffuse during/after saline wash,
fixation, and storage procedures. A more reliable method was
recently developed to examine the vascular permeability of
LMW substances by employing fluorescein isothiocyanate (FITC;
MM = 390, Miyata and Morita, 2011). FITC binds covalently
to the primary amine groups of cellular components in order
to form a stable thiourea link and is considered useful for
immunohistochemistry without diffusion or dislocation (Miyata
and Morita, 2011). The vascular permeability of FITC was
previously shown to be markedly higher in the secretory CVOs
than in the sensory CVOs (Morita and Miyata, 2012; Figure 2).
Lysine-fixable dextran 3k (MW = 3000) also showed high
vascular permeability in the sensory CVOs, whereas dextran
10k (MW = 10000) was impermeable (Willis et al., 2007;
Morita et al., 2015a), indicating that the MW size cut-off
is less than 10,000. In the ME, the permeability of dextran
tracers was shown to decrease between MW 20,000 and
40,000 using in vivo multiphoton microscopy (Schaeffer et al.,
2013). The high vascular permeability of LMW substances in
the secretory CVOs has been attributed to the secretion of
large amounts of hypothalamic neuropeptides into the blood
circulation.

The high-molecular-weight (HMW) tracers, bovine serum
albumin (MW = 70,000), dextran 10k (MW = 10,000),
and dextran 70k (MW = 70,000), are permeable to the
endothelial cell layer and inner basement membrane in the
CVOs. However, the extravasation of these HMW (MW ≧

10,000) tracers was previously shown to be markedly lower
in the CVOs than in peripheral tissues (Faraci et al., 1989;
Willis et al., 2007; Morita et al., 2013b, 2015a). These findings
differed from those of other studies in which a large amount
of horseradish peroxidase (MW = 40,000) diffused into the
parenchyma in the OVLT (Herde et al., 2011) andME (Broadwell
et al., 1983; Rodríguez et al., 2010). Horseradish peroxidase
is known to be incorporated by mannose receptor-mediated
transcellular and clathrin-mediated transcytosis routes (Ellinger

FIGURE 2 | Different vascular permeabilities between the sensory and

secretory CVOs. The extravascular fluorescence of the LMW fluorescent

tracer FITC was stronger in the secretory CVOs (C,E) than in sensory CVOs

(A,B,D). Scale bar = 50µm. Lam, laminin; DAPI,

4’,6-diamidino-2-phenylindole. Confocal micrographs are rearranged with

permission from Springer-Verlag (Morita and Miyata, 2012).

and Fuchs, 2010). In the medial basal hypothalamus, wheat
germ agglutinin lectin (MW = 38,000) was shown to be
taken up by tanycytes in the arcuate nucleus (Arc) via cellular
internalization (Peruzzo et al., 2004; Morita et al., 2013a).
Although, HMW substances are often incorporated by cellular
internalization, the passive diffusion of substances through
fenestrations is dependent on size and charge (Ballerman and
Stan, 2007). Thus, necessary bioactive HMW substances are
incorporated by cellular internalization, although the vascular
permeability of HMW substances is essentially limited or low in
the CVOs.
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EXTRAENDOTHELIAL BARRIERS TO
PROTECT NEURONS

The endothelial tight junction maintains a constant chemical
environment for the proper functioning of brain neuronal
circuits in most brain regions by inhibiting the entry of blood-
derived substances and ions (Zlokovic, 2011). For example,
the plasma level of the excitatory neurotransmitter glutamate
is 500–1000µM, whereas its extracellular brain level is only
0.2–2µM (Hawkins, 2009). Blood-derived HMW proteins,
immunoglobulins, albumin, plasmin, and fibrin have been shown
to induce neuronal and neurovascular damage (Zlokovic, 2011).
However, neural and vascular damage has not been reported
in the sensory CVOs in spite of the presence of fenestrated
capillaries, suggesting the occurrence of extraendothelial barriers.

Electron microscopic studies have demonstrated the presence
of trans-endothelial pores 30–80 nm in diameter in the sensory
CVOs (Delmann, 1987; Dellmann, 1998; Willis et al., 2007)
and the ME (Monroe and Holmes, 1983). The endothelial
cells of the sensory CVOs have been shown to express
plasmalemma vesicle protein-1 (PV-1), which is an integral
membrane protein associated with trans-endothelial pores (Ciofi
et al., 2009). Most blood-derivedHMWsubstances are permeable
to the monolayer of endothelial cells and the inner basement
membrane, but impermeable to the outer basement membrane in
the sensory CVOs, which results in their accumulation between
the inner and outer basement membranes (Faraci et al., 1989;
Willis et al., 2007; Morita and Miyata, 2012; Morita et al.,
2015a). Although, requisite blood-derived HMW substances
are permeable to the outer basement membrane and reach
parenchyma cells, the mechanisms by which they pass through
the outer basement membrane have not yet been elucidated
in detail. The CVOs consist of relatively large perivascular
spaces containing pericytes, fibroblasts, and a few microglia
between the inner and outer basement membranes (Faraci et al.,
1989; Dellmann, 1998; Morita and Miyata, 2012; Figure 3). The
basement membrane component, laminin, has been shown to
function as a barrier by impeding the movement of large and
charged molecules (Hallmann et al., 2005). Laminin is a trimeric
molecule comprised of α-, β-, and γ-subunits, and endothelial
cells generate laminins-411 (α4β1γ1) and -511 (α5β1γ1) in any
capillary, whereas astrocytes produce laminins-111 (α1β1γ1) and
-211 (α2β1γ1), specifically in the brain (Hallmann et al., 2005).
The expression of laminin-111 was previously reported to be
stronger at the outer basement membrane than at the inner
basement membrane in the sensory CVOs (Morita et al., 2013b,
2015a) and the NH (Furube et al., 2014). The lack of laminin
β2 in the kidney glomerular basement membrane was found to
markedly elevate ferritin (MW = 450,000) permeability (Jarad
et al., 2006), indicating that the glomerular basement membrane
serves as a barrier to HMW substances (Suh and Miner, 2013).
Thus, the outer basement membrane may act as a size-selective
filter to blood-derived HMW substances in the sensory CVOs.

In contrast to HMW substances, blood-derived LMW
substances are permeable to the outer basement membrane and
easily reach parenchyma cells as described above. However, the
central parts of capillaries in the sensory CVOs were found to

FIGURE 3 | Electron micrographs showing coverage of fenestrated

capillaries by cellular processes of astrocyte-/tanycyte-like NSCs and

dendrites and a wide perivascular space in the adult mouse. The

fenestrated capillaries of the AP were surrounded by the cellular processes of

astrocyte-/tanycyte-like NSCs and dendrites (A). There was a wide

perivascular space including pericytes between the inner and outer basement

membranes of the OVLT. Cellular processes of astrocyte-/tanycyte-like NSCs

were often found to make contact with the outer basement membrane (B).

Solid arrows and asterisks show the cellular processes of

astrocyte-/tanycyte-like NSCs and dendrites, respectively. Open arrows and

inset revealed that cellular membranes were tightly juxtaposed with each other.

Open and solid arrowheads indicate the inner and outer basement

membranes, respectively. E, endothelial cell; P, pericyte. Scale bars = 1µm.

Electron micrographs are rearranged with permission from Springer-Verlag

(Morita et al., 2015a).

exhibit higher vascular permeability to LMW substances than the
distal parts (Morita et al., 2015a; Figure 4 and Table 1). Tight
junctions are a physical barrier in the BBB between endothelial
cells and the blood circulation that prevent the free movement of
substances and protect neurons from toxic substances (Saunders
et al., 2008). In the sensory CVOs, the expression of claudin-5,
occludin, and zonula occludens-1 (ZO-1) was not detected in
the OVLT, SFO (Langlet et al., 2013b), or AP (Willis et al.,
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FIGURE 4 | Heterogeneous vascular permeability of the LMW fluorescent tracer FITC and diffusion barrier of GFAP-positive NSCs in the sensory

CVOs of adult mice. The fluorescent intensity of blood-derived FITC was stronger at the central part of the OVLT (A), SFO (B), and AP (C) than at the distal part. The

cellular processes of GFAP-positive NSCs were very dense at the distal part of each CVO, and FITC did not diffuse to the outside of the sensory CVOs beyond

GFAP-positive NSCs. Scale bars = 50µm. cp, capillary plexus; cz, central zone; lz, lateral zone; os, outer shell; pz, periventricular zone; vc, ventromedial core.

Photomicrographs are rearranged with permission from Springer-Verlag (Morita et al., 2015a).

TABLE 1 | Heterogeneity of endothelial protein expression and vascular

permeability in the sensory CVOs of the adult mouse, as summarized from

Morita et al. (2015a).

OVLT SFO AP

Cp lz os vc pz cz Iz

Claudin-5 - +++ +++ - - - +

Occludin - - - - - - +

ZO-1 - ++ - - - - +

VE-cadherin +++ +++ +++ +++ +++ +++ +++

PV-1 +++ +++ +++ +++ +++ +++ +++

FITC 30 s + - - + - + -

FITC 5min +++ + + +++ + +++ +

Refer to photographs in Figure 4 for more information on subdivisions and permeability;

cp, capillary plexus; cz, central zone; lz, lateral zone; os, outer shell; pz, periventricular

zone; vc, ventromedial core.

+++, strong; ++, moderate; + weak; -, not detected.

2007; Norsted et al., 2008; Langlet et al., 2013b), whereas that
of ZO-1 was observed in a subpopulation of capillaries in the
sensory CVOs (Petrov et al., 1994). A recent study reported that
the vascular expression of occludin, claudin-5, and ZO-1 was
absent in the central parts of the sensory CVOs, but was present
in the distal parts (Morita et al., 2015a). This heterogeneous
distribution pattern of tight junction proteins is consistent with
the vascular permeability of LWM substances. On the other hand,
a heterogeneous distribution pattern for PV-1 was not observed
in the sensory CVOs (Ciofi et al., 2009; Morita et al., 2015a).
These findings suggest that LMW substances pass through
paracellular avenues through inter-endothelial cell junctions
rather than PV-1-positive trans-endothelial pores (Table 1).

In the secretory CVOs and the ME, ß1 tanycytes extend their
cellular processes along the border between the ME and Arc and
form adherent and tight junctions between tanycyte processes
and between tanycytes and neurosecretory axons (Peruzzo et al.,
2000; Mullier et al., 2010). The tanycyte border acts as a
barrier separating the ME and Arc (Rodríguez et al., 2010).
However, information regarding how neurons are protected

from blood-derived neurotoxic and/or bioactive substances in
the sensory CVOs is limited. The sensory CVOs possess a
large number of neurons and complex neuronal connections
in order to integrate blood-derived information and send it
to other brain regions (Johnson and Gross, 1993; Sisó et al.,
2010a,b). In the sensory CVOs, the density of glial fibrillary acidic
protein (GFAP)-positive astrocyte-/tanycyte-like cells appears to
be higher in the distal parts than in the central parts of the
sensory CVOs (Figure 4). A recent study identified these GFAP-
positive astrocyte-/tanycyte-like cells as NSCs (Furube et al.,
2015). The diffuse and punctate immunoreactivity of ZO-1 was
detected at the parenchyma in the AP (Wang et al., 2008;
Maolood and Meister, 2009). The punctuate immunoreactivities
of occludin and ZO-1 have been associated with astrocyte-
/tanycyte-like NSCs in the sensory CVOs (Morita et al., 2015a).
Using conventional and freeze-fracture electron microscopy,
tight junctions, arranged in several parallel and helical rows,
were observed at the cellular processes of astrocyte-/tanycyte-
like NSCs in the sensory CVOs (Krisch et al., 1978). The
expression of ZO-1 and occludin was previously shown to be
induced in astrocytes in peri-infarct areas during the recovery
processes following stroke (Yang et al., 2007, 2013). Numerous
layers of the cellular processes of astrocyte-/tanycyte-like NSCs
have been found to surround the outer basement membrane of
capillaries and neuronal somata in the sensory CVOs (Watanabe
et al., 2006; Morita et al., 2015a; Figure 3). Tracer experiments
revealed that the blood-derived LMW tracer Dex3k and FITC
did not diffuse to the outside of the sensory CVOs beyond

astrocyte-/tanycyte-like NSCs (Figure 4). Thus, in the sensory
CVOs, tight junctions between astrocyte-/tanycyte-like NSCs
and their coverage of fenestrated capillaries and neural somata

are possible extraendothelial barriers that protect neuronal

circuits from blood-derived neurotoxic and bioactive substances.

Moreover, the tanycytes of the sensory CVOs were shown to
possess long processes that project into the fenestrated capillary
network and display well-organized tight junctions around their
cell bodies, indicating that tanycytes act as CSF-brain barriers
(Langlet et al., 2013b; for a review, see Rodríguez et al.,
2010).
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In addition to physical barriers, the CVOs possess a protective
mechanism for blood-derived neurotoxic substances. Microglia
in the sensory CVOs were found to proliferate robustly in
response to a single peripheral inflammation stimulation with
LPS, leading to increases in microglia density (Furube et al.,
2015), whereas those in other brain regions did not undergo
microglial mitosis with such a weak inflammatory stimulation
(Shankaran et al., 2007; Chen et al., 2012). Activated microglia
have been shown to mediate the clearance of pathogens,
cytokines, and toxic factors as well as apoptotic cells (Gordon,
2003). Therefore, microglia may play a role in the rapid clearance
of toxic substances in order to protect neurons in the sensory
CVOs.

DIRECT SENSING OF BLOOD-DERIVED
INFORMATION

The sensory CVOs directly sense blood- and CSF-derived
information via sensor proteins on their parenchyma cells;
however, the mechanisms by which they detect this information
without causing neuronal damage currently remain unclear. The
sensory CVOs are crucially involved in body fluid homeostasis.
Acute and chronic hyperosmotic stimuli have been shown to
induce the expression of the neuronal activity marker Fos in
the sensory CVOs, while lesions in the OVLT or SFO resulted
in abnormal osmotic homeostasis (Hochstenbach and Ciriello,
1996; Miyata et al., 1996; McKinley et al., 2004). Transient
receptor potential vanilloid 1 (TRPV1) is a non-selective cation
channel gated by mechanical/osmotic stimuli, temperature, and
capsaicin (Tominaga and Tominaga, 2005). In Trpv1-deficient
mice, the osmosensory signal transduction cascade was found
to be absent in OVLT neurons, and water intake was reduced
in response to a systemic hyperosmotic stimulation (Ciura
and Bourque, 2006; Ciura et al., 2011). TRPV1 was recently
shown to be expressed by astrocyte-/tanycyte-like NSCs in the
sensory CVOs of adult mice (Mannari et al., 2013; Sladek and
Johnson, 2013). Pharmacological experiments further revealed
that the TRPV1 agonist resiniferatoxin preferentially induced the
expression of Fos in astrocyte-/tanycyte-like NSCs rather than
in neurons (Mannari et al., 2013; Figure 5). A previous study
showed that hyponatremia led to the influx of water into the
brain and increases in astrocyte volumes in order to preserve
neuronal volumes (Ayus et al., 2008). This finding indicates
that alterations in cell volume are larger in astrocytes than in
neurons in order to avoid neural damage. Another important
sensing protein for body fluid homeostasis is the Na+-sensitive
Na+ channel NaX (Hiyama et al., 2002; Watanabe et al., 2006).
NaX is strongly expressed by the fine cellular processes of
astrocyte-/tanycyte-like NSCs in the sensory CVOs and senses
angiotensin II and Na+ levels in the CSF (for a review, see
Noda, 2006, 2007; Noda and Hiyama, 2015). Elevated levels
of angiotensin II and Na+ in the CSF were found to trigger
responses by SFO neurons (Fitzsimons, 1975; Tiruneh et al.,
2013). The activation of excitatory neurons in the SFO has been
shown to induce drinking behavior, even in fully water-satiated
mice, whereas the activation of inhibitory GABAergic neurons

markedly suppressed drinking behavior, even in thirsty animals
(Oka et al., 2015).

Another, important function of the sensory CVOs is
the recognition of bacteria and virus components as well
as the integration of brain inflammatory responses. LPS,
a component of Gram-negative bacterial walls, is a well-
characterized inflammatory stimulation. IL-6 has been identified
as the most abundant cytokine in the blood circulation of animals
and humans after an LPS-induced inflammatory stimulation
(LeMay et al., 1990), and, thus, LPS-induced inflammatory
and fever responses are weaker in IL-6-deficient mice (Chai
et al., 1996). IL-6 has been shown to activate the prostaglandin-
synthesizing enzyme cyclooxygenase-2 in the brain, most likely
via the Janus kinase and STAT3 signaling system (Akira, 1997;
Rummel et al., 2005; Damm et al., 2011). Furthermore, previous
studies demonstrated that the peripheral administration of
LPS activated STAT3 in astrocyte-/tanycyte-like NSCs in the
sensory CVOs (Gautron et al., 2002; Harré et al., 2002, 2003;
Rummel et al., 2005; Nakano et al., 2015). Blood levels of
LPS were also reported to be higher after the intraperitoneal
administration of LPS (Lenczowski et al., 1997). Reciprocal
bone marrow chimeras between wild-type and TLR4 mutant
mice revealed that brain TLR4 was critically important for
sustained inflammation following the peripheral administration
of LPS (Chakravarty and Herkenham, 2005). Tlr4 mRNA was
previously reported to be strongly expressed in the sensory
CVOs of mouse brains (Laflamme and Rivest, 2001; Chakravarty
and Herkenham, 2005). A recent study showed that TLR4 was
expressed by astrocyte-/tanycyte-like NSCs in the sensory CVOs
(Figures 6A–F), whereas its microglial expression was restricted
to a part of the solitary nucleus (Figure 6G) surrounding
the central canal (Nakano et al., 2015). In addition to a
peripheral LPS stimulation, the brain infusion of LPS was
found to activate STAT3 signaling in the astrocyte-/tanycyte-
like NSCs of the sensory CVOs (Nakano et al., 2015). NSCs
of adult dorsal root ganglia have been shown to achieve
longevity, multipotency, and the high fidelity of the sensory
features through the expression of TRPV1 (Singh et al., 2009).
Thus, astrocyte-/tanycyte-like NSCs in the sensory CVOs are
multipotent NSCs that function as sensors to detect blood-
and CSF-derived information via NaX, TRPV1, and TLR4,
and also act as a diffusion barrier against blood- and CSF-
derived substances and the new generation of neurons and glial
cells.

It currently remains unclear how information in body fluids
and inflammatory signals detected by astrocyte-/tanycyte-like
NSCs is transmitted to neurons. A recent study identified
lactate derived from astrocyte-/tanycyte-like NSCs as a crucial
mediator in the regulation of neuronal activities in the
SFO for Na+-intake behavior (Shimizu et al., 2007). In the
hippocampal dentate gyrus, elevations in Ca2+ in local astrocytic
processes have been shown to participate in the local tuning
of transmitter release at excitatory synapses (Di Castro et al.,
2011). Astrocytes are known to release various gliotransmitters,
such as glutamate and ATP, in response to stimuli that
increase intracellular Ca2+ levels (Montana et al., 2006). In
the sensory CVOs, astrocyte-/tanycyte-like NSCs may express
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FIGURE 5 | Brain infusion of the TRPV1 agonist resiniferatoxin induced Fos expression by GFAP-positive NSCs and neurons in the sensory CVOs of

adult mice. A large number of Fos-positive nuclei were observed in the OVLT (A), SFO (B), and AP (C) after the intracerebroventricular infusion of resiniferatoxin.

Fos-positive nuclei were detected in GFAP-positive NSCs (arrowheads) and HuC/D-positive mature neurons (arrows). 3D images confirmed the presence of

Fos-positive nuclei in HuC/D-positive neurons and GFAP-positive NSCs. Scale bars = 10 (bottom panels) and 50 (top panels) µm. Photographs are rearranged with

permission from John Wiley and Sons Inc. (Mannari et al., 2013).

FIGURE 6 | Expression of the LPS receptor TLR4 by GFAP-positive NSCs in the sensory CVOs of adult mice. TLR4 was strongly expressed in the OVLT (A),

SFO (B), and AP (C). The expression of TLR4 was detected in GFAP-positive NSCs in the sensory CVOs (D–F). The expression of TLR4 was also observed in

CD45-positive microglia in the solitary nucleus around the central canal (G). CC, central canal; oc, optic chiasma; 3V, 3rd ventricle. Scale bars = 50µm. Photographs

are reconstructed with permission from Elsevier Inc. (Nakano et al., 2015).

S100ß in order to control Ca2+ homeostasis during signaling
cascades (Furube et al., 2015); however, S100ß is expressed
in mature astrocytes, but not in NSCs in the subventricular
zone (SVZ) or subgranular zone (SGZ) (Donato et al., 2013).
Astrocytes cultured from S100ß-deficient mice were previously
shown to exhibit enhanced Ca2+ transients in response to
treatments with KCl or caffeine, suggesting that S100ß plays
a role in the maintenance of Ca2+ homeostasis in astrocytes
(Xiong et al., 2000). Thus, astrocyte-/tanycyte-like NSCs directly
sense blood- and CSF-derived information and then secrete
certain kinds of gliotransmitters in order to activate adjacent
neurons in the sensory CVOs, which may be reasonable for
sensing blood- and CSF-derived information without neuronal

damage. However, neurons themselves may directly receive
blood- and CSF-derived information. For example, angiotensin
II AT1 receptors were previously shown to localize in neurons
and, thus, peripheral transmitters may gain direct access to
neurons (Simpson et al., 1978; Frederick et al., 1984; Lippoldt
et al., 1993; McKinley et al., 2003; Premer et al., 2013).
Neuronal somata are typically located far from capillaries, while
capillaries are surrounded by numerous layers of the cellular
processes of dendrites and astrocyte-/tanycyte-like NSCs, and
dendrites and axons sometimes exist within the perivascular
space (Delmann, 1987; Dellmann, 1998; Morita et al., 2015a;
Figure 3), suggesting that dendrites directly receive blood-
derived information.
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FIGURE 7 | mRNA and protein expression of the angiogenesis-inducing factor VEGF-A in the sensory CVOs of adult mouse brains. In situ hybridization

histochemistry shows stronger Vegf-a mRNA signals in the OVLT, MPA, SFO, AP, and solitary nucleus than in the adjacent brain regions (A–C). Triple labeling

immunohistochemistry shows that the immunoreactivity of VEGF-A was detected in GFAP-positive NSCs (arrows) and MAP2-positive mature neurons (arrowheads)

(D–F). CC, central canal; oc, optic chiasma; 3V, 3rd ventricle. Scale bars = 50µm. Photographs are rearranged with permission from Springer-Verlag (Furube et al.,

2015; Morita et al., 2015b).

ANGIOGENESIS

During vascular development, the process of angiogenesis
and the proliferation of endothelial stalk cells and sprouting
of endothelial tip cells were shown to be regulated by the

concentration and gradient of VEGF-A, respectively (Gerhardt
et al., 2003). The proliferation of endothelial stalk cells is known

to peak 7 days after birth in the cerebral cortex (Robertson

et al., 1985; Ogunshola et al., 2000; Mancuso et al., 2008), but
is almost absent in the adult mammalian brain, except under

pathological conditions such as injury or hypoxia (Hjelmeland
et al., 2011). However, continuous angiogenesis occurs in the
sensory and secretory CVOs (Morita et al., 2013b, 2015b; Furube
et al., 2014). The proliferation of endothelial cells has been
reported in the ME (Morita et al., 2013b) and NH (Furube
et al., 2014) as well as in the OVLT, SFO, and AP (Morita
et al., 2015b) of adult mice. In situ hybridization histochemistry
revealed that VEGF-A mRNA expression levels were higher
in the sensory CVOs than in adjacent brains regions (Morita
et al., 2015b; Figures 7A–C). Immunohistochemistry showed
that VEGF-A was highly expressed by neurons and astrocyte-
/tanycyte-like NSCs in the sensory CVOs (Furube et al., 2015;
Figures 7D–F) and by neuronal somata and terminals in the
ME (Morita et al., 2013b). Previous studies demonstrated that
the inhibition of VEGF signaling significantly attenuated the
proliferation of endothelial stalk cells in the sensory and secretory
CVOs (Morita et al., 2013a, 2015b; Furube et al., 2014). The
sprouting of endothelial cells has been detected in the sensory
CVOs of adult mouse brains (Morita et al., 2015b; Figure 8).
These findings indicate that continuous angiogenesis occurs in
the secretory and sensory CVOs of adult rodent brains.

FIGURE 8 | Filopodia of endothelial cells in the sensory CVOs of the

adult mouse. Laminin-positive vascular filopodia (arrowheads) extended from

the existing thick capillariesin the OVLT (A), SFO (B), and AP (C). Scale bars =

10µm. Confocal micrographs are rearranged with permission from

Springer-Verlag (Morita et al., 2015b).

The functional significance of angiogenesis in the CVOs of
adult brains currently remains unclear. It may play a role in long-
term vascular plasticity in order to control neurosecretion and
sense blood-derived information. A treatment with the VEGFR
signaling inhibitor AZD2171 was found to markedly reduce
vascular density by inhibiting endothelial cell proliferation
(Figures 9A,B) and promoting apoptosis (Figures 9C,D) in the
NH (Furube et al., 2014). Moreover, the inhibition of VEGF
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FIGURE 9 | Proliferation and apoptosis of endothelial cells in the NH of

adult mice. Mice were orally administered the VEGF signaling inhibitor

AZD2171 for 6 days and were then kept for 6 days. The number of

BrdU-labeled endothelial cells was significantly higher after the withdrawal of

the VEGF signaling inhibitor (B) than that of the control (A). The expression of

the apoptotic marker caspase-3 was induced in endothelial cells after a 2-day

treatment with the VEGF signaling inhibitor (C). A high magnification view

reveals the continuous distribution of caspase-3-positive endothelial cells (D).

Scale bars = 50 (A–D) and 5 (inset in B) µm. Data are rearranged with

permission from BioScientifica Limited (Furube et al., 2014).

signaling largely decreased the density of AVP- and OXT-
containing axonal terminals. The vascular surface area and its
contact with the axonal terminals of AVP- and OXT-containing
neurons are known to be important for efficient neurosecretion
(Miyata et al., 2001; Miyata and Hatton, 2002; Imamura et al.,
2010). Thus, the angiogenesis-dependent regulation of vascular
density may be involved in neurosecretory and sensing activities
in the CVOs.

The second possibility is that VEGF-dependent angiogenic
activity is associated with the states of the fenestrated features.
The brain infusion of VEGF-A was previously reported to
decrease the expression of the tight junction proteins claudin-
5 and occludin and induced barrier breakdown in the cerebral
cortex of adult mice (Argaw et al., 2009). The vascular
permeability of HMW substances was found to be negligible
in fetal and adult brains (Armulik et al., 2010; Daneman et
al., 2010), whereas that of LMW substances was higher in
the immature capillaries of fetal brains than in those of adult
brains (Tuor et al., 1992; Keep et al., 1995). Thus, the size-
selective permeability of fenestrated capillaries in the CVOs is
similar to the angiogenic immature capillaries of fetal brains.
The mitotic inhibitor cytosine-b-D-arabinofuranoside has been
shown to decrease the proliferation of endothelial cells and
vascular permeability to blood-derived LMW molecules without
changing the vascular area or diameter (Morita et al., 2015b). A
recent study demonstrated that pericytes play important roles in
the formation of the BBB during embryogenesis (Daneman et
al., 2010), with the loss of pericytes resulting in BBB disruption
(Armulik et al., 2010). Chronic salt loading is known to increase

the pericytic expression of platelet-derived growth factor receptor
ßin the sensory CVOs in combination with elevations in vascular
permeability (Morita et al., 2014). Furthermore, food and glucose
deprivation increased the expression of PV-1 in the fenestrated
capillaries of the ME, tight junction proteins in tanycytes, and
vascular permeability of ME capillary loop, thereby promoting
metabolic substrate access to the Arc and feeding behavior
(Langlet et al., 2013a). The expression of VEGF-AmRNA has also
been shown to be upregulated by food and glucose deprivation,
while the inhibition of VEGF signaling abolished the food
deprivation-induced reorganization of tanycytes and capillaries
as well as food intake behaviors (Langlet et al., 2013a). Thus,
the angiogenesis-associated factors VEGF-A and platelet-derived
growth factor may largely affect the states of the fenestrated
features in the CVOs.

A final possibility is that angiogenesis engages in the
maintenance and proliferation of NSCs and their associated
structural reconstruction. In the hippocampal dentate gyrus,
VEGF-A has been shown to regulate the proliferation of
endothelial cells and NSCs in a coordinated manner (Warner-
Schmidt and Duman, 2007; Segi-Nishida et al., 2008; Udo et al.,
2008). A previous study reported that the overexpression of
VEGF-A significantly increased angiogenesis and neurogenesis
in the adult hippocampus (Udo et al., 2008). Electroconvulsive
seizures and antidepressants, which are proven therapeutics in
the treatment of several depressive diseases, increased vascular
density in the DG of adult rodents and humans (Newton et al.,
2006; Mannari et al., 2014). NSCs have a perivascular niche that
intimately associates with endothelial cells, possibly via VEGF
and BDNF signaling, in the SGZ and SVZ of adult mammalian
brains (Goldman and Chen, 2011). A causal interaction has
been reported between testosterone-induced angiogenesis and
neurogenesis in adult songbird canary brains (Louissaint et al.,
2002). NSCs have also been detected in the sensory CVOs of
mice and humans (Bennett et al., 2009; Sanin et al., 2013; Furube
et al., 2015). Moreover, neural progenitor cells (NPCs) have been
associated with the vascular matrix (Hourai and Miyata, 2013).
Thus, tissue dynamics including neurogenesis and gliogenesis are
regulated with angiogenesis in a coordinated manner.

NEURAL STEM CELLS

The generation of new neurons and glial cells continuously
occurs at restricted brain regions in adult mammals. The most
extensively examined brain regions are the SGZ, located in the
dentate gyrus of the hippocampus (Eriksson et al., 1998; Gage,
2000), and the SVZ, lining the lateral ventricle (Doetsch et al.,
1999). A deficiency in neurogenesis in the SGZ was found
to disrupt negative hippocampal control in the hypothalamic-
pituitary-adrenal axis, thereby leading to depressive illnesses
(Snyder et al., 2011), while that in the SVZ led to the lack of
predator avoidance and sex-specific responses (Sakamoto et al.,
2011), indicating that neurogenesis is a region-specific function.

Recent findings indicated that NSCs are also present in the
CVOs of adult mammalian brains. A neurosphere assay in vitro
indicated that NSC-like cells were present in the ependymal
layers of the third and fourth ventricles of adult mouse brains
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(Weiss et al., 1996). The intracerebroventricular infusion of
fibroblast growth factor-2 and epidermal growth factor has been
shown to induce the proliferation of NSC-like ependymal cells
in the third and fourth ventricles of adult mice in vivo (Martens
et al., 2002; Xu et al., 2005). ß2 tanycytes at the base of the

FIGURE 10 | Plasminogen expression and vascular niche of

Math1-positive NPCs in the ME and AP of adult mice. Strong

immunoreactivity for plasminogen was detected in Math1-positive NPCs

(arrowheads) in the ME (A) and AP (B). Math1-positive NPCs typically

localized in close contact with the vascular matrix in the AP (arrows). DAPI,

diamidino-2-phenylindole; Plg, plasminogen. Scale bars = 50 (A,B) and 10 (C,

insets in A,B) µm. Photographs are reconstructed with permission from John

Wiley and Sons Inc. (Hourai and Miyata, 2013).

third ventricle in the ME have been proposed as NSCs that
proliferate and give rise to new neurons and glial cells (Lee et al.,
2012). In contrast, a previous study reported that α2 tanycytes
in the ME and Arc were able to self-renew or give rise to β2
tanycytes and parenchyma cells in vivo and exhibited stem-like
neurospherogenic activity in vitro (Robins et al., 2013). The
inhibition of neurogenesis in the ventrobasal hypothalamus by
focal irradiation led to weight gain in high fat diet-fed mice (Lee
et al., 2012). Ciliary neurotrophic factor was found to enhance
neurogenesis in the ventrobasal hypothalamus and induce weight
loss in adult mice, while the mitotic inhibitor cytosine-b-D-
arabinofuranoside eliminated the proliferation of neural cells and
abrogated the long-term effects of ciliary neurotrophic factor on
body weight (Kokoeva et al., 2005). A previous study showed
that neurogenesis was attenuated in the Arc of obese mice
induced by the consumption of a high-fat diet or leptin deficiency
(McNay et al., 2014). Furthermore, continuous neurogenesis
was detected in the ME and Arc of adult human brains (Sanin
et al., 2013; Batailler et al., 2014). NPCs in the adult mouse
ME have been shown to express high levels of plasminogen
(Taniguchi et al., 2011; Hourai andMiyata, 2013; Figures 10A,B),
the activation of which is crucial for the migration of granular
neurons to the developing cerebellum in vivo (Seeds et al., 1997)
and neuritogenesis in vitro (Farias-Eisner et al., 2001; Gutiérrez-
Fernández et al., 2009). Moreover, NPCs were often localized in
close proximity to the vasculature (Figure 10C). These findings
support the presence of NSCs in the ME of adult mammalian
brains (for a review, see Bolborea and Dale, 2013).

In addition to the ME, NSCs were recently detected in the
sensory CVOs such as the OVLT, SFO, and AP (Bennett et al.,
2009; Hourai andMiyata, 2013; Furube et al., 2015). The presence
of NCSs in the sensory CVOs was confirmed by a neurosphere
experiment in vitro (Bennett et al., 2009). Two types of NSCs
may exist in the sensory CVOs: tanycyte-like NSCs located at
the ependymal layer and astrocyte-like NSCs at the parenchyma
(Furube et al., 2015; Figure 11). Tanycyte-like ependymal cells
in the sensory CVOs are devoid of cilia, have long cellular
processes, and closely resemble those in the ME (Rodríguez et al.,
2005; Mullier et al., 2010; Langlet et al., 2013a). However, the
characterization of tanycytes, especially a subtype analysis in

FIGURE 11 | The fate of NSCs in the sensory CVOs using Nestin-CreERT2/CAG-CATloxP/loxP-EGFP transgenic adult mice.

Nestin-CreERT2/CAG-CATloxP/loxP-EGFP transgenic mice were sacrificed 60 days after the final administration of tamoxifen. A large number of EGFP-expressing

cells were detected in the OVLT, whereas only a few were observed in the median preoptic area and medial preoptic nucleus (A). EGFP-expressing cells were

observed in the vhc as well as in the SFO (B). EGFP-expressing cells were detected in the AP and its neighboring brain regions such as the solitary nucleus, 10N, and

12 N (C). MnPO, median preoptic area; MPA, medial preoptic area; Sol, solitary nucleus; vhc, ventral hippocampal commissure. Scale bar = 50µm. Data are

rearranged with permission from Springer-Verlag (Furube et al., 2015).
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the sensory CVOs, has not yet been conducted, unlike the ME
(Rodríguez et al., 2005). NSCs have also been detected in the AP
of adult human brains (Sanin et al., 2013). Although astrocyte-
like NSCs proliferate slowly, oligodendrocyte progenitor cells
(OPCs) and NPCs actively divide (Furube et al., 2015). The
inhibition of VEGF signaling and peripheral administration of
LPS were found to significantly suppress the proliferation of
NSCs and OPCs (Furube et al., 2015). These findings indicate
that NSCs are present in the sensory CVOs, such as the OVLT,
SFO, and AP, of adult mammalian brains. However, further
cell lineage analyses of NSCs are needed in order to determine
neurogliogenesis in the sensory CVOs, differences between
tanycyte- and astrocyte-like NSCs, and characterize the tanycyte
subtypes possessing neurogenic activity.

A fate mapping study reported that NSCs mainly gave rise to
oligodendrocytes and a sparse number of neurons and astrocytes
(Furube et al., 2015). NSCs originating from the OVLT may
migrate into adjacent hypothalamic brain regions such as the

medial preoptic area and median preoptic nucleus, while those
derived from the AP may migrate into the solitary nucleus
(Furube et al., 2015). Thus, the sensory CVOs may supply new
cells to the adjacent hypothalamic and medullar regions and also
to the sensory CVOs themselves. The proliferation of NSCs and
their progenitor cells was previously shown to be facilitated by
ischemic stroke injury (Lin et al., 2015). However, although the
functional significance of NSCs in the sensory CVOs currently
remains unknown, they have been assumed to participate in the
long-term control of the sensory CVO functions, such as body
fluid homeostasis and neuroinflammation.
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