
 Scaling cross-tissue single-cell annotation models 
 Felix  Fischer  1,2  ,  David  S.  Fischer  1,3  ,  Evan  Biederstedt  4,5,6,7  ,  Alexandra-Chloé  Villani  5,6,7,8  ,  Fabian  J. 
 Theis  1,2,9* 

 1  Department  of  Computational  Health,  Institute  of  Computational  Biology,  Helmholtz  Munich, 
 Germany 
 2  School  of  Computing,  Information  and  Technology,  Technical  University  of  Munich,  Munich, 
 Germany 
 3  Eric and Wendy Schmidt Center at the Broad Institute,  Cambridge, MA, 02142, USA 
 4  Department of Biomedical Informatics, Harvard Medical  School, Boston MA 02115 
 5  Broad Institute of MIT and Harvard, Cambridge, MA  02142 
 6  Center  for  Immunology  and  Inflammatory  Diseases,  Massachusetts  General  Hospital, 
 Charlestown, MA 02129 
     7  Krantz  Family  Center  for  Cancer  Research,  Massachusetts  General  Hospital  Boston,  MA,  02114, 
 USA 
 8  Department of Medicine, Harvard Medical School,  Boston  MA 02115 
 9  TUM School of Life Sciences Weihenstephan, Technical  University of Munich, Munich, Germany 

 *  Correspondence to  fabian.theis@helmholtz-munich.de 

 Identifying  cellular  identities  (both  novel  and  well-studied)  is  one  of  the  key  use  cases  in 
 single-cell  transcriptomics  .  While  supervised  machine  learning  has  been  leveraged  to 
 automate  cell  annotation  predictions  for  some  time,  there  has  been  relatively  little  progress 
 both  in  scaling  neural  networks  to  large  data  sets  and  in  constructing  models  that 
 generalize  well  across  diverse  tissues  and  biological  contexts  up  to  whole  organisms.  Here, 
 we  propose  scTab,  an  automated,  feature-attention-based  cell  type  prediction  model 
 specific  to  tabular  data,  and  train  it  using  a  novel  data  augmentation  scheme  across  a  large 
 corpus  of  single-cell  RNA-seq  observations  (22.2  million  human  cells  in  total).  In  addition, 
 scTab  leverages  deep  ensembles  for  uncertainty  quantification.  Moreover,  we  account  for 
 ontological  relationships  between  labels  in  the  model  evaluation  to  accommodate  for 
 differences  in  annotation  granularity  across  datasets.  On  this  large-scale  corpus,  we  show 
 that  cross-tissue  annotation  requires  nonlinear  models  and  that  the  performance  of  scTab 
 scales  in  terms  of  training  dataset  size  as  well  as  model  size  -  demonstrating  the  advantage 
 of  scTab  over  current  state-of-the-art  linear  models  in  this  context.  Additionally,  we  show 
 that  the  proposed  data  augmentation  schema  improves  model  generalization.  In  summary, 
 we  introduce  a  de  novo  cell  type  prediction  model  for  single-cell  RNA-seq  data  that  can  be 
 trained  across  a  large-scale  collection  of  curated  datasets  from  a  diverse  selection  of 
 human  tissues  and  demonstrate  the  benefits  of  using  deep  learning  methods  in  this 
 paradigm.  Our  codebase,  training  data,  and  model  checkpoints  are  publicly  available  at 
 https://github.com/theislab/scTab  to  further  enable  rigorous  benchmarks  of  foundation 
 models for single-cell RNA-seq data. 

 Introduction 

 Cell  type  annotation  is  a  core  step  in  the  analysis  of  single-cell  RNA-seq  (scRNA-seq)  data. 
 Researchers  typically  examine  prominent  gene  expression  markers  denoting  a  cell's  identity  and 
 function,  and  assign  a  label  based  on  a  nomenclature  that  summarizes  previously  described  cell 
 types  and  states.  While  this  task  has  been  addressed  in  numerous  analyses  1–4  and  automated  cell 
 type  prediction  models  5–8  ,  rigorously  annotating  new  datasets  remains  a  manual  and 
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 time-consuming  process.  Moreover,  given  the  confounding  presence  of  technical  batch  effects  and 
 the  inherent  differences  in  quality  across  cells  within  datasets,  the  process  of  generating  cell 
 annotations  remains  unstandardized.  These  problems  became  especially  pronounced  in  building 
 comprehensive  cell  atlases  in  the  Human  Cell  Atlas  (HCA)  9  ,  wherein  unannotated  datasets  remain 
 a  bottleneck.  Indeed,  recent  atlas-building  efforts  acutely  highlight  the  challenges  posed  by  both 
 the  lack  of  consensus  in  cell  type  annotations  across  datasets  and  how  time-intensive  it  remains  to 
 standardize  them  10,11  .  A  general  model  for  cell  type  annotation  predictions  —  that  is,  a  model 
 trained  on  a  large  and  diverse  data  corpus  consisting  of  all  human  tissues  in  diverse  —  would 
 assist  with  the  atlas-building  efforts  of  the  HCA  in  several  crucial  ways:  To  begin  with,  such  a 
 model  would  lower  the  barrier  of  manually  annotating  datasets  for  researchers,  offering 
 suggestions  with  a  standardized  set  of  nomenclature.  Predictions  with  a  uniform  set  of  vocabulary 
 will  naturally  push  the  community  to  adopt  consistent  terms  when  referring  to  cell  types.  Moreover, 
 such  model  suggestions  will  serve  as  “hints”,  a  baseline  for  researchers  to  modify  and  refine  based 
 on  their  own  knowledge  and  expertise.  Finally,  such  a  process  would  allow  scientists  to  annotate 
 datasets at the scale required by the HCA and related initiatives. 

 Providing  cell  labels  for  unannotated  datasets  can  be  posed  as  a  machine-learning  classification 
 task.  However,  cross-tissue  classifiers  trained  on  large-scale  data  collections  that  annotate  cells 
 from  heterogeneous  sources,  irrespective  of  tissue  of  origin  and  assay  type,  are  surprisingly  slow 
 to  emerge.  Models  often  address  only  specific  scenarios  and  do  not  focus  on  strong  generalization 
 capabilities  beyond  the  datasets  they  are  trained  on  12  ,  partly  due  to  fragmented  data  collection 
 efforts.  Recent  large  data  curation  efforts  streamline  the  training  of  generalist  models  because  they 
 expose  cell  type  labels  and  other  metadata  in  structured  vocabularies  of  ontologies  and  consistent 
 feature  spaces  13,14  .  In  particular,  CELLxGENE  hosts  a  first  draft  of  a  curated  data  collection  that 
 allows  for  models  to  be  trained  across  a  significantly  larger  range  of  datasets  than  was  possible 
 before  15  .  Nevertheless,  a  dominant  paradigm  of  the  cell  type  annotation  task  has  been  annotation 
 transfer  16  ,  specifically  the  approach  of  projecting  entire  samples  of  cells  on  an  annotated  reference 
 atlas  to  transfer  cell  type  labels  1,17,18  .  Annotation  transfer  is  often  used  in  organ-  or  lineage-specific 
 scenarios,  yet  it  is  critically  limited  by  the  quality  and  similarity  of  the  annotated  reference.  In 
 contrast  to  this  paradigm  of  query-to-reference  mapping,  we  focus  on  the  problem  of  general  cell 
 type  annotation  which  entails  training  models  across  a  large-scale  data  corpus  to  predict  cell  type 
 labels  solely  based  on  gene  expression.  It’s  also  worth  noting  that  the  predictions  of  such  a  model 
 would  be  community-driven;  researchers  would  not  be  required  to  rely  upon  annotation 
 transfer-based  methods.  Such  approaches  inevitably  suffer  from  model  overtraining  upon  a  single 
 reference  (often  with  lab-specific  cell  labels)  and  strongly  encourage  researchers  to  choose  a 
 context-specific  reference  close  enough  to  their  study  of  interest  as  a  basis  for  trustworthy  cell 
 annotations. 

 Several  aspects  of  the  general  cell  type  annotation  problem  remain  ambiguous:  Firstly,  initial 
 attempts  to  increase  model  complexity  in  cell  type  annotation  to  improve  classification  performance 
 have  failed  to  improve  over  linear  baseline  models  6,19,20  .  Consequently,  the  question  pertains  to 
 whether  large-scale,  non-linear  models  learn  cell  state  representations  that  are  more  useful  for  this 
 classification  task  than  linear,  well-tuned  baseline  models  that  are  trained  on  large-scale  datasets 
 as  well.  Furthermore,  recent  efforts  have  started  to  use  large-scale  data  corpora  with  tens  of 
 millions  of  scRNA-seq  profiles  to  train  deep  learning  models  21–23  .  However,  those  efforts  on 
 foundation  models  benchmark  cell  representations  on  diverse  tasks,  so  far  without  context  on  deep 
 models  specifically  designed  for  cell  type  annotation.  Indeed,  the  cell  annotation  tasks  considered 
 in  these  efforts  are  either  only  fine-tuned  to  specific  cell  type  classification  problems  with  only  a  few 
 cell  types  21,22  or  do  not  directly  predict  cell  type  labels  but  rely  on  finding  similar  cells  in  an 
 annotated  reference  23  .  Moreover,  these  initial  attempts  at  building  foundation  models  that  cover  a 
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 large  data  corpus  largely  treat  the  cell  type  labels  as  mutually  exclusive  and  ignore  label  relations 
 that  were  previously  exploited  in  organ-centric  classification  tasks  14,24  ,  thus  questioning  if  the 
 resulting  benchmarking  metrics  are  faithful  evaluations  of  the  performance  on  these 
 heterogeneous  datasets.  Lastly,  it  remains  unclear  how  cross-tissue  cell  type  classifiers  compare 
 their  respective  organ-specific  counterparts.  Here,  we  address  these  challenges  by  assembling  a 
 benchmark  dataset  for  cross-tissue  cell  type  classification  and  carefully  analyzing  a  cross-tissue 
 cell  type  classifier  optimized  for  cell  type  annotation  on  tabular  scRNA-seq  data:  scTab.  scTab  uses 
 observation-wise  feature  attention  to  reduce  the  number  of  input  features  for  each  observation. 
 This  helps  the  model  to  be  more  robust  to  overfitting  to  poorly  generalizable  features  in  the  training 
 data,  which  is  often  an  issue  for  tabular  data  as  there  is  no  prior  knowledge  about  the  underlying 
 structure of the data - unlike for e.g. images or text  25  . 

 We  leverage  well-defined  benchmark  metrics  5,7  for  cell  type  classification  to  understand  the 
 performance  of  deep  learning  models  trained  on  large  scRNA-seq  data  corpora,  focusing  on  the 
 scaling  behavior  of  such  models  with  respect  to  the  training  data  size  as  well  as  the  model  size  26  . 
 We  find  that  analogous  to  the  work  in  computer  vision,  cell  type  classification  from  scRNA-seq  data 
 substantially  benefits  from  large-scale  training  of  deep-learning-based  models  27  ,  and  model 
 generalizability  can  be  improved  by  artificially  increasing  the  training  data  size  through  data 
 augmentation  28  .  In  addition,  we  find  that  by  scaling  cell  type  classification  to  large-scale  datasets, 
 deep-learning  models  outperform  their  linear  counterparts,  in  contrast  to  what  was  reported 
 before  6  .  Yet,  well-defined  baseline  models  are  still  relatively  powerful,  thus  suggesting  caution  in 
 the  design  of  benchmarking  experiments  in  foundation  models.  In  summary,  our  detailed  analysis 
 demonstrates  the  strengths  of  deep  learning-based  approaches  over  their  linear  counterparts  in 
 large-scale,  cross-tissue  cell  type  classification  and  shows  that  classification  performance  scales 
 both with respect to training data and model size. 

 Results 

 A  dataset  and  evaluation  metric  to  study  the  scaling  behavior  of  cross-tissue  cell  type 
 classification models 

 We  set  out  to  build  a  dataset  on  which  a  cross-tissue  cell  type  classification  model  could  be  trained 
 and  evaluated.  In  the  existing  literature,  we  identified  three  approaches  to  creating  such  a  dataset. 
 The  first  approach  involves  assembling  study-  or  organ-specific  datasets  and  homogenizing  cell 
 type  labels  in  order  to  obtain  a  mutually  exclusive  set  of  labels  or  a  tree  with  levels  of  mutually 
 exclusive  labels  5–7  .  The  second  approach  centers  around  assembling  organ-specific  datasets  and 
 mitigating  annotation  granularity  differences  by  using  the  Cell  Ontology  29,30  to  establish  a  directed 
 acyclic  graph  between  the  observed  labels  14  .  The  third  approach  entails  the  collection  of  an 
 organism-wide  data  corpus  with  ontology-constrained  labels  treated  as  mutually  exclusive,  thus 
 ignoring  the  hierarchical  structure  of  labels  in  the  ontology  21,22  .  This  is  problematic  since  the 
 hierarchical  dependency  between  labels  is  a  key  structure  of  these  datasets,  e.g.  a  “CD4-positive, 
 alpha-beta  T  cell”  is  also  a  “T  cell”  and  a  “lymphocyte”,  and  penalizing  a  model  that  predicts 
 “CD4-positive,  alpha-beta  T  cell”  for  a  cell  that  is  labeled  as  a  “T  cell”  results  in  an  evaluation  that  is 
 biased  towards  the  model  being  able  to  mimic  the  annotation  granularity  of  the  data  instead  of  its 
 ability  to  distinguish  cell  types.  Here,  we  leveraged  the  cell  type  relations  given  by  the  Cell 
 Ontology  29  across  a  data  corpus  of  all  human  tissues,  using  a  release  of  the  cell  census  by 
 CELLxGENE  as  a  root  dataset  (Methods).  This  data  corpus  reflects  a  large  number  (164)  of  cell 
 types  in  the  human  body,  therefore,  we  refer  to  the  resulting  label  prediction  problem  as  “general 
 cell type classification”. 
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 To  benchmark  a  cell  type  prediction  task  that  represents  the  recent  literature  closely  7,20  ,  we 
 considered  models  with  a  softmax-constrained  output  across  all  observed  cell  type  labels.  To 
 account  for  differences  in  annotation  granularity  across  datasets,  we  adjusted  predictions  based  on 
 the  Cell  Ontology  to  not  incur  penalties  if  a  model  predicts  a  more  fine-grained  label  than  the 
 original  author  annotation  (Methods).  We  modified  the  original  release  of  the  cell  census  in 
 preparation  for  this  task  (Methods).  First,  it  is  important  to  realize  that  public  data  corpora  are  not 
 necessarily  deduplicated.  Often,  cells  are  present  in  a  primary  dataset  that  originates  from  an 
 original  study  and  are  also  contained  in  secondary  datasets  (metastudies),  such  as  atlas  datasets. 
 We  only  considered  instances  of  cells  in  primary  datasets  to  avoid  data  leakage  through  duplicate 
 cells.  Second,  we  removed  cells  with  broad  cell  type  labels,  using  a  heuristic  that  removes  each 
 cell  type  with  less  than  seven  parent  nodes  in  the  Cell  Ontology.  Third,  we  restricted  to  cells 
 measured  with  the  most  common  group  of  10X  Genomics  technology-related  assays,  to  reduce  the 
 strength  of  confounding  sources  of  variation  in  the  dataset.  Fourth,  we  removed  cells  from  rare  cell 
 types  with  less  than  5,000  instances  or  those  present  in  less  than  30  donors  to  accurately  assess 
 how  the  trained  classifiers  generalize  to  unseen  donors  (Methods).  The  resulting  dataset  contains 
 22.2  million  cells,  with  5,052  donors  and  164  cell  type  labels  (Fig.  1a).  We  defined  test  holdouts 
 based  on  donor  annotation,  which  we  see  as  a  sensible  compromise  between  an  entirely  random 
 split  and  a  split  based  on  holdout  studies.  The  donor-wise  split  improves  the  coverage  of  labels  in 
 both  training  and  test  sets  compared  to  a  split  based  on  studies,  and  reduces  leakage  of  similar 
 observations  between  training  and  test  data  compared  to  a  random  split  of  cells,  thus  creating  an 
 evaluation  set  that  is  better  suitable  to  assess  the  generalization  capabilities  of  a  classifier.  As  a 
 benchmarking  metric,  we  chose  the  macro-averaged  F1-score  (macro  F1-score)  (Methods)  to 
 account for class imbalances and to give each cell type an equal weight in the overall score. 

 A  feature-attention-based,  scalable,  deep-learning  model  for  cross-tissue  cell-type 
 classification 

 Studying  the  scaling  behavior  of  deep-learning-based  models  necessitates  a  scalable  model 
 implementation  that  can  be  trained  on  bigger-than-memory  datasets.  In  addition,  we  ask  if  recent 
 extensions  beyond  classical  multi-layer  perceptrons  (MLP)  improve  prediction  as  they  have  in 
 other  fields.  Since  gene  expression  profiles  are  not  ordered,  we  decided  against  sequence-based 
 models  such  as  transformers  21,22  and  instead  selected  a  recent  architecture  specifically  proposed 
 for  tabular  data  31  .  Here,  we  introduce  scTab  (Fig.  1b),  which  is  a  scalable  implementation  of  the 
 TabNet  architecture  31  ,  which  we  adapted  to  the  single-cell  use  case:  scTab  is  specifically  designed 
 for  the  tabular  structure  of  scRNA-seq  data  through  the  use  of  feature  attention,  which  enables  the 
 network  to  focus  its  model  capacity  on  more  reliable  input  features.  After  normalization,  it  encodes 
 data  via  a  feature  transformer  and  selects  relevant  input  features  through  feature  attention  via  an 
 attention  transformer  block  (Methods).  We  modified  the  original  TabNet  implementation  in  a  few 
 crucial  ways:  scTab’s  input  data  assumption  is  adapted  to  the  single-cell  setting,  in  particular,  the 
 input  gene  expression  is  size  factor  normalized  to  10,000  counts  per  cell  and  log1p  transformed. 
 This  common  normalization  for  scRNA-seq  data  7,23  cannot  be  replicated  by  the  simple  batch 
 normalization  layer  used  in  the  original  TabNet  architecture.  We  additionally  modified  the  original 
 TabNet  architecture  to  improve  computational  efficiency,  namely  by  reducing  the  number  of  feature 
 and  attention  blocks  (which  we  found  unnecessary  after  profiling),  and  training  dynamics  for  faster 
 convergence  (Methods).  For  better  model  generalizability,  we  further  added  a  data  augmentation 
 step  as  described  later  below.  Finally,  scTab  quantifies  prediction  uncertainty  using  empiric 
 uncertainty probabilities based on deep ensembles  32  (Methods). 
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 Cross-tissue cell type classification requires nonlinear models 

 To  showcase  the  performance  of  state-of-the-art  models  according  to  recent  benchmarks  5,20  ,  we 
 first  retrained  a  CellTypist  model  7  (Methods)  to  a  random  subsample  of  our  training  corpus.  The 
 current  CellTypist  implementation  necessitated  the  full  training  data  to  be  subsampled  for  model 
 training  as  on  the  one  hand  it  requires  all  the  training  data  to  be  loaded  into  memory  and  on  the 
 other  hand  it  lacks  GPU  acceleration.  Here,  we  subsampled  to  1.5  million  cells.  This  re-trained 
 reference  model  achieved  a  macro  F1-score  of  0.7304±0.0015  (±  is  indicating  the  standard 
 deviation)  (Fig.  1c).  Given  this  performance  of  the  reference  CellTypist  model,  we  investigated  if 
 performance  could  be  increased  by  scaling  logistic  regression-based  models  to  take  advantage  of 
 the  full  training  data  size.  We  implemented  a  logistic  regression-based  model  not  subject  to  these 
 limitations  (Methods)  and  trained  this  model  with  a  cross-entropy  loss.  This  model  significantly 
 outperformed  the  CellTypist  reference  model  and  achieved  a  macro  F1-score  of  0.7848±0.0001 
 (Fig.  1c),  showing  the  potential  of  scaling  existing  linear  models  to  take  advantage  of  larger 
 datasets.  Having  optimized  the  linear  reference  model,  we  benchmarked  three  nonlinear  models 
 against  this  baseline:  our  scTab  model,  an  MLP  previously  proposed  for  this  task  6,14  -  but  found  to 
 not  outperform  linear  models  within  single  tissues  -  and  an  XGBoost  model  that  reported  robust 
 performances  on  classification  tasks  for  tabular  data  25  :  The  nonlinear  models  significantly 
 outperformed  the  linear  model  (0.8295±0.0007  macro  F1-score  for  scTab  (fitted  with  data 
 augmentation),  0.8127±0.0005  for  XGBoost,  0.7971±0.0012  for  MLP  (fitted  with  data 
 augmentation))  (Fig.  1c,  Supp.  Table  1),  demonstrating  that  cross-tissue  cell  type  classification  is 
 complex  enough  to  benefit  from  nonlinear  models.  Moreover,  scTab  outperformed  the  linear  model 
 on  all  organ  systems  when  these  were  considered  separately  (Fig.  1d).  Further  to  this,  when 
 looking  at  uncertainty  scores  calculated  based  on  deep  ensembles  32  (Methods),  one  can  see  that 
 incorrect  predictions  on  the  holdout  test  data  are  also  associated  with  a  higher  model  uncertainty 
 (Supp.  Fig.  5).  Besides  the  performance  advantage  over  linear  models,  scTab  also  showcases 
 different  training  dynamics:  On  the  one  hand,  the  difference  to  the  linear  model  is  more 
 pronounced  when  looking  at  the  loss,  and  on  the  other  hand,  scTab  is  trained  for  more  epochs 
 (Fig.  1e).  When  qualitatively  inspecting  the  representations  learned  by  scTab  in  a  tSNE  plot,  we 
 found  that  cell  types  show  consistent  separation  and  that  the  latent  space  was  more  structured 
 compared  to  the  raw  feature  space  (Fig.  1f).  In  summary,  we  show  that  leveraging  larger  and  more 
 diverse  training  data  sets  coupled  with  deep  learning-based  models  dramatically  improves 
 classification  performance  for  cross-tissue  cell  type  classifiers  (Fig.  1c).  Furthermore,  one  can  see 
 that  classes  on  which  errors  were  made  tended  to  be  those  that  were  represented  by  few 
 observations  (Fig.  1g).  This  further  motivates  that  classification  performance  can  indeed  be 
 improved by adding more training examples specifically for cell types which are hard to classify. 
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 Figure  1:  scTab  enables  organism-wide,  scalable,  and  robust  cell  type  classification  on 
 single-cell RNA-seq data. 

 (a)  Treemap  plot  showing  the  composition  of  the  assembled  dataset  across  cell  types  and  tissues.  Each  color 
 corresponds  to  one  tissue  with  the  size  of  the  box  giving  the  number  of  donors  for  that  tissue  and  the  inner  boxes  the 
 number  of  donors  for  each  cell  type.  The  22.2  million  cells  from  the  assembled  dataset  span  5,052  unique  donors,  249 
 datasets,  52  disease  states,  164  unique  cell  types,  and  56  different  tissues.  A  full  list  of  the  cell  type  label,  tissue,  and 
 number  of  donors  and  cells  per  combination  of  label  and  tissue  is  given  in  Supp.  Table  5.  (b)  Overview  of  the  scTab 
 architecture  used  in  this  paper  (Methods).  After  normalization  of  the  input  features  (gene  counts  are  normalized  to 
 10,000  counts  per  cell  and  then  lop1p  transformed),  it  encodes  data  via  a  feature  transformer  and  selects  relevant  input 
 features  through  feature  attention  via  an  attention  transformer  block.  (FC:  fully  connected  layer,  BN:  batch  norm  layer, 
 GLU:  gated  linear  unit  nonlinearity,  ReLU:  rectified  linear  unit)  (c)  Comparison  of  classification  performance  (measured 
 by  macro  F1-score)  of  linear  reference  models  (CellTypist  (retrained  on  cross-organ  data  and  subsampled  to  1.5  million 
 cells),  Linear)  and  nonlinear  models  (scTab,  XGBoost,  MLP  (multi-layer  perceptron)).  (d)  Classification  performance 
 (measured  by  macro  F1-score)  grouped  by  organ  system  of  scTab  and  our  linear  reference  model.  (e)  Cross-entropy 
 loss  and  macro  F1-score  on  the  validation  set  plotted  after  each  epoch  for  scTab  and  our  linear  reference  model.  The 
 performance  difference  between  the  two  models  is  stronger  for  the  cross-entropy  loss  than  for  the  macro  F1-score.  (f) 
 tSNE  plots  of  raw  features  (input  to  linear  classifier)  and  the  learned  features  of  scTab  with  the  top  70  most  frequent  cell 
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 types  superimposed.  Plots  show  the  holdout  test  data.  (g)  F1-score  per  cell  type  plotted  against  the  number  of  unique 
 cells  observed  per  cell  type  for  scTab.  The  histogram  on  the  y-axis  shows  the  distribution  of  F1-scores  and  the  histogram 
 on the x-axis shows the distribution of unique cells per cell type (log scale). 

 Cross-tissue cell type classification scales with dataset and model size 

 A  key  driver  behind  the  success  of  deep-learning-based  models  in  computer  vision  or  natural 
 language  processing  is  their  ability  to  take  advantage  of  larger  datasets.  This  scaling  behavior  was 
 a  driving  factor  of  recent  advances  in  computer  vision  and  natural  language  processing  and  led  to 
 the  study  of  how  model  performances  scale  with  model  size  and  training  examples  26,27  .  Having 
 established  that  the  cross-tissue  cell  type  classification  problem  satisfies  this  premise,  we  next  set 
 out  to  study  its  scaling  behavior.  In  contrast  to  images,  the  heterogeneity  of  a  scRNA-seq  corpus  is 
 not  trivially  measured  by  the  number  of  observations  (cells).  Some  datasets  contain  densely 
 sampled  cell  states,  in  which  new  samples  would  simply  replicate  what  is  already  captured, 
 whereas  other  samples  are  relatively  sparsely  sampled  (Fig.  2a).  To  account  for  this  complexity  in 
 the  study  of  data  scaling  behavior,  we  compared  the  test  performance  of  models  trained  on 
 subsets  of  the  full  corpus,  either  subsampled  randomly  by  cells  as  a  control,  or  subsampled  by 
 donors  to  tie  the  subset  size  closer  to  the  relative  complexity  captured  by  this  dataset  (Methods). 
 Indeed,  we  observed  a  strong  scaling  of  the  loss  and  macro  F1-score  with  respect  to  the  dataset 
 size  for  donor  sub-sampling,  but  a  much  weaker  scaling  for  cell-subsampling  (Fig.  2b)  indicating 
 that  scaling  with  respect  to  the  training  dataset  size  is  mostly  driven  by  batch  diversity  rather  than 
 the  number  of  cells.  This  scaling  also  held  for  all  organ  systems  when  inspected  individually,  with  a 
 minimum  difference  in  macro  F1-score  of  0.0454±0.0083  between  a  dataset  of  2.1  million  cells  and 
 the  full  training  dataset  of  15.2  million  cells,  and  a  median  difference  of  0.1219±0.0212  (Fig.  2c).  A 
 potential  reason  for  the  difference  in  classification  performance  between  different  organ  systems 
 lies  in  the  number  of  observed  cell  types  per  organ  system  -  the  F1-scores  have  a  correlation  of 
 -0.55  with  the  number  of  observed  cell  types  per  organ  system.  The  observed  scaling  with  data 
 size  was  also  specific  to  scTab  and  was  not  exhibited  by  the  linear  model  (Fig.  2d),  whose  learning 
 curve  flattens  out  earlier,  resulting  in  an  improvement  of  the  macro  F1-score  by  scTab  over  our 
 linear  reference  model  of  0.0447±0.0008  when  using  the  full  training  data.  Moreover,  we  compared 
 the  performance  of  lung-specific  cell  type  classification  of  models  trained  only  on  lung  data  against 
 their  cross-organ  counterparts.  The  deep-learning-based  scTab  model  shows  more  robust 
 performances  compared  to  its  linear  counterpart  (Fig.  2e).  The  lung-specific  performance  of  scTab 
 only  drops  from  a  macro  F1-score  of  0.7220±0.0078  to  0.7062±  0.0122  ,  whereas  the  performance 
 of  the  linear  model  drops  from  0.7146±0.0040  to  0.5291  ±0.0041  (Supp.  Table  2),  suggesting  that 
 cross-organ  cell  type  classification  benefits  from  using  non-linear  models.  This  also  indicates  that  if 
 the  use  case  is  purely  organ-specific,  adding  this  information  as  an  additional  covariate  might  help 
 the  classifier  achieve  better  classification  performance;  hence  a  simple  extension  of  scTab  would 
 be to add the tissue as an additional input covariate. 

 Focussing  on  assessing  model  capacity  at  increased  data  size,  we  performed  a  second  scaling 
 experiment  in  which  we  kept  the  full  dataset  but  compared  scTab  implementations  with  different 
 numbers  of  parameters  (Methods).  We  found  a  significant  improvement  in  performance  between 
 the  smallest  model  with  1.7  million  parameters  (0.7864±0.0010  macro  F1-score)  and  the  largest 
 model  with  16.2  million  parameters  (0.8323±0.0010  macro  F1-score)  (Fig.  2f).  Overall,  the 
 above-mentioned  differences  in  scaling  behavior  to  a  baseline  linear  model  show  that  a  nonlinear 
 model  is  better  able  to  take  advantage  of  larger  and  more  diverse  data  sets  and  that  it  is  able  to 
 model complex non-linear relationships. 
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 Figure 2: Non-trivial scaling behavior of scTab in cross-tissue cell type prediction. 

 (a)  Distribution  of  donors  with  respect  to  the  number  of  unique  cell  types  (x-axis)  and  with  respect  to  the  number  of  cells 
 (y-axis).  The  histogram  on  the  y-axis  shows  the  distribution  of  donors  with  respect  to  the  number  of  cells  (log  scale).  The 
 histogram  on  the  x-axis  indicates  the  distribution  of  donors  with  respect  to  the  number  of  unique  cell  types.  (b)  Scaling 
 behavior  of  scTab  with  respect  to  the  size  of  the  training  data  for  two  simulated  scenarios  in  terms  of  macro  F1-score  and 
 cross-entropy  loss:  i)  cell-based  subsampling  which  corresponds  to  increasing  the  number  of  sequenced  cells  while 
 keeping  the  observed  biological  diversity  constant  ii)  donor-based  subsampling  which  corresponds  to  increasing  the 
 observed  biological  diversity  and  which  also  reflects  the  real  world  more  closely  as  new  datasets  will  mostly  contain  new 
 unobserved  donors.  All  cell  types  from  the  test  set  were  observed  during  model  training  for  all  subsampled  datasets.  (c) 
 Scaling  of  the  cross-organ  model  from  Fig.  2b  with  respect  to  training  data  size  grouped  by  organ  system  (subsampling 
 is  done  based  on  donor-based  subsampling).  (d)  Scaling  behavior  of  scTab  versus  our  linear  reference  model  with 
 respect  to  the  training  data  size.  One  can  see  that  the  difference  between  the  two  models  increases  with  increasing 
 training  data  size.  (e)  Effect  of  training  only  on  lung-specific  data  versus  training  on  all  cross-organ  data  on  lung-specific 
 classification  performance  (evaluated  on  test  data  subset  only  to  lung  data)  for  scTab  and  our  linear  reference  model.  (f) 
 Scaling  behavior  with  respect  to  model  size.  The  number  of  hidden  units  refers  to  the  size  of  the  fully  connected  layers 
 (FC) in the architecture (Fig. 1b, Methods). 
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 Data augmentation improves classifier generalizability 

 Due  to  their  high  model  capacity,  deep  learning  models  are  known  to  easily  overfit  the  training  data 
 and  can  even  fit  random  labels  33  .  One  well-established  technique  to  reduce  overfitting  and  thus 
 improve  model  generalizability  is  to  artificially  increase  training  data  size  by  applying 
 semantically-preserving  transformations.  For  images,  these  transformations  include  rotating  or 
 cropping  input  images  during  training  28  .  Data  augmentation  serves  as  a  regularization  technique 
 that  yields  models  with  better  generalization  capabilities  and  less  impacted  by  dataset-shift 
 phenomena.  So  far,  data  augmentation  has  not  been  consistently  applied  in  single-cell  genomics, 
 due  to  the  limited  capacity  of  most  scRNA-seq  models,  and  due  to  the  lack  of  sensible 
 augmentation  strategies.  Here,  we  propose  a  novel  augmentation  strategy  for  scRNA-seq  data  and 
 evaluate  it  for  cell  type  prediction  with  our  scTab  model.  Notably,  our  data  augmentation  strategy  is 
 not  only  limited  to  scTab  but  can  be  used  in  combination  with  other  models  as  well.  The  motivation 
 for  the  proposed  data  augmentation  is  to  simulate  the  gene  expression  vector  of  a  target  cell  if  it 
 were  observed  in  a  different  donor.  To  do  so,  we  precompute  augmentation  vectors  based  on  the 
 training  data  that  can  be  added  to  the  original  gene  expression  vectors  during  model  training  (Fig. 
 3b).  The  data  augmentation  vectors  are  the  average  difference  computed  in  the  full  gene  space 
 between  cells  of  the  same  cell  type  observed  in  two  different  donors.  Thus,  by  adding  those 
 augmentation  vectors  to  the  gene  expression  vector  of  the  original  cell,  one  can  simulate  the  gene 
 expression  vector  of  a  target  cell  in  a  different  donor,  extending  the  training  data  domain  in  these 
 incompletely  observed  donors  (Fig.  3a).  Before  evaluating  the  effect  of  this  augmentation  on  model 
 fits,  we  established  that  it  did  not  severely  disrupt  the  training  data  structure.  Boundaries  between 
 cell  types  are  blurred  in  a  tSNE  of  the  augmented  data.  Still,  cell  type  identity  as  a  main  source  of 
 variation  in  the  data  is  preserved  (Fig.  3c)  as  quantified  by  a  similar  variance  decomposition  in 

 terms  of  cell  type  and  donor  labels  (  =0.189  for  the  raw  data,  =0.164  for  the  augmented  data,  𝑅  2  𝑅  2 

 Supp.  Table  7,  Methods).  We  found  this  augmentation  strategy  to  regularize  models,  training  loss 
 increased  upon  using  augmentation,  and  the  macro  F1-score  on  the  training  data  decreased. 
 Model  generalization  was  improved  on  the  validation  set  as  measured  by  reduced  loss  and 
 increased  macro  F1-score  (Fig.  3d).  When  looking  at  the  holdout  test  set,  the  proposed  data 
 augmentation  significantly  reduces  the  loss  from  0.797±0.05  to  0.659±0.04  (p-value:  0.0039)  and 
 significantly  increases  the  macro  F1-score  from  0.7755±0.0020  to  0.7841±0.0030  (p-value:  0.0016) 
 (Supp.  Table  3).  These  results  show  that  sensible  data  augmentation  techniques  for  scRNA-seq 
 data can significantly improve the generalization performance of cross-tissue cell type classifiers. 
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 Figure  3:  Data  augmentation  for  scRNA-seq  cell  type  classification  improves  model 
 generalizability. 

 (a)  Illustration  of  the  data  augmentation  procedure.  The  difference  vector  in  raw  gene  space  between  the  same  cell  type 
 observed  across  two  donors  can  be  used  to  simulate  how  the  gene  expression  of  a  cell  type  might  look  for  a  different 
 donor  and,  thus,  artificially  increase  the  training  data  size.  (  b)  For  each  input  vector  to  the  neural  network,  an 
 augmentation  vector  is  randomly  sampled  and  added  to  the  original  input  vector.  The  augmented  vector  is  then  fed  into 
 the  neural  network  (due  to  simplicity  the  batch  dimension  is  omitted  in  the  sketch).  (c)  tSNE  visualization  of  original  and 
 augmented  data.  One  can  see  that  the  augmentation  blurs  out  the  boundaries  of  the  cell  types  but  that  the  main  source 
 of  variation  (cell  type)  is  still  preserved.  (d)  Effect  of  augmentation  on  training  and  validation  loss  and  macro  F1-score 
 (training  data  was  subset  to  4.3  million  cells  (Methods)).  One  can  observe  the  desired  effect  of  data  augmentation,  an 
 increase  in  training  loss  (regularizing  effect),  and  a  decrease  in  validation  loss.  The  dashed  vertical  lines  indicate  how 
 long  the  models  with  and  without  data  augmentation  are  fitted  on  average  (early  stopping  is  done  based  on  the  macro 
 F1-score), respectively. 
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 Robust benchmarks for cross-tissue cell type classification 

 It  is  common  practice  in  machine  learning  to  have  standardized  large-scale  benchmark  data  sets 
 such  as  the  ImageNet  34  subset  for  the  “ImageNet  Large  Scale  Visual  Recognition  Challenge”  35  and 
 the  Microsoft  COCO  dataset  36  in  computer  vision,  the  GLUE/SuperGLUE  dataset  37,38  and  the 
 WMT2014  English-German  datase  39  in  natural  language  processing.  These  benchmark  datasets 
 enable  models  to  be  trained  on  bigger  data  corpora  and  allow  for  structured  model  benchmarks 
 that  usually  do  not  require  re-training  of  reference  models.  Such  ready-to-use  and  large-scale 
 benchmark  datasets  for  cell  type  classification  on  single-cell  transcriptomics  data  are  not  yet  easily 
 accessible.  Creating  such  datasets  for  scRNA-seq  data  comes  with  two  key  challenges:  On  the 
 one  hand,  such  datasets  need  to  come  with  a  performant  and  easy-to-use  data-loading 
 infrastructure,  that  is  able  to  scale  to  bigger-than-memory  datasets.  Otherwise,  it  becomes 
 challenging  for  users  without  the  proper  technical  background  to  use  such  datasets  in  their 
 workflow.  On  the  other  hand,  such  datasets  should  be  predefined,  easily  accessible,  and  come 
 with  fixed  training,  validation,  and  test  splits  to  make  results  easily  comparable.  Now,  to  encourage 
 similar  practices,  our  processed  benchmark  dataset  with  predefined  train,  validation,  and  test  splits 
 and  the  accompanying  data  loading  infrastructure  are  available  to  download  (Methods).  The 
 downloadable  dataset  is  ready  to  use  out-of-the-box  with  an  efficient  data  loader  (Supp.  Fig.  1, 
 Methods).  Furthermore,  the  dataset  comes  with  a  set  of  well-tuned  reference  models  (Methods) 
 that  can  be  directly  used  for  further  benchmarking  efforts.  The  need  for  well-tuned  reference 
 models  is  demonstrated  by  the  comparison  of  the  performance  of  the  XGBoost  and  CellTypist 
 models  given  default  parameters  and  their  respective  performance  given  tuned  parameters.  On  the 
 benchmark  data,  the  performance,  measured  by  macro  F1-score,  could  be  increased  from 
 0.5855±0.0112  to  0.8127±0.0005  for  the  XGBoost  model  and  from  0.6258±0.0036  to 
 0.7304±0.0015  for  the  CellTypist  model  respectively  (Supp.  Table  4).  We  expect  this  combination 
 of  a  well-defined  benchmark  dataset  with  well-tuned  baseline  models  to  facilitate  the  systematic 
 study  of  model  scaling  laws,  which  are  of  importance  for  the  establishment  and  evaluation  of 
 foundation models  21–23,40,41  . 

 Discussion 

 We  introduced  cross-tissue  cell  type  classification  on  a  whole-body  human  data  corpus  of 
 scRNA-seq  data  as  a  machine  learning  task  that  facilitates  cell  type  annotation  and  that  can  benefit 
 from  large-scale  data  collections  and  the  usage  of  larger,  non-linear  models  similar  to  examples  in 
 computer  vision  27  .  Notably,  even  on  a  well-defined  dataset  and  with  optimized  models  for  tabular 
 data,  this  task  is  not  yet  perfectly  solved.  We  demonstrated  scaling  of  model  performance  with 
 training  dataset  size  and  model  size  on  this  task,  noting  that  batch  diversity  dominates  the  raw 
 number  of  cells  in  this  data  scaling.  We  also  found  that  model  overfitting  can  be  mitigated  through 
 data  augmentation.  Additionally,  the  analysis  and  models  introduced  here  provide  a  reproducible 
 context  for  future  work  on  cross-tissue  cell  type  classification  which  is  a  cornerstone  in  the  context 
 of  foundation  models  for  scRNA-seq  data,  for  example,  by  providing  a  standardized  large-scale 
 benchmark dataset and a set of well-tuned reference models. 

 General  cell  type  classification  reflects  the  ability  of  models  to  learn  cell  types  based  on 
 transcriptomic  profiles,  a  key  abstraction  of  scRNA-seq  data.  But,  like  many  supervised  machine 
 learning  tasks,  it  is  limited  by  the  annotation  granularity  of  the  training  data.  The  CELLxGENE  data 
 corpus  used  here  is  based  on  the  cell  ontology.  As  the  Cell  Ontology  is  still  a  work  in  progress,  not 
 all  cell  types  can  be  correctly  matched  to  a  corresponding  ontology  term,  this  is  especially  a 
 problem  for  rare  cell  types.  Moreover,  relationships  between  cell  types  given  by  the  Cell  Ontology 
 are  still  a  topic  of  active  discussion,  which  can  affect  the  classification  metrics  discussed  here. 

 11 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 10, 2023. ; https://doi.org/10.1101/2023.10.07.561331doi: bioRxiv preprint 

https://paperpile.com/c/MrChwQ/06pQ
https://paperpile.com/c/MrChwQ/xkKz
https://paperpile.com/c/MrChwQ/EGgh
https://paperpile.com/c/MrChwQ/VYx9+VHO9
https://paperpile.com/c/MrChwQ/PI6m
https://paperpile.com/c/MrChwQ/ZLim+9bKk+tn8v+qXwY+19Mn
https://paperpile.com/c/MrChwQ/I70r
https://doi.org/10.1101/2023.10.07.561331
http://creativecommons.org/licenses/by/4.0/


 However,  we  would  like  to  highlight  that  the  strength  of  these  current  models  for  automated  cell 
 type  annotation  does  not  lie  in  correctly  classifying  novel  cell  types,  but  rather  in  context-specific 
 suggestions  which  biologists  can  further  refine.  Besides,  the  models  from  our  paper  can  be  readily 
 retrained once more and better-annotated data becomes available. 

 Future  work  may  extend  the  concept  of  general  cell  type  classification  to  less  stringent  filters  of  the 
 public  data  corpus,  for  example  including  cells  from  assay  technologies  that  are  not  as  common  as 
 the  technologies  considered  here,  and  including  rarer  cell  types.  We  would  like  to  highlight  that 
 those  efforts  will  need  to  take  particular  care  in  defining  more  detailed  evaluation  metrics,  as  plain 
 macro  F1-scores  may  not  properly  reflect  the  complexity  of  extremely  unbalanced  datasets  with 
 100s-1000s  of  classes.  In  addition,  we  would  like  to  emphasize  that  the  performance  of  machine 
 learning  models  can  be  heavily  influenced  by  the  composition  and  quality  of  the  training  data.  For 
 example,  by  specifically  collecting  more  training  data  for  cell  types  or  tissues  a  model  struggles 
 with  or  by  being  more  rigorous  with  the  training  data  selection  through  only  selecting  datasets  with 
 high-confidence  annotations.  Here,  we  would  like  to  stress  that  predictions  will  become  more 
 refined,  once  more  refined  training  data  becomes  available;  and  note  that  the  growing  magnitude 
 of  single-cell  data  is  not  limited  to  transcriptomics;  single-cell  researchers  have  increasingly  utilized 
 spatial  transcriptomics,  proteomics,  and  other  multimodal  assays  to  investigate  how  other  features 
 (e.g.  chromatin  accessibility,  DNA  methylation,  etc.)  could  be  used  to  distinguish  between  cell 
 types  and  cell  states.  Building  on  this  point  a  future  direction  of  work  would  be  to  extend  scTab  to 
 take  advantage  of  different  input  modalities  as  well  once  data  for  those  modalities  becomes 
 available  at  an  equally  large  scale,  exploiting  this  feature  space  to  achieve  more  precise  cell  type 
 predictions  for  cell  identities.  Furthermore,  recent  efforts  to  establish  foundation  models  for 
 scRNA-seq  data  used  further  tasks  to  characterize  their  ability  to  learn  nontrivial  representations  of 
 cells.  We  envision  further  benchmarks  to  individually  address  these  specific  tasks,  again  focussing 
 on  data  and  strong  baseline  models.  In  this  context  of  cellular  representation  learning,  further  and 
 more  refined  choices  for  data  augmentation  may  be  explored.  Additionally,  these  augmentation 
 schemes  can  then  be  evaluated  in  the  context  of  unsupervised  representation  learning  like  for 
 example Bootstrap Your Own Latent  42  . 

 Finally,  it  is  critical  to  make  general  cell  type  classification  models  like  scTab  easily  accessible  to 
 the  broader  community  of  biological  researchers.  The  Cell  Annotation  Platform  (CAP; 
 https://celltype.info/  )  has  been  specifically  designed  for  HCA  researchers  of  all  backgrounds  to 
 effectively  work  with  the  predictions  of  scTab  (as  well  as  other  prediction  algorithms)  directly  via 
 their  browsers.  With  the  promise  of  high-confidence  predictions  of  cell  types  and  cell  states  using  a 
 structured  vocabulary,  as  well  as  the  ability  to  refine  and  edit  these  predictions  or  reannotate  cells 
 entirely,  researchers  will  be  empowered  to  annotate  their  datasets  at  the  current  scale  required  to 
 construct large-scale human cell atlases. 
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 Methods 

 Dataset preparation 

 The  dataset  used  in  this  paper  is  based  on  the  CELLxGENE  15  census  version  2023-05-15 
 (  https://chanzuckerberg.github.io/cellxgene-census/index.html  ).  The  census  version  2023-05-15  is 
 selected  as  it  is  a  long-term  supported  (LTS)  release  and  will  be  hosted  by  CELLxGENE  for  at 
 least  5  years.  This  makes  the  dataset  creation  easily  reproducible  for  the  foreseeable  future.  We 
 subsetted  to  human  datasets  and  used  the  human  protein-coding  genes  (19,331)  as  a  feature 
 space. 

 The following criteria are used to filter the human CELLxGENE census data: 

 1.  The  census  data  is  subset  to  primary  data  only  (  is_primary_data  ==  True  )  to  prevent  label 
 leakage between the train, validation, and test set. 

 2.  Only  sequencing  data  from  10x-based  sequencing  protocols  is  used.  In  terms  of  the 
 CELLxGENE  census,  this  means  subsetting  the  assay  metadata  column  to  the  following 
 terms:  10x  5'  v2,  10x  3'  v3,  10x  3'  v2,  10x  5'  v1,  10x  3'  v1,  10x  3'  transcription  profiling,  10x 
 5' transcription profiling 

 3.  The  annotated  cell  type  has  to  be  a  subtype  of  the  native  cell  label  based  on  the  underlying 
 cell type ontology 

 4.  For  each  cell  type,  there  have  to  be  at  least  5,000  unique  cells.  Otherwise,  the  whole  cell 
 type is dropped from the dataset. 

 5.  Each  cell  type  has  to  be  observed  across  at  least  30  donors  to  reliably  quantify  whether  the 
 trained  classifier  can  generalize  to  new  unseen  donors  for  each  cell  type.  With  the  used 
 70-15-15  train,  validation,  and  test  split  this  means  that  each  cell  type  is  represented  with  at 
 least 4-5 donors in the validation and test set, respectively. 

 6.  Each  cell  type  needs  to  have  at  least  seven  parent  nodes  in  the  cell  type  ontology.  This 
 criterion  is  used  as  a  heuristic  to  filter  out  general  cell  type  labels  that  do  not  contain  much 
 information. 

 To  be  able  to  better  assess  how  well  the  trained  classifiers  generalize  to  unseen  donors  or  in 
 general  to  better  assess  the  generalization  capabilities  of  the  trained  classifiers,  the  data  is  split 
 into  train,  validation,  and  test  sets  based  on  donors  and  not  based  on  random  subsampling. 
 Meaning,  each  donor  is  exclusively  found  either  in  the  training,  validation,  or  test  set.  Unlike 
 splitting  based  on  e.g.  holdout  datasets,  donor-based  splitting  mostly  preserves  the  proportion  of 
 cells  in  the  training,  validation,  and  test  set  compared  to  random  subsampling.  This  is  not  the  case 
 when  subsetting  the  available  data  based  on  e.g.  datasets,  which  often  results  in  a  very  uneven 
 distribution  of  cells  across  the  training,  validation,  and  test  sets  as  the  datasets  in  the  census 
 usually  range  anywhere  between  a  few  thousand  cells  to  a  few  million  cells.  Furthermore, 
 dataset-based  splitting  often  makes  it  hard  to  ensure  that  each  cell  type  is  observed  across  both 
 the  training  data  as  well  as  the  test  data.  In  the  end,  the  data  is  split  such  that  70%  of  the  donors 
 are  assigned  to  the  training  set  and  15%  of  the  donors  are  assigned  to  the  validation  and  test  set 
 respectively. 

 The data is size factor normalized to 10,000 counts per cell and log1p-transformed. 

 The  selection  described  above  results  in  22,189,056  cells  being  selected  which  span  164  unique 
 cell  types,  5,052  unique  donors,  and  56  different  tissues.  Of  the  22.2  million  cells  15,240,192  cells 
 are  assigned  to  the  training  set,  3,500,032  are  assigned  to  the  validation  set  and  3,448,832  cells 
 are assigned to the test set. 
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 More  detailed  explanations  and  references  to  the  code  that  can  be  used  to  reproduce  the  above 
 data  selection  and  splitting  exactly  can  be  found  in  the  associated  GitHub  repository  under 
 docs/data.md  . 

 Subsampled datasets 

 We used a subsampled training dataset in the following settings: 

 Dataset size scaling: 

 ●  Random  subsampling:  15%  subsampling  (2.3  million  cells),  30%  subsampling  (4.6  million 
 cells),  50%  subsampling  (7.6  million  cells),  70%  subsampling  (10.7  million  cells),  100% 
 subsampling (15.2 million cells) 

 ●  Donor-based  subsampling:  Subsample  to  15%  of  donors  (531  donors  /  2.1  million  cells), 
 Subsample  to  30%  of  donors  (1,061  donors  /  4.3  million  cells),  Subsample  to  50%  of 
 donors  (1,768  donors  /  7.4  million  cells),  Subsample  to  70%  of  donors  (2,476  donors  /  10.4 
 million cells), Subsample to 100% of donors (3,536 donors / 15.2 million cells) 

 Data augmentation: 

 ●  Subsample to 30% of donors (1,061 donors / 4.3 million cells) 

 In all other cases, the full training dataset is used. 

 All  subsampling  is  done  incrementally,  e.g.  the  30%  subsampled  dataset  includes  all  cells/donors 
 that are present in the 15% subsampled dataset and so forth. 

 Data loading infrastructure 

 Training  machine  learning  models  on  large-scale  tabular  datasets  (which  is  the  case  for  the 
 scRNA-seq  data  used  in  this  paper)  comes  with  a  set  of  unique  challenges.  The  first  challenge  is 
 that  the  entire  dataset  does  not  fit  into  the  memory  of  a  usual  server  commonly  used  for  training 
 deep  learning  models.  Additionally,  the  unique  nature  of  tabular  data  means  that  you  cannot  load 
 individual  observations  from  disk  efficiently,  as  individual  observations  are  rather  small,  and  thus 
 loading  data  points  individually  creates  a  lot  of  random  reads  which  even  modern  SSDs  cannot 
 handle  efficiently.  Thus,  a  consecutive  block  of  samples  must  be  loaded  at  once  and  then  shuffled. 
 Fortunately,  there  already  exist  Python  libraries  that  do  exactly  what  is  described  above.  The  data 
 loading  infrastructure  used  in  this  paper  is  based  on  the  Nvidia  Merlin  dataloader 
 (  https://github.com/NVIDIA-Merlin/dataloader  )  which  gives  an  easy-to-use  API,  uses  the  widely 
 adopted  Apache  Parquet  format  to  store  data  on  disk  and  gives  performant  data  loading  with 
 GPU-optimized  data  loaders  that  directly  load  the  data  from  disk  into  GPU  memory  and  then  do  a 
 0-copy  transfer  to  PyTorch,  TensorFlow  or  JAX  (see  Supp.  Fig.  1  for  details  about  data  loading 
 speed).  The  above-described  data  loading  infrastructure  was  fast  enough  to  fully  utilize  a  Nvidia 
 A100  GPU  for  the  models  trained  in  this  paper.  Moreover,  Merlin  comes  with  a  wide  range  of 
 supporting  infrastructure  like  Docker  containers 
 (  https://catalog.ngc.nvidia.com/orgs/nvidia/teams/merlin/containers/merlin-pytorch  )  from  the  NGC 
 container  hub  which  makes  it  easy  for  people  to  start  using  Merlin  without  the  need  to  set  up 
 Python environments first. 

 Data augmentation 

 The  idea  behind  the  data  augmentation  strategy  developed  in  this  paper  is  that  the  difference  in 
 raw  gene  space  between  the  same  cell  type  observed  across  two  donors  can  be  used  as  a  data 
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 augmentation  vector  that  can  simulate  how  the  gene  expression  of  a  cell  might  look  like  for  a 
 different  donor.  The  general  idea  behind  data  augmentation  is  to  have  easy-to-compute 
 transformations  that  can  be  applied  during  model  training.  Thus,  in  this  case,  we  pre-compute 
 augmentation  vectors  that  can  be  added  to  the  observed  gene  expression  of  a  cell  to  artificially 
 increase the training data size during model training: 

 𝑥 
 𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 

   =     𝑥 
 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙     𝑐𝑒𝑙𝑙 

   ±     𝑥 
 𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛     𝑣𝑒𝑐𝑡𝑜𝑟 

 Calculation of augmentation vectors 

 The augmentation vectors are calculated as follows: 

 1.  Subsample  500,000  cells  from  the  training  data  to  have  an  even  distribution  across  cell 
 types 

 2.  Calculate the mean centroids grouped by cell type and donor 
 3.  Calculate the difference vectors between the mean centroids from step 2 by cell type 
 4.  Set  all  values  in  the  range  [-0.25,  0.25]  to  zero  to  enforce  more  sparse  augmentation 

 vectors 
 5.  Clamp  the  resulting  augmentation  vectors  to  the  interval  of  [-1.5,  1.5]  to  remove  outlier 

 values 
 6.  Filter  the  resulting  augmentation  vectors  for  outliers  by  only  sampling  the  used 

 augmentation  vectors  from  the  most  prominent  k-means  clusters  (clustering  is  done  with  50 
 clusters)  →  sample  e.g.  5,000  augmentation  vectors  from  the  biggest  k-means  clusters 
 (clusters with more than 2,000 difference vectors) 

 Calculation of augmented gene expression vectors during model training 

 The augmented gene expression vectors are calculated as follows: 

 1.  Sample an augmentation vector  from the set of augmentation vectors  𝑥 
 𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛     𝑣𝑒𝑐𝑡𝑜𝑟 

 2.  Sample  whether  the  augmentation  vector  is  added  to  or  subtracted  from  the  original  gene 
 expression vector  𝑥 

 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙     𝑐𝑒𝑙𝑙 

 3.  Add/subtract  the  sampled  augmentation  vector  to  the  original  gene  expression  vector  and 
 clamp all values of the newly created vector to be within the interval of [0., 9.] 

 Explained variance by cell type before and after data augmentation 

 To  estimate  how  our  data  augmentation  influences  the  proportion  of  the  overall  variance  that  can 
 be  attributed  to  cell  type  variation,  we  fitted  a  linear  regression  (sci-kit  learn  LinearRegression) 
 model  which  predicts  the  normalized  gene  expression  based  on  the  cell  type  and  donor  of  each 
 cell. This corresponds to the following design matrix: 

 𝑦    =     1    +     𝑜𝑛𝑒ℎ𝑜𝑡 ( 𝑐𝑒𝑙𝑙𝑡𝑦𝑝𝑒 )   +     𝑜𝑛𝑒ℎ𝑜𝑡 ( 𝑑𝑜𝑛𝑜𝑟 )

 In  the  next  step,  the  score  of  the  model  fitted  on  the  original/non-augmented  data  is  compared  𝑅  2 

 to  the  one  from  the  model  fitted  on  the  augmented  data  to  show  how  the  amount  of  total  variation 
 in gene expression, which can be attributed to the cell type, changes. 

 Ontology-corrected cell type classification 

 The  classification  performance  of  the  trained  models  in  this  paper  is  evaluated  based  on  the  macro 
 average  of  the  F1-scores  for  each  individual  cell  type.  The  macro  average  is  used  to  give  each  cell 
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 type  the  same  weight  in  the  overall  classification  performance.  The  F1-score  is  calculated  as 
 follows: 

 (tp: true positives, fp: false positives, fn: false  negatives)  𝐹  1 −  𝑠𝑐𝑜𝑟𝑒 =     2     𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛    ·    𝑟𝑒𝑐𝑎𝑙𝑙 
 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛    +    𝑟𝑒𝑐𝑎𝑙𝑙    =     2 · 𝑡𝑝 

 2 · 𝑡𝑝    +    𝑓𝑝    +    𝑓𝑛 

 In  order  to  deal  with  the  often  different  granularity  of  annotations  (e.g.  label  “T-cell”  vs  label 
 “CD4-positive,  alpha-beta  T  cell”)  the  following  rules  are  applied  to  evaluate  whether  a  prediction  is 
 considered  right  or  wrong.  A  prediction  is  considered  as  right,  either  if  the  classifier  predicts  the 
 same  label  as  supplied  by  the  original  dataset,  or  if  the  classifier  predicts  a  subtype  of  the  label 
 provided  by  the  original  dataset  -  we  consider  this  as  a  right  prediction  as  the  prediction  agrees 
 with  the  true  label  up  to  the  annotation  granularity  the  author  provided.  The  subtype  relations  are 
 evaluated  based  on  the  Cell  Ontology  29  .  An  example  is  if  the  model  predicts  the  label 
 “CD4-positive,  alpha-beta  T  cell”  when  the  author  annotated  cell  type  is  “T  cell”.  Moreover,  a 
 prediction  is  considered  wrong  if  the  classifier  predicts  a  parent  cell  type  of  the  true  label  -  we 
 consider  this  as  a  wrong  prediction  as  the  author  supplied  a  more  fine-grained  label  that  the 
 classifier  should  replicate.  An  example  is  if  the  classifier  predicts  the  label  “T  cell”  while  the  cell  is 
 labeled  as  a  “CD4-positive,  alpha-beta  T  cell”  in  the  original  dataset.  In  all  other  cases,  the 
 prediction  is  considered  wrong.  Furthermore,  the  lookup  of  child  nodes  in  the  cell  ontology  is  based 
 on the Ontology Lookup Service (OLS):  https://www.ebi.ac.uk/ols/ontologies/cl  29 

 Model details 

 scTab model 

 Our  implementation  of  scTab  is  based  on  the  TabNet  architecture  31  and  is  mostly  taken  from  the 
 dreamquark-ai/tabnet  GitHub  repository  with  some  adaptation  towards  the  single-cell  use  case. 
 The  input  to  the  model  is  all  19,331  protein-coding  genes  (  GENCODE  v38/Ensembl  104  ) 
 selected  from  the  CELLxGENE  census  data.  Moreover,  unlike  in  the  original  TabNet  model,  we 
 normalized  the  input  data  before  feeding  it  into  the  neural  network.  scRNA-seq  data  is  often 
 normalized  to  have  10,000  counts  per  cell  and  is  then  log1p  transformed  afterward  7,12,23  ,  we  applied 
 the  same  normalization  for  our  scTab  model  on  top  of  the  simple  batch  normalization  layer,  which 
 is  used  in  the  original  TabNet  model  to  normalize  the  input  features,  as  such  a  non-linear 
 normalization cannot be achieved by a simple batch normalization layer. 

 The  adapted  TabNet  architecture  for  scTab  (Fig.  1b)  consists  of  two  key  building  blocks:  The  first 
 building  block  is  the  feature  transformer,  which  is  a  multi-layer  perceptron  with  batch  normalization 
 (BN),  skip  connections,  and  a  gated  linear  unit  nonlinearity  (GLU).  On  the  one  hand,  the  feature 
 transformer  is  used  to  get  a  lower  dimensional  representation  (described  by  dimensionality  n_d) 
 which  is  used  to  classify  cell  types.  On  the  other  hand,  it  is  used  to  get  a  lower  dimensional 
 representation  (described  by  dimensionality  n_a)  from  which  the  feature  attention  mask  is 
 calculated.  The  feature  attention  mask  is  obtained  by  using  a  single  linear  layer  followed  by  a  batch 
 normalization  layer  that  maps  from  the  attention  embedding  to  the  input  feature  space.  The  feature 
 mask  is  then  obtained  by  applying  the  1.5-entmax  43  function  to  the  output  of  the  linear  projection 
 layer.  Using  the  1.5-entmax  function  instead  of  the  sparsemax  function,  which  is  used  in  the 
 original  TabNet  model,  improved  training  dynamics  and  yielded  slightly  higher  model  performance. 
 The 1.5-entmax function is defined as follows: 

 𝐻 
 1 . 5 
 𝑇 ( 𝑝 )   =  1 

 1 . 5    ·   ( 1 . 5    −    1 )    
 𝑗 

∑ ( 𝑝 
 𝑗 
   −  𝑝 

 𝑗 
 1 . 5 )   
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 1 .  5  𝑒𝑛𝑡𝑚𝑎𝑥 ( 𝑧 )   =     𝑎𝑟𝑔𝑚𝑎𝑥 
 𝑝    ∈   △ 𝑑        𝑝  𝑇 ·     𝑧    +  𝐻 

 1 . 5 
 𝑇 ( 𝑝 )   

 After  obtaining  the  feature  mask,  the  masked  input  features  are  fed  into  the  feature  transformer  to 
 obtain  the  feature  embedding  used  to  classify  cell  types.  Thus,  by  giving  the  neural  network  the 
 ability  to  mask  individual  input  features,  it  can  focus  its  network  capacity  only  on  more  reliable  input 
 features.  In  contrast  to  the  original  TabNet  model,  we  only  used  a  single  decision  step  as  using 
 more  than  one  decision  step  only  yielded  marginal  performance  improvements  and  did  not  justify 
 the increased computational costs. 

 The  objective  function  used  to  train  scTab  is  a  cross-entropy  loss  where  each  cell  type  label  is 
 weighted  in  correspondence  to  its  relative  frequency  in  the  training  data  to  account  for  the  strong 
 class imbalance in the training data: 

 𝑤𝑒𝑖𝑔ℎ  𝑡 
 𝑐𝑒𝑙𝑙𝑡𝑦𝑝𝑒 

=    
 𝑛 

 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

 𝑛 
 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 

·   
 𝑐𝑒𝑙𝑙     𝑖𝑛     𝑐𝑒𝑙𝑙𝑠 

∑     𝑙𝑎𝑏𝑒  𝑙 
 𝑐𝑒𝑙𝑙 

==    𝑐𝑒𝑙𝑙𝑡𝑦𝑝𝑒 

 The  model  uncertainty  is  calculated  based  on  deep  ensembles  32  using 
 as  an  estimate  for  the  model  uncertainty.  Model  uncertainties  1    −     𝑚𝑎𝑥𝑖𝑚𝑢𝑚     𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑     𝑝𝑟𝑜𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

 are calculated based on 5 ensemble models. 

 The  models  for  Fig.  1  and  Fig.  3  were  fitted  with  our  proposed  data  augmentation  strategy.  The 
 models  for  Fig.  2  were  fitted  without  data  augmentation  to  better  show  the  scaling  with  respect  to 
 the training data size. 

 List of used hyperparameters: 

 Parameter  Value 

 batch_size  2048 

 learning_rate  0.005 

 learning rate scheduler  torch.optim.lr_scheduler.StepLR 
 gamma = 0.9 
 step_size = 1 epoch 

 optimizer  torch.optim.AdamW 

 weight_decay  0.05 

 n_d  128 

 n_a  64 

 n_shared  3 

 n_independent  5 

 n_steps  1 

 lambda_sparse  1e-5 

 mask_type  entmax 

 virtual_batch_size  256 

 augment_training_data  True 
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 XGBoost model 

 The  input  to  the  XGBoost  model  is  a  256-dimensional  PCA  embedding  due  to  the  high  memory 
 usage  and  runtime  of  the  XGBoost  model.  The  PCA  is  only  fitted  on  the  training  data  to  have  a 
 clear  separation  between  the  training  and  test  set.  Furthermore,  the  data  is  normalized  to  10,000 
 counts  per  cell  and  is  then  log1p-transformed  before  calculating  the  PCA  embeddings.  The 
 XGBoost  model  is  fitted  with  the  multi:softprob  objective  function  and  like  for  the  scTab  model 
 classes are weighted in accordance to their relative frequency in the training data. 

 List of non-default hyperparameters: 

 Parameter  Value 

 n_estimators  800 

 eta  0.05 

 subsample  0.75 

 max_depth  10 

 early_stopping_rounds  10 

 For the benchmarks in this paper, we used XGBoost version 1.6.2 

 Multi-layer perceptron model (MLP) 

 The  input  to  the  model  is  all  19,331  protein-coding  human  genes  selected  from  the  CELLxGENE 
 census  data.  The  model  is  trained  to  predict  the  corresponding  cell  type  label  for  each  cell  with  a 
 cross-entropy  loss  where  each  cell  type  is  weighted  in  correspondence  to  its  relative  frequency 
 (see scTab model). 

 The  input  count  data  is  normalized  to  10,000  counts  per  cell  and  is  then  log1p-transformed  before 
 feeding it into the model. 

 List of used hyperparameters: 

 Parameter  Value 

 batch_size  2048 

 learning_rate  0.002 

 learning rate scheduler  torch.optim.lr_scheduler.StepLR 
 gamma = 0.9 
 step_size = 1 epoch 

 optimizer  torch.optim.AdamW 

 weight_decay  0.05 

 n_hidden  8 

 hidden_size  128 

 dropout  0.1 

 augment_training_data  True 
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 Linear model (ours) 

 The  input  to  the  model  is  all  19,331  protein-coding  human  genes  selected  from  the  CELLxGENE 
 census  data.  The  model  consists  of  a  single  weight  matrix  and  bias  vector  and  is  trained  to  predict 
 the  corresponding  cell  type  label  for  each  cell  with  a  cross-entropy  loss  where  each  cell  type  is 
 weighted in correspondence to its relative frequency (see scTab model). 

 The  input  count  data  is  normalized  to  10,000  counts  per  cell  and  is  then  log1p  transformed  before 
 feeding them into the model. 

 List of used hyperparameters: 

 Parameter  Value 

 batch_size  2048 

 learning_rate  0.0005 

 learning rate scheduler  torch.optim.lr_scheduler.StepLR 
 gamma = 0.9 
 step_size = 1 epoch 

 optimizer  torch.optim.AdamW 

 weight_decay  0.01 

 CellTypist model 

 The  CellTypist  7  model  was  fitted  in  accordance  with  the  best  practice  tutorial  supplied  on  the 
 CellTypist  website  with  the  difference  that  the  mean  centering  step  was  disabled 
 (  with_mean=False  )  as  this  negatively  impacted  model  performance  and  increased  memory  usage. 
 Furthermore,  the  training  data  was  subsampled  to  1.5  million  cells  to  keep  both  the  memory  usage 
 (350GB of max memory) and runtime in check. 

 List of non-default hyperparameters: 

 Parameter  Value 

 feature_selection  True 

 use_SGD  True 

 mini_batch  True 

 batch_number  1500 

 epochs  10 

 with_mean  False 

 For the benchmarks in this paper, we used CellTypist version 1.5.3 

 Code and data availability 

 GitHub - All code:  https://github.com/theislab/scTab 
 GitHub - Tutorials: 
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 ●  Data loading tutorial: 
 https://github.com/theislab/scTab/blob/main/notebooks-tutorials/data_loading.ipynb 

 ●  Loading trained models: 
 https://github.com/theislab/scTab/blob/main/notebooks-tutorials/model_inference.ipynb 

 Data:  https://pklab.med.harvard.edu/felix/data/merlin_cxg_2023_05_15_sf-log1p.tar.gz  (164GB) 
 Checkpoints:  https://pklab.med.harvard.edu/felix/data/scTab-checkpoints.tar.gz  (8.1GB) 
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 Supplements 

 Supp. Table 1: Classification performance of different models. 

 F1-score (macro avg.)  Number of runs to calculate 
 standard deviation 

 scTab (deep learning)  0.8295 ± 0.0007  5 

 XGBoost (boosted decision trees)  0.8127 ± 0.0005  5 

 20 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 10, 2023. ; https://doi.org/10.1101/2023.10.07.561331doi: bioRxiv preprint 

https://github.com/theislab/scTab/blob/main/notebooks-tutorials/data_loading.ipynb
https://github.com/theislab/scTab/blob/main/notebooks-tutorials/model_inference.ipynb
https://pklab.med.harvard.edu/felix/data/merlin_cxg_2023_05_15_sf-log1p.tar.gz
https://pklab.med.harvard.edu/felix/data/scTab-checkpoints.tar.gz
http://www.humancellatlas.org/publications/
https://doi.org/10.1101/2023.10.07.561331
http://creativecommons.org/licenses/by/4.0/


 MLP (deep learning)  0.7971 ± 0.0012  5 

 Linear  0.7848 ± 0.0001  4 

 CellTypist  (training  data  subsampled 
 to 1.5 Mio cells) 

 0.7304 ± 0.0015  4 

 Supp.  Table  2:  Performance  of  lung-specific  versus  cross-organ  models  evaluated  on 
 holdout test set subset to only lung-specific data. 

 F1-score (macro avg.) on lung 
 holdout data 

 Number of runs to calculate 
 standard deviation 

 scTab (cross-organ)  0.7062  ±  0.0122  5 

 scTab (lung only)  0.7220  ±  0.0078  5 

 Linear (cross-organ)  0.5291  ±  0.0041  4 

 Linear (lung only)  0.7146  ±  0.0040  5 

 Supp.  Table  3:  Effect  of  data  augmentation  on  loss  and  F1-score  (macro  avg.)  on  holdout 
 test set. 

 Neg. log-likelihood  F1-score (macro avg.)  Number of runs to 
 calculate standard 

 deviation 

 w. augmentation  0.659 ± 0.04  0.7841 ± 0.0030  4 

 wo. augmentation  0.797 ± 0.05  0.7755 ± 0.0020  4 

 P-value  0.0039  0.0016  4 

 Supp.  Table  4:  Classification  performance  of  models  with  tuned  versus  default 
 hyperparameters. 

 F1-score (macro avg.) with 
 default parameters 

 F1-score (macro avg.) with 
 tuned parameters 

 Number of runs to calculate 
 standard deviation 

 XGBoost  0.5855 ± 0.0112  0.8127 ± 0.0005  4 

 CellTypist  0.6258 ± 0.0036  0.7304 ± 0.0015  4 

 Supp. Table 5: Number of donors and cells per cell type and tissue combination. 

 See  supp_table_donors_and_cells_per_tissue+cell_type.csv 

 Supp. Table 6: Number of shared tissues across individual cell types. 

 See  supp_table_number_of_tisses_for_each_cell_type.csv 
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 Supp.  Table  7:  Total  variation  that  can  be  attributed  to  the  cell  type  before  and  after  data 
 augmentation 

 Total variation attributed to cell type and donor (  )  𝑅  2 

 original/non-augmented data  0.189 

 augmented data  0.164 

 Supp.  Figure  1:  Data  loading  performance  during  model  training  (with  data  shuffling)  and 
 inference (without data shuffling). 

 Benchmarks  were  run  on  a  DGX-A100-320GB  compute  node  with  14  cores  and  80GB  of  memory 
 allocated  for  the  benchmark  and  half  an  A100  GPU  (4g.20gb  MIG).  The  training  dataset  consists  of 
 15.2  million  cells  for  the  Merlin  data  loader  and  1  million  cells  for  the  in-memory  data  loader.  The 
 validation  dataset  consists  of  3.5  million  cells  for  the  Merlin  data  loader  and  1  million  cells  for  the 
 in-memory  data  loader.  Due  to  memory  limitations  for  the  in-memory  data-loading,  the  training  and 
 validation set is subsampled to 1 million cells. 

 Supp. Figure 2: Number of shared tissues across individual cell types. 
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 The  complementary  empirical  cumulative  distribution  function  of  how  many  tissues  each  cell  type  is 
 observed over (see Supp Table 7 for a per cell type statistic). 

 Supp.  Figure  3:  Learned  features  of  scTab  on  holdout  test  data  with  granular  cell  type  labels 
 superimposed. 
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 Supp.  Figure  4:  Learned  features  of  scTab  compared  to  the  normalized  gene  expression  of 
 the input features on holdout test data subset to lung tissue only. 
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 Supp.  Figure  5:  Uncertainty  scores  superimposed  on  tSNE  plot  of  normalized  gene 
 expression on holdout test data. 

 Uncertainty  scores  are  calculated  based  on  deep  ensembles  (averaged  over  5  models)  using 
 to  estimate  the  model  uncertainty.  All  plots  show  tSNE  1    −     𝑚𝑎𝑥𝑖𝑚𝑢𝑚     𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑     𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

 embeddings  of  the  normalized  gene  expression  on  the  holdout  test  data.  (a)  Predicted  uncertainty 
 scores.  (b)  Binary  indicator  of  whether  a  prediction  was  wrong  to  visually  correlate  uncertainty 
 scores with wrong predictions.  (c)  Author annotated  cell type labels for reference. 
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