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Abstract

Coronavirus disease 2019 (COVID‐19) is a global epidemic disease caused by a

novel virus, severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), causing
serious adverse effects on human health. In this study, we obtained a blood leu-

kocytes sequencing data set of COVID‐19 patients from the GEO database and

obtained differentially expressed genes (DEGs). We further analyzed these DEGs by

protein–protein interaction analysis and Gene Ontology enrichment analysis and

identified the DEGs closely related to SARS‐CoV‐2 infection. Then, we constructed a

six‐gene model (comprising IFIT3, OASL, USP18, XAF1, IFI27, and EPSTI1) by logistic

regression analysis and calculated the area under the ROC curve (AUC) for the

diagnosis of COVID‐19. The AUC values of the training group, testing group, and

entire group were 0.930, 0.914, and 0.921, respectively. The six genes were highly

expressed in patients with COVID‐19 and positively correlated with the expression

of SARS‐CoV‐2 invasion‐related genes (ACE2, TMPRSS2, CTSB, and CTSL). The risk

score calculated by this model was also positively correlated with the expression of

TMPRSS2, CTSB, and CTSL, indicating that the six genes were closely related to

SARS‐CoV‐2 infection. In conclusion, we comprehensively analyzed the functions of

DEGs in the blood leukocytes of patients with COVID‐19 and constructed a six‐gene
model that may contribute to the development of new diagnostic and therapeutic

ideas for COVID‐19. Moreover, these six genes may be therapeutic targets for

COVID‐19.
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1 | INTRODUCTION

Coronavirus disease 2019 (COVID‐19) is a respiratory disease

caused by severe acute respiratory syndrome coronavirus 2 (SARS‐
CoV‐2) and is extremely contagious. The COVID‐19 epidemic

emerged in Wuhan, Hubei, China, in December 2019; since then this

outbreak has spread around the world, causing global concern.1 The

most common clinical symptoms of the disease are fever, fatigue, dry

cough, myalgia, diarrhea, and vomiting. In severe cases, COVID‐19
can cause dyspnea, loss of taste or smell, and kidney failure.2 The

outbreak of COVID‐19 has affected all aspects of life, posing a great

threat to human health. According to the data published by the

World Health Organization (WHO), there were 122,992,844 con-

firmed cases of COVID‐19 and 2,711,071 related deaths worldwide
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as of March 22, 2021. The top five countries with more than

1,000,000 cumulative confirmed cases of COVID‐19 are the United

States, India, Brazil, Russia, and France.3 COVID‐19 has already ex-

ceeded the total number of cases and deaths observed with atypical

pneumonia (SARS‐CoV in 2003) and the Middle East respiratory

syndrome coronavirus (in 2012) because SARS‐CoV‐2 has a higher

transmission rate.4,5 Therefore, it is crucial to analyze the current

situation and study the impact of prevention and control measures

separately for different epidemic situations in countries around the

world.

Currently, quantitative real‐time polymerase chain reaction

(qRT‐PCR) measurement of the SARS‐CoV‐2 nucleic acid is an im-

portant method for the diagnosis of COVID‐19 in China to determine

whether patients can be discharged from the hospital and/or need to

enter isolation.6 However, a negative qRT‐PCR test result is not

sufficient to exclude SARS‐CoV‐2 infection, and a combination of

symptoms, radiological examination, and hematological examination

are required to improve the sensitivity and accuracy of COVID‐19
diagnosis.7 Published studies have revealed that some hematologi-

cal/biochemical changes in patients (e.g., normal or decreased leu-

kocytes) may contribute to the diagnosis of COVID‐19.8,9

After SARS‐CoV‐2 infection, immune cells are activated, which

can result in a significant increase in immune cell infiltration into the

lung tissue. These immune cells can secrete a large of inflammatory

cytokines, resulting in a strong inflammatory response, namely, a

“cytokine storm.” This excessive inflammatory response can lead to

many complications and even death.10 By analyzing transcriptome

sequencing data from peripheral blood samples, we can identify

differentially expressed genes (DEGs) associated with host immune

and/or inflammatory responses. Studying the changes in gene ex-

pression in human immune cells after SARS‐CoV‐2 infection helps

improve understanding of the mechanism of SARS‐CoV‐2 damage to

the human body and helps improve the diagnosis and treatment of

the disease.11–14 Overmyer et al.15 sequenced the leukocytes of

patients with positive (n = 102) and negative (n = 102) SARS‐CoV‐2
tests and developed a COVID‐19 severity prediction model through

machine learning. The model's predictive ability was significantly

better than that of the standard Charlson comorbidity index. Due to

the advantage of easy access to blood samples, the development of

predictive models based on blood leukocytes sequencing can be of

great help for enhancing the diagnosis and treatment of COVID‐19.
A recently published study performed whole‐transcriptome RNA

sequencing of 14 peripheral blood samples from COVID‐19 patients

(n = 10) and healthy donors (n = 4), from which researchers screened

a large number of differentially expressed mRNAs and miRNAs and

constructed a lncRNA‐miRNA‐mRNA regulatory network.16 In addi-

tion, Arg1 has recently been found to be highly expressed in the

peripheral blood leukocytes of COVID‐19 patients and may be a

diagnostic marker for COVID‐19.17 These studies contribute to the

understanding of gene regulatory relationships and inflammatory

mechanisms in the immune cells of COVID‐19 patients and lay the

foundation for the discovery of new diagnostic markers for COVID‐
19. However, at present, there are still few genomic studies on

peripheral blood leukocytes in patients with COVID‐19, and the

mechanism of the abnormal inflammatory response to SARS‐CoV‐2
infection is still not fully understood.

In this study, we obtained a blood leukocytes RNA sequencing

data set (GSE157103) of COVID‐19 patients from the GEO database

and performed differential expression analysis to obtain a large

number of DEGs. We further screened the genes associated with

SARS‐CoV‐2 infection using commonly used bioinformatics methods

and constructed a six‐gene model using logistic regression analysis.

We also analyzed the predictive ability of the model and the ex-

pression of the six genes to understand their expression regulation

mechanism in COVID‐19. Our findings provide a reliable six‐gene
model that might be helpful for the diagnosis and treatment of

COVID‐19. The objectives of this study were to explore aberrantly

expressed genes related to SARS‐CoV‐2 infection in peripheral blood

leukocytes and to develop a diagnostic model for COVID‐19 using

SARS‐CoV‐2 infection‐related genes. These findings may advance

human understanding of the mechanisms of the inflammatory re-

sponse following SARS‐CoV‐2 infection and also contribute to the

genome‐wide search for promising targets for COVID‐19 diagnosis

and treatment.

2 | MATERIALS AND METHODS

2.1 | Data acquisition and DEG screening

The SARS‐CoV‐2‐related sequencing data sets used in this study

were all obtained from the GEO database (https://www.ncbi.nlm.nih.

gov/geo/). We searched the GEO database using “SARS‐CoV‐2 or

COVID‐19” as keywords to obtain COVID‐19‐related data sets. The

overall information about the data sets is shown in Table 1. The

GSE157103 data set sample origin is leukocytes from whole blood.

We used the limma package in R language to screen for DEGs

(COVID‐19 vs. non‐COVID‐19) in the GSE157103 data set with a

log2|fold change (FC) | > 2 and false discovery rate (FDR) < 0.05. The

GSE156063 data set sample origin is clinical naso‐/pharyngeal swab

TABLE 1 Overall information about the data sets used in this study

Data sets Platform Sample COVID‐19 Non‐COVID‐19

GSE157103 GPL24676 Leukocytes from whole blood 100 26

GSE156063 GPL24676 Clinical naso‐/pharyngeal swab specimens 93 141

GSE154104 GPL24247 Lung tissues from mice 2, 4, and 7 days postinfection 20 0
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specimens. Out of the 141 non‐COVID‐19 patients in the

GSE156063 data set, 100 were virus‐free patients and 41 were

patients infected with other viruses. The GSE154104 data set sample

origin was lung tissues from mice 2, 4, and 7 days postinfection.

The GSE156063 and GSE154104 data sets were used to analyze the

expression of the finally obtained genes.

2.2 | Protein–protein interaction network
construction and module analysis

After obtaining DEGs from the GSE157103 data set, we used the

STRING database (https://string-db.org/) to construct a

protein–protein interaction (PPI) network to understand the in-

teraction between the DEGs. The MCODE plug‐in with default

parameters in Cytoscape 3.7.1 was used for the PPI network

module analysis. After obtaining the genes in each module, we

used the DAVID database (https://david.ncifcrf.gov/) to perform

Gene Ontology (GO) analysis of the module genes separately

with a screening condition of p < 0.05 to understand the role of

each module in COVID‐19.

2.3 | Construction of the model

We extracted the expression values of the genes in the selected

module based on the GSE157103 data set. We randomly divided

all samples in the GSE157103 data set into the training group

and the testing group at a ratio of 7:3. A Χ2 test was used to

compare the characteristics of the patients between the two

groups. We performed lasso regression analysis in the training

group using the glmnet package in R language to calculate the

coefficients of genes and removed genes with coefficients of 0.

The remaining genes were then used to construct a logistic re-

gression model to determine whether patients were infected

with SARS‐CoV‐2 by using the risk score formula: risk score =

(ExpressionGENE1 × CoefficientGENE1) + (ExpressionGENE2 × Coeff-

icientGENE2) +⋯+(ExpressionGENEn × CoefficientGENEn) + Coeffic-

ientIntercept. We applied the logistic regression formula obtained

in the training group to the testing and entire groups to calculate

the risk scores and used 0.5 as the cutoff value of the high‐ and
low‐risk groups. We used the pROC package to plot the ROC

curve and calculate the area under the ROC curve (AUC), and we

also performed principal component analysis (PCA) for each

group. We calculated the sensitivity, specificity, negative pre-

dictive value, positive predictive value, and accuracy of

the model in each group to assess the predictive performance of

the model.

2.4 | Gene expression and risk score correlation
analysis

After constructing the model, we extracted data on the expression

of the six genes from the GSE157103, GSE156063, and GSE154104

data sets. Moreover, the correlation between risk scores and the

expression of SARS‐CoV‐2 invasion‐related genes was analyzed in

the GSE157103 data set. SARS‐CoV‐2 invasion‐related genes were

obtained from the Human Protein Atlas database (https://www.

proteinatlas.org/humanproteome/sars-cov-2). The above analyses

were conducted using R language software 3.6.1 and results were

considered significant at p < 0.05.

F IGURE 1 Differentially expressed genes (DEGs) screening. (A) Volcano map of DEGs. Green indicates downregulated DEGs, red indicates
upregulated DEGs, and gray indicates genes without differential expression. (B) Heat map of DEGs
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3 | RESULTS

3.1 | DEG screening and PPI network module
analysis

We identified 245 DEGs in the GSE157103 data set based on the

criteria mentioned above, including 226 upregulated DEGs and

19 downregulated DEGs (Figure 1A). The expression heat map is

shown in Figure 1B. To understand the interaction between these

DEGs, we used the STRING database to construct a PPI network.

After obtaining the PPI network data, we further used Cytoscape

to perform a module analysis of the network (Table 2, Figure 2A).

According to module analysis results, we selected the genes

in the top two modules to perform GO functional annotation

(biological process) to understand the roles of the two modules in

SARS‐CoV‐2 infection. The analysis results showed that the

genes in module 1 were mainly enriched in cell division function,

while the genes in module 2 were mainly enriched in inflamma-

tion and the antiviral response (Figure 2B). The enrichment re-

lationship between module 2 genes and GO functional

annotations is shown in Figure 2C.

3.2 | Construction of the prediction model

After GO functional annotation analysis of the genes in the two

selected modules, we found that the genes in module 2 were related

TABLE 2 Results of the module analysis

Module Score Nodes Edges

1 75.929 85 3189

2 14.714 15 103

3 9 9 36

4 3 3 3

5 3 3 3

F IGURE 2 Module analysis and GO function analysis of differentially expressed genes. (A) PPI network of module 1 and module 2. (B) Top
10 results of GO functional annotation of module 1 and module 2 genes. (C) Relationship between module 2 genes and GO functional
annotation. GO, Gene Ontology; PPI, protein–protein interaction
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to the inflammatory response and viral resistance. Therefore, these

15 genes in module 2 were the most relevant to this study. We then

extracted the expression values for these 15 genes from the

GSE157103 data set and randomly divided all samples into the

training group (n = 89) and testing group (n = 37) at a ratio of 7:3.

The training group had 69 COVID‐19 patients, while the testing

group had 31 COVID‐19 patients. We found no difference after

comparing the clinical characteristics of the two groups, indicating

that the grouping results were reasonable (Table 3).

In the training group, six nonzero coefficient genes were ob-

tained by lasso regression analysis and used as potential predictors

of logistic regression analysis (Figure 3A). These six selected genes

were interferon‐induced protein with tetratricopeptide repeats 3

(IFIT3), 2′–5′‐oligoadenylate synthetase‐like protein (OASL),

ubiquitin‐specific protease 18 (USP18), XIAP‐associated factor 1

(XAF1), interferon alpha‐inducible protein 27 (IFI27), and epithelial‐
stromal interaction 1 (EPSTI1). The gene expression obtained from

the GSE157103 data set is visualized in Figure 3B.

Finally, we used logistic regression to establish a six‐gene model,

and the risk score of SARS‐CoV‐2 infection was calculated by the

following formula:

risk score = (−0.00318 × ExpressionIFIT3) + (0.01133 × Expression

OASL) + (0.00015 × ExpressionUSP18) + (−0.02515 × ExpressionXAF1) +

(0.00269 × ExpressionIFI27) + (0.05727 × ExpressionEPSTI1) − 0.66853.

Therefore, for each patient, we obtained the expression level of

these six genes and substituted these values into this formula to

calculate the risk value. We then divided the patients into high‐ and
low‐risk groups according to the cutoff value. We found that patients

in the high‐risk group are more likely to have COVID‐19 disease, but

the accuracy of the model needs to be further evaluated.

TABLE 3 Comparison of clinical
features between the training group and
testing group

Covariates Type Entire Training Testing p

Age >60 73 (57.94%) 49 (55.06%) 24 (64.86%) 0.5149

≤60 52 (41.27%) 39 (43.82%) 13 (35.14%)

Unknown 1 (0.79%) 1 (1.12%) 0 (0%)

Gender Female 51 (40.48%) 39 (43.82%) 12 (32.43%) 0.3773

Male 74 (58.73%) 49 (55.06%) 25 (67.57%)

Unknown 1 (0.79%) 1 (1.12%) 0 (0%)

ICU No 60 (47.62%) 44 (49.44%) 16 (43.24%) 0.6612

Yes 66 (52.38%) 45 (50.56%) 21 (56.76%)

Hospital‐free days >30 61 (48.41%) 46 (51.69%) 15 (40.54%) 0.3450

≤30 65 (51.59%) 43 (48.31%) 22 (59.46%)

F IGURE 3 Lasso regression analysis and expression information visualization of module 2 genes. (A) The adjustment parameter (λ) selected
in the lasso model is cross‐verified 10 times by the minimum standard. The Y‐axis represents the binomial deviation and the X‐axis represents
log (λ). (B) Visualization of selected gene expression information. The number in the outermost circle and the size of the yellow circle indicate
log2FC, and the blue and red data in the third circle indicate the average expression values of COVID‐19 and non‐COVID‐19 samples
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3.3 | Evaluation of the prediction ability of the
model

We found a positive correlation between the average expression le-

vels of six genes and the risk scores in the training group, testing

group, and entire group (Figures 4A, 4D, and 4G). We also calculated

the AUC value for each group to evaluate the prediction ability of the

six‐gene model. The AUC values of the training group, testing group,

and entire group were 0.930, 0.914, and 0.921, respectively

(Figures 4B, 4E, and 4H; Table 4). Additionally, the PCA results

showed that the model could be a classifier and distinguish COVID‐19
patients from non‐COVID‐19 patients (Figures 4C, 4F, and 4I).

We also analyzed the predictive ability of single‐gene expression

and six clinical indicators for COVID‐19 infection. By comparing the

AUC values, we found that the predictive ability of the individual

genes and clinical indicators was lower than that of the six‐gene

F IGURE 4 Predictive ability evaluation of the six‐gene model in the training group, testing group, and entire group. (A–C) training group;
(D–F) testing group; (G–I) entire group
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model (Figures 5A and 5B). We fit the six‐gene model to ferritin and

fibrinogen (AUC > 0.7) to predict SARS‐CoV‐2 infection and found

that the predictive ability could be further improved (AUC = 0.976;

Figure 5C).

These results suggested that the six‐gene model can distinguish

patients into high‐ and low‐risk groups and may contribute to the

detection of COVID‐19.

3.4 | Expression analysis of six genes in the model

We analyzed the expression of IFIT3, OASL, USP18, XAF1, IFI27, and

EPSTI1 in the GSE157103 data set. The results showed that these six

genes were differentially overexpressed in SARS‐CoV‐2‐infected
patients (Figure 6A), and the expression of these genes in ICU pa-

tients with SARS‐CoV‐2 infection was lower than that in non‐ICU
patients with SARS‐CoV‐2 infection (Figure 6B). Moreover, the ex-

pression of these six genes was not significantly different in terms of

the sex and age of the SARS‐CoV‐2‐infected patients (Figures 6C and

6D). We also analyzed the expression of these six genes in the

GSE156063 data set. The results showed that the expression of

these six genes in SARS‐CoV‐2‐infected patients was significantly

higher than that in patients without SARS‐CoV‐2 infection

(Figure 6E). We also found that the expression levels of EPSTI1, IFI27,

IFIT3, and OASL in patients with other viral infections were sig-

nificantly higher than those in patients with SARS‐CoV‐2 infection

(Figure 6F). This indicates that these six genes are highly expressed

in upper airway samples and blood leukocytes of patients with

COVID‐19, and their expression may be different in patients with

different severities of COVID‐19.
To understand the expression relationship between these six

genes and SARS‐CoV‐2 invasion‐related genes (ACE2, TMPRSS2,

CTSB, and CTSL), we performed a coexpression analysis using the

GSE157103 and GSE156063 data sets and found that the expression

of these six genes was positively correlated with the expression of

ACE2, TMPRSS2, CTSB, and CTSL (Figures 6G and 6H). We also ana-

lyzed the expression of these six genes using SARS‐CoV‐2‐infected
mouse lung tissue sequencing data from the GSE154104 data set

and found that the expression of five genes (IFIT3, USP18, XAF1,

IFI27, and EPSTI1) increased after SARS‐CoV‐2 infection in mice (-

Figure 6I). Considering that the OASL gene probe is not present in

the GSE154104 data set, we did not obtain expression data for OASL

from this data set. This finding suggests that these five genes are

highly expressed in the lung tissues of mice with COVID‐19 and

that this alteration in gene expression may be closely related to

SARS‐CoV‐2 infection.

3.5 | Analysis of the correlation between risk
score and the expression of genes related to
SARS‐CoV‐2 invasion

To further understand the relationship between the six‐gene model

and SARS‐CoV‐2 infection, we analyzed the correlation between the

risk score and the expression of SARS‐CoV‐2 infection‐related genes

(ACE2, TMPRSS2, CTSB, and CTSL) in the GSE157103 data set. The

results showed that the risk score was not significantly correlated

with the expression of ACE2 (Figure 7A) but was positively corre-

lated with the expression of TMPRSS2, CTSB, and CTSL (Figure 7B–D).

TABLE 4 Evaluation of the prediction accuracy of the six‐gene
model in each group

Group SE SP PPV NPV Accuracy AUC

Training 0.9275 0.7500 0.9275 0.7500 0.8876 0.9304

Testing 0.8387 0.8333 0.9630 0.5000 0.8378 0.9140

Entire 0.9000 0.7692 0.9375 0.6667 0.8730 0.9212

Abbreviations: AUC, the area under the curve; NPV, negative predictive

value; PPV, positive predictive value; SE, sensitivity; SP, specificity.

F IGURE 5 Analysis of the prediction ability of each independent index for SARS‐CoV‐2 infection. (A) Analysis of the predictive ability of the
six genes individually for SARS‐CoV‐2 infection. (B) Analysis of the predictive ability of six clinical indexes for SARS‐CoV‐2 infection.
(C) Predictive ability analysis after fitting the six‐gene model with ferritin and fibrinogen

5550 | GAO ET AL.



The results indicate that the risk score calculated by the six‐gene
model may also be closely related to SARS‐CoV‐2 infection.

4 | DISCUSSION

COVID‐19 is spreading rapidly worldwide, and no specific drug

has been developed for the treatment of this disease.18 The re-

sults of routine blood examination of patients with COVID‐19
typically show increased neutrophils and decreased lympho-

cytes.19 As inflammatory activators, neutrophils may participate

in the overactivation of the immune response and cytokine storm.

A large level of leukocyte infiltration dominated by mononuclear

cells is also found in the lung tissue of COVID‐19 patients.10

Therefore, leukocytes are involved in the body's immune re-

sponse against viral invasion, and this overactivated immune re-

sponse is one of the possible causes of SARS‐CoV‐2 damage to the

body. Neutrophils are considered to be an indicator of severe

respiratory symptoms and poor prognosis in patients with

COVID‐19.20 There are many abnormally expressed genes in

peripheral blood leukocytes after SARS‐CoV‐2 infection.

Therefore, the study of the function of these DEGs is of great

value for the diagnosis and treatment of COVID‐19. The objec-

tives of our study were to analyze the abnormally expressed

genes in the peripheral blood leukocytes of COVID‐19 patients

and construct a diagnostic model for COVID‐19.
The GEO database is a public database that consists of a variety

of sequencing data sets.21 In this study, we obtained the COVID‐19‐
related data set GSE157103 from the GEO database, which consists

of human blood leukocytes sequencing data from 100 COVID‐19
patients and 26 non‐COVID‐19 individuals. Using this data set, we

obtained 245 DEGs in COVID‐19 patients and screened 15 DEGs

associated with viral resistance by module analysis. In the following

study, these 15 DEGs were used to construct a COVID‐19 prediction

model composed of six genes (IFIT3, OASL, USP18, XAF1, IFI27, and

EPSTI1) to diagnose COVID‐19. The AUC values of the model in the

training group, testing group, and entire group were 0.930, 0.914,

and 0.921, respectively. These results showed that the model has a

good predictive ability, and the predictive ability of the model was

higher than that of individual genes. Previous studies have shown

that C‐reactive protein, ferritin, fibrinogen, D‐dimer, lactate,

and procalcitonin are common clinical indicators associated with

F IGURE 6 Expression analysis of six genes (A–D), Expression analysis of the six genes in the GSE157103 data set; (E, F) Expression analysis
of the six genes in the GSE156063 data set; (G) Analysis of the coexpression of the six genes and SARS‐CoV‐2 infection‐related genes in the
GSE157103 data set; (H) Analysis of the coexpression of the six genes and SARS‐CoV‐2 infection‐related genes in the GSE156063 data set;
(I) Analysis of the expression of IFIT3, USP18, XAF1, IFI27, and EPSTI1 in the lung tissue of SARS‐CoV‐2‐infected mice in the GSE154104
data set
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SARS‐CoV‐2 infection and severity, which can assist in the diagnosis

and treatment of COVID‐19.22–25 The diagnostic ability of our model

is also higher than these clinical indicators in the same data set. The

combined diagnostic model obtained by fitting the six‐gene model

with ferritin and fibrinogen had a higher AUC value (0.976), in-

dicating that the six‐gene model combined with ferritin and fi-

brinogen clinical indicators could better identify patients infected

with SARS‐CoV‐2.
The expression analysis results of the six genes in the diagnostic

model showed that they were all differentially highly expressed in

leukocytes from SARS‐CoV‐2‐infected patients and had different

expression patterns in SARS‐CoV‐2‐ and other virus‐infected pa-

tients. IFIT3 is a member of the IFIT protein family, which is

composed of RNA‐binding proteins. IFIT3 is often highly expressed

during the immune response against viral infection.26 Previous stu-

dies have shown that IFIT3 is highly expressed in the pulmonary

inflammatory cells of patients with COVID‐19, which is closely re-

lated to the immune response to SARS‐CoV‐2 infection.27,28 EPSTI1,

an interferon‐responsive gene, has been identified as an oncogene in

human breast cancer.29 One study found that EPSTI1 is a regulator

of macrophage activation and polarization through the Stat1 and p65

pathways and regulates the inflammatory response in a mouse

model.30 OASL is widely considered to play an important role in

antiviral defense mechanisms and is an interferon‐stimulating

gene.31 The results of the single‐cell sequencing analysis of neu-

trophils and inflammatory macrophages showed that the expression

F IGURE 7 Analysis of the relationship between risk score and expression of genes related to SARS‐CoV‐2 infection in the GSE157103 data

set. (A) Analysis of the correlation between risk score and ACE2 expression. (B) Analysis of the correlation between risk score and TMPRSS2
expression. (C) Analysis of the correlation between risk score and CTSB expression. (D) Analysis of the correlation between risk score and CTSL
expression
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levels of EPSTI1, OASL, and IFI27 in immune cells were all increased

and that these genes participated in the inflammatory response to

SARS‐CoV‐2.27 USP18 belongs to the UBP family and plays an im-

portant role in the regulation of interferon action in viral immune

responses.32,33 XAF1 is regarded as a novel binding ligand of XIAP

that can reverse the antiapoptotic effect of XIAP.34 A single‐cell
sequencing study of single nucleated cells in the peripheral blood

from patients with COVID‐19 and influenza revealed that XAF1 ex-

pression is upregulated in COVID‐19 patients and that the XAF1‐
induced increase in T‐cell apoptosis may be associated with the TNF‐
α/TNFR1 and Fas/FasL pathways.35

To further study the expression of the six genes after SARS‐CoV‐
2 infection, we analyzed the changes in their expression with the

time of infection in the lung tissue sequencing data of SARS‐CoV‐2‐
infected mice and found that their expression in the lung tissue in-

creased after SARS‐CoV‐2 infection. Given that no OASL gene ex-

pression data were obtained, only five of the genes were analyzed in

this study. On the basis of the analysis results, we speculate that the

expression of the six genes in the model may be related to SARS‐
CoV‐2 infection.

ACE2 and TMPRSS2 are key proteins required for SARS‐CoV‐2 in-

vasion, and the inhibition of their protein activities can exert antiviral

effects.36 CTSL/B can mediate the entry of SARS‐CoV‐2 into cells through

endosomes and inhibiting the expression of CTSL/CTSB can reduce the

replication capacity and infectivity of the virus.37 In this study, our results

showed that the expression of the six genes in the model was positively

correlated with the expression of SARS‐CoV‐2 invasion‐related genes

(ACE2, TMPRSS2, CTSB, and CTSL). We also found that the risk score

calculated by this model was positively correlated with the expression of

TMPRSS2, CTSB, and CTSL. Therefore, these results suggested that in-

hibiting the expression of IFIT3, OASL, USP18, XAF1, IFI27, and EPSTI1

may reduce the risk of SARS‐CoV‐2 infection and may also have a po-

sitive effect on antiviral therapy in patients with SARS‐CoV‐2 infection.

In conclusion, this study comprehensively analyzed the blood leu-

kocytes gene expression profile data of COVID‐19 patients by using

bioinformatics methods and provided a preliminary understanding of the

functions and mechanisms of DEGs in the leukocytes of COVID‐19 pa-

tients. We also constructed a six‐gene model that may contribute to the

diagnosis and treatment of COVID‐19. The high expression of the six

genes (IFIT3, OASL, USP18, XAF1, IFI27, and EPSTI1) in this model was

closely related to SARS‐CoV‐2 infection, and these six genes may be used

as diagnostic markers and therapeutic targets for COVID‐19. Our study

revealed the function of these six genes in COVID‐19, which lays a

foundation for the further study of the inflammatory mechanisms of the

disease. However, the limitation of this study is that the sample size was

small, and larger sample size is needed in the future to verify the diag-

nostic ability of the six‐gene model and the function of the included

genes.
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