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Background: Transmethylation reactions play an important role on lymphocyte activation and function. 
S-adenosyl-L-homocysteine hydrolase (SAHH) inhibitors prevent the feedback of transmethylation reactions 
by S-adenosyl-L-homocysteine (SAH) accumulation, a competitive antagonist of S-adenosylmethionine 
(SAM)-dependent methyltransferases. However, the role of SAH in solid organ transplantation is currently 
unclear. 
Methods: A murine model of cardiac transplantation (BALB/C to C57B/6) was established to assess 
allograft survival, histology, and T cell infiltration. The reversible SAHH inhibitor, DZ2002, and irreversible 
SAHH inhibitor, adenosine dialdehyde (AdOx), were used to assess their immunosuppressive effects in 
murine cardiac transplantation, compared with mice with DMSO. 
Results: Both SAHH inhibitors prolonged the survival of cardiac allografts and alleviated alloimmune 
response. Notably, AdOx and DZ2002 both eliminated frequencies of Th1 and Th17 in CD4+ T cells in 
cardiac transplantation, and reduced the frequency of active CD4+ T cell (CD44+ CD62L− ). The irreversible 
SAHH inhibitor facilitated the differentiation of regulatory T cells (Tregs) and increased Bim expression. 
Furthermore, both SAHH inhibitors alleviated infiltration of CD4+ T cells in cardiac allografts. 
Conclusions: The SAHH inhibitors (AdOx and DZ2002) alleviates allograft rejection in cardiac 
transplantation by inhibition of CD4+ T alloimmune response. SAHH inhibitors, especially DZ2002, is a 
promising complementary therapeutic agent in organ transplantation. 
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Introduction

In the methionine cycle, methyltransferase utilizes 
S-adenosylmethionine (SAM) as a methyl donor and forms 
S-adenosyl-L-homocysteine (SAH) as a by-product, regardless 
of the protein, nucleic acid, or small molecule substrate. 
S-adenosyl-L-homocysteine hydrolase (SAHH) is a highly 
conserved enzyme that catalyzes the reversible hydrolysis 
of SAH to adenosine (ADO) and L-homocysteine (HCY). 
SAHH knockdown impacts cellular methylation potential, 
cell morphology, cell cycle, and proliferation rates (1).  
Inhibition of SAHH in vitro and in vivo results in the 
accumulation of SAH, an inhibitor of methyltransferase 
that utilizes SAM as the methyl group donor. SAH is a 
potent inhibitor of SAM-dependent methyltransferases, 
and most biological methylation reactions are catalyzed 
by methyltransferases with SAM as the methyl donor (2). 
The use of advanced immunosuppressive therapies can 
prevent acute allograft rejection. However, in some cases, 
immunosuppressive therapies fail, leading to early organ 
graft rejection. Furthermore, excessive immunosuppression 
can render patients prone to infectious diseases.

There are 3 types of SAHH inhibitors (3): type I and 
type II inhibitors irreversibly inactivate the enzyme, 
whereas type III inhibitors reversibly bind to the open form 
of SAHH, inhibiting its 3-oxidative and the 5-hydrolytic 
activity. DZ2002 is a reversible SAHH inhibitor, whereas 
AdOx is an irreversible SAHH inhibitor (4).

Lymphocyte activation and function are highly dependent 
on transmethylation reactions (5), and alloimmunity is 
closely associated with CD4+ T cell-mediated immune 
responses. Therefore, we hypothesized that SAHH 
inhibitors may be effective in allograft immunosuppression. 
The aim of this study was to investigate the effects of the 
reversible SAHH inhibitor DZ2002 and irreversible SAHH 
inhibitor AdOx on mouse cardiac transplantation, as well as 
on CD4+ T cells and Th1/Th17/regulatory T cell (Treg)-
mediated alloimmune responses in allograft rejection.

We present the following article in accordance with the 
ARRIVE reporting checklist (available at http://dx.doi.
org/10.21037/atm-20-2899).

Methods

Mice

Male BALB/c and C57BL/6 mice (6–8 weeks old; 20–25 g) 
were purchased from the Animal Center of Tongji Medical 
College. Mice were bred in pathogen-free conditions at the 

Animal Center of Tongji Medical College. We generated 
a murine heterotopic heart transplantation (HTx) model 
using BALB/c mice as donors and C57BL/6 mice as 
recipients. Recipients were divided into 3 groups (n=5 for 
each group) and were treated daily with an intraperitoneal 
injection (i.p.) of either 30 mg/kg DZ20002 (MCE, 
USA), 3 mg/kg AdOx (SELLECK, USA), or DMSO after 
transplantation. Experiments were performed under a 
project license (IACUC Number: 2358) granted by the 
Tongji Medical College, HUST Institutional Animal Care 
and Use Committee, in compliance with institutional 
guidelines for the care and use of animals.

Histological analysis of acute allograft rejection

Mice were anesthetized and disinfected, and the spleens 
were isolated on day 7. Allograft tissue sections were stained 
with hematoxylin and eosin (H&E) and Masson’s trichrome. 
Severe damage was histologically determined by assessing 
the extent of inflammatory cell infiltration, myocardium 
cell injury with interstitial inflammation, and rejection 
PR scores. High-power fields (400×) in the allograft 
were scored for each animal; scoring was performed on 
blinded slides. Immunohistochemical staining for CD4 was 
performed, and the number of positive cells was averaged 
from 5 random high-power fields.

Cell preparation

Cells were isolated from spleens in RPMI medium 
supplemented with 1% FBS. Following red blood cell 
lysis, the cell suspension was filtered using a 40-μm mesh. 
CD4+ T cells were purified from spleens and lymph nodes 
via magnetic selection according to the manufacturer’s 
instructions (Miltenyi Biotec). Purified CD4+ T cells were 
cultured in 12-well plates at 1×106 cells/well with anti-
CD3 (2 μg/mL) and anti-CD28 (2 μg/mL) monoclonal 
antibodies.

Flow cytometry

Lymphocyte suspensions were prepared from the excised 
spleens. Cells were stained using fluorescently labeled 
monoclonal antibodies. The following monoclonal 
antibodies were used (all from BD Biosciences, San Diego, 
CA, USA): FITC-anti-CD4, PE-CY7-anti-CD8, APC-anti-
CD44, PE-anti-CD62L, APC-anti-T-bet, PE-anti-Rorγt, 
PE-CY7-anti-Foxp3, FITC-anti-annexin-V, PI-APC-anti-

http://dx.doi.org/10.21037/atm-20-2899
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IFN-γ, PE-anti-IL-17A, PE-CY7-anti-IL4, and APC-CY7 
Live/Dead. For intracellular cytokine staining, cells were 
stimulated using a Cell Activation Cocktail (with brefeldin 
A) (BD Biosciences, San Diego, CA, USA) (2 μg/mL) for 
4 h and then collected for intracellular staining. Marker 
expression was assessed by flow cytometry using a FACS 
Calibur Flow Cytometer (BD Biosciences, San Diego, CA, 
USA). Flow cytometry data were analyzed using Flowjo 
V10 (Tree Star, Ashland, OR, USA).

Western blotting

Weste rn  b lo t t ing  was  pe r fo rmed  a s  p rev ious l y  
described (6). Briefly, allografts were harvested and lysed 
on ice using RIPA Lysis Buffer (Beyotime, Shanghai, China) 
containing a protease inhibitor PMSF (Beyotime). Protein 
concentrations were determined using a protein assay kit 
(eBioscience). Equal amounts of proteins were resolved by 
10% SDS-polyacrylamide gel electrophoresis (PAGE) and 
transferred onto nitrocellulose membranes. Proteins were 
visualized using HRP-conjugated anti-mouse or anti-rabbit 
IgG and the ECL system (Amersham Biosciences).

Statistical analysis

Data are presented as the mean ± standard deviation (SD). 
Kaplan-Meier survival plots were used to assess mean graft 
survival and compared using a two-tailed Student’s t-test. 
Data were analyzed using Prism 7 (GraphPad Software, La 
Jolla, CA, USA). P values <0.05 were considered statistically 
significant (*, P<0.05; **, P<0.01; ***, P<0.001).

Results

SAHH inhibition prolongs graft survival time in the HTx 
mouse model

To determine the effect of SAHH inhibition on acute 
allograft rejection in the HTx model, mice were treated 
with DZ2002 or AdOx. Heart grafts from control mice 
exhibited extensive cellular infiltration and severe tissue 
damage 7 days after transplantation (Figure 1A,B). By 
contrast, heart grafts from the DZ2002 and AdOx-treated 
mice showed intact myocytes, and very few infiltrating cells 
7 days after transplantation. The PR scores in AdOx and 
DZ2002 groups were significantly lower than the control 
group (Figure 1C). In addition, AdOx was more potent 
in attenuating acute rejection than the reversible SAHH 

inhibitor DZ2002. Both AdOx and DZ2002 significantly 
prolonged graft survival time compared with the control 
group (Figure 1D).

SAHH inhibition suppresses T cell activation in the HTx 
mouse model

To study the mechanism by which SAHH inhibitors 
attenuate acute allograft rejection, we firstly analyzed the 
activation markers of T cells isolated from the HTx mice 
spleens by flow cytometry. Effector T cell displayed an 
activated CD44+CD62L− T cell phenotype. The percentage 
of CD44+CD62L−CD4+ T cells in both DZ2002 and AdOx 
groups was significantly lower than in the control group 
(Figure 2A,B). However, there was no significant difference 
between the DZ2002 group and AdOx group. Among CD8+ 
T cells, the percentage of CD44+CD62L− cells in AdOx 
group was markedly lower than in the control and DZ2002 
groups, while the percentage in the DZ2002 group was not 
significantly different from the control group (Figure 2C,D). 
Hence, inhibition of methyltransferases in the methionine 
cycle by SAHH inhibitors reduces T cell activation in the 
HTx model.

SAHH inhibition suppress effector T cell differentiation 
and function in the HTx mouse model

Although T cell activation was impaired by SAHH 
inhibitors, more than 60% of T cells in both inhibitor 
g r o u p s  w e r e  a c t i v a t e d  c o m p a r e d  w i t h  c o n t r o l . 
Differentiation and function of activated T cells upon 
SAHH inhibition were investigated. To this end, we 
assessed the expression of the key transcription factors 
of Th1 and Th17 cells (T-bet and RORγt, respectively) 
by flow cytometry. The percentage of T-bet+CD4+ T  
(Figure 3A,B) cells and RORγt+CD4+ T (Figure 3A,C) 
cells in both inhibitor-treated groups were significantly 
decreased compared with the control group. 

Irreversible SAHH inhibition facilitates Treg 
differentiation in the HTx mouse model

Besides effector T cells, Tregs also have an important 
role in rejection or tolerance in transplantation immunity. 
To investigate the effects of SAHH inhibition on Treg 
differentiation, we detected the expression of Foxp3 in the 
HTx model by flow cytometry. Although DZ2002 did not 
affect Treg differentiation, AdOx significantly enhanced 
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Figure 1 SAHH inhibitors AdOx and DZ2002 prolong murine cardiac allograft survival. (A) H&E staining of cardiac allografts from 
recipient mice 7 days after heart transplantation. Inflammatory infiltrates within the myocardium, and perivascular regions were markedly 
reduced by the SAHH inhibitors AdOx and DZ2002. (B) Masson staining of cardiac allografts from recipient mice 7 days after heart 
transplantation. SAHH inhibition reduced fibrosis. (C) PR scores of cardiac allografts were evaluated on day 7 after cardiac transplantation. 
Control vs. DZ2002 (**, P<0.01); control vs. AdOx (***, P<0.001); DZ2002 vs. AdOx (**, P<0.01). (D) Mean survival time of cardiac allografts 
in the 3 groups. SAHH inhibition prolonged murine cardiac allografts’ survival. Control vs. DZ2002 (***, P<0.001); control vs. AdOx (***, 
P<0.001); DZ2002 vs. AdOx (**, P<0.01). SAHH, S-adenosyl-L-homocysteine hydrolase.
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the differentiation of Tregs (Figure 3D,E). These results 
suggest that irreversible SAHH inhibition induces immune-
suppressive responses in the HTx model.

SAHH inhibition induced a weaker Th1/Th17 response in 
cardiac rejection

The function of different effector CD4+ T cell subtypes 
was investigated by staining for different cytokines after T 
cell stimulation with phorbol myristate acetate (PMA) and 
ionomycin. The percentage of INF-γ+CD4+ (Figure 4A,B)  
cells and IL-17+CD4+ (Figure 4A,C) T cells in both inhibitor-
treated groups were lower compared with the control 
group. The percentage of IL-4-expressing CD4+ T cells in 
both inhibitor-treated groups were also significantly lower 
compared with the control group (Figure 4D,E). These 
results suggest that both SAHH inhibitors suppress effector 
T cell differentiation and function; however, the irreversible 
SAHH inhibitor (AdOx) is more potent than the reversible 
SAHH inhibitor (DZ2002).

SAHH inhibition impairs CD4+ T cell infiltration in 
cardiac allografts

Infiltration of activated CD4+ T cells induces cell-mediated 
rejection of cardiac allografts. Allograft tissue sections were 
subjected to immunohistochemical staining, which revealed 
profound infiltration of CD4+ T cells 7 days post-operation 
(Figure 5A). Semiquantitative analysis of representative high 
magnification fields revealed that the number of CD4+ cells 
infiltrated in the allograft was decreased compared with 
the DMSO group (Figure 5B). These results suggest that 
both reversible and irreversible SAHH inhibition down-
regulate CD4+ T cell responses in the HTx model. SAHH 
inhibition also induced Bim expression in both allografts 
and CD4+ T cells (Figure 5C,D). Bim expression and activity 
are regulated at the transcriptional, translational, and 
post-translational levels, and act as an apoptotic activator 
to ensure tissue integrity. The increased Bim expression 
suggests that SAHH inhibition may induce apoptosis during 
alloimmune responses.

Figure 2 SAHH inhibitors reduce T cell activation. (A,B) Active markers of T cells from spleen CD4, CD44, CD62L expression were 
measured by FACS at 7 days after heart transplantation. CD4+CD44+ T cells: control vs. DZ2002: *, P<0.05; control vs. AdOx: **, P<0.01; 
CD4+CD44+CD62L− T cells: control vs. DZ2002: ***, P<0.001; control vs. AdOx: ***, P<0.001. (C,D) Active markers of T cells from spleen 
CD8, CD44, CD62L expression were measured by FACS 7 days after heart transplantation. CD8+CD44+ T cells: control vs. AdOx: ***, 
P<0.001; DZ2002 vs. AdOx: ***, P<0.001; CD8+CD44+ CD62L− T cells: control vs. AdOx: **, P<0.01. SAHH, S-adenosyl-L-homocysteine 
hydrolase.
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Discussion

In this study, we investigated the immunosuppressive 
effects of reversible (DZ2002) and irreversible (AdOx) 
SAHH inhibitors in a BALB/C to C57B/6 mouse cardiac 
transplantation model. Both types of SAHH inhibitors 
markedly prolonged the survival time of cardiac allografts. 
The therapeutic effects of reversible SAHH inhibitors 
suppressed pathogenic Th1/Th17 development and the 
activation of CD4+ T cells, induced apoptosis of activated 
CD4+ T cells, and prolonged cardiac allograft viability. 
The reversible SAHH inhibitor (DZ2002) shows a more 
promising potential due to its mild cytotoxicity.

SAH is a SAM-dependent transmethylase inhibitor of 
SAHH, which induces SAH accumulation that can lead to 
hypotransmethyl activity. The activation and proliferation 
of  lymphocytes are dependent on SAM-mediated 
transmethylation reactions (7). Transmethylation inhibition 
by SAHH inhibitors can lead to immunosuppression 
and CD4+ T cell-mediated alloimmunity. Thus, DZ2002 
and AdOx were used to assess the therapeutic potential 

of SAHH inhibition in a solid organ transplantation 
model. A murine HTx model was used to assess the 
immunosuppressive effects of SAHH inhibitors in cardiac 
transplantation. The results demonstrated that both types of 
SAHH inhibitors significantly prolonged cardiac allograft 
survival. Allograft injury was greatly reduced 7 days post-
transplantation, CD4+IFNγ+ subsets, and CD4+IL17A+ 
subsets were decreased with both DZ2002 and AdOx 
treatment, and cardiac allograft infiltrated CD4+ T cells 
were also decreased. SAHH inhibition decreased SAHH 
activity resulting in a dose-dependent elevation of plasma 
SAH levels (8,9). Compared with AdOx, DZ2002 was less 
potent in inhibiting immune responses, but DZ2002 was 
more likely to have dose-dependent effects.

SAHH inhibition may lead to unexpected effects as 
SAHH is widely distributed throughout the body. AdOx 
induces G2/M arrest and apoptosis in vitro, as well as 
inhibits NF-κB (10). DZ2002 affects antigen-presenting cell 
(APC) function by reducing surface expression of a number 
of glycoproteins, including CD80 and CD86 (5). APCs are 
also critical in transplant rejection for inducing an immune 

Figure 3 SAHH inhibitors suppress effector T cell differentiation and function. (A) CD4+ splenocytes expressing T-bet and Rorγ-t in 
chimeric mice 7 days after heart transplantation. (B) Intranuclear staining for CD4+T-bet+. Control vs. DZ2002: ***, P<0.001; control 
vs. AdOx: ***, P<0.001. (C) Intranuclear staining for CD4+RORγ-t+. Control vs. DZ2002: *, P<0.05; control vs. AdOx: **, P<0.01. (D) 
Intracellular staining for CD4+Foxp3+ on day 7. (E) Intracellular staining for CD4+Foxp3+; Control vs. AdOx: **, P<0.01. SAHH, S-adenosyl-
L-homocysteine hydrolase.
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Figure 4 SAHH inhibitors inhibit CD4+ T cell differentiation and function. (A,D) Intracellular staining for IFN-γ, IL-4, IL-17A in CD4+ 

splenocytes 7 days after heart transplantation. (B) CD4+IFN-γ+ T cells. Control vs. DZ2002: ***, P<0.001; control vs. AdOx: ***, P<0.001. (C) 
CD4+IL-17A+ T cells. Control vs. DZ2002: ***, P<0.001; control vs. AdOx: ***, P<0.001; DZ2002 vs. AdOx: P>0.05. (E) CD4+IL-4+ T cells. 
Control vs. DZ2002: **, P<0.01; control vs. AdOx: **, P<0.01. SAHH, S-adenosyl-L-homocysteine hydrolase. 

Figure 5 SAHH inhibitors suppress CD4+ T cell infiltration in the allografts and induce Bim expression. (A) Immunohistochemical staining 
of infiltrated CD4+ T cells (magnification, ×400). (B) Comparison of infiltrated CD4+ T cells. Control vs. DZ2002: **, P<0.01; control vs. 
AdOx: **, P<0.01; DZ2002 vs. AdOx: P>0.05. (C) Bim expression in allografts. SAHH inhibitors DZ2002 and AdOx induced Bim expression. 
(D) Bim expression in CD4+ T cells. SAHH inhibitors DZ2002 and AdOx induced Bim expression. SAHH, S-adenosyl-L-homocysteine 
hydrolase.
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response in cardiac rejection. Antiviral activities of the 
SAHH inhibitors are partly attributed to their inhibition 
of SAHH effects (10). CD4+ T cell-mediated immune 
transmethylation is required for CD4+ T cell activation, 
and methylation is important during CD4+ T cell activation 
(11-13). All these combined effects may help to explain 
the potent effects of SAHH inhibitors, especially AdOx, in 
cardiac transplantation.

CD44 is an indicative marker for effector-memory 
T cells, which also express CD62L. Effector-memory 
T cells circulate in the periphery and have immediate 
effector functions upon encountering alloantigens. Our 
results show that both types of inhibitor decreased the 
expression of CD4+CD44+ and CD4+CD44+CD62L− T 
cells on day 7 post-transplantation. The SAHH inhibitors 
decreased the activation of CD4+ and CD8+ T cells, both 
of which play important roles in allograft rejection. Our 
results also suggest that SAHH inhibitors may induce 
apoptosis. Possibly, SAHH inhibitors hinder the activation 
of CD4+ T cells and, at the same time, induce apoptosis (14). 
Coordinated expression and activation of Bim shape immune 
responses and ensure tissue integrity (15,16). Hildeman  
et al. (17) provided evidence that activated lymph cell death 
in vivo is mediated by the Bcl-2 family member Bim, albeit 
at slightly higher SAHH inhibitor concentration than the 
present study. When CD4+ T cells respond to an allograft in 
vivo, in association with APCs, they become activated. Our 
results show that SAHH inhibitors decreased the activation 
of CD4+ T cells and induced apoptosis in CD4+ T cells. 
Apoptosis of alloreactive CD4+ T cells is important for 
immune homeostasis. The relationship between apoptosis 
and decreased activation of CD4+ T cells might interact as 
both cause and effect.

SAHH inhibitors’ toxicity may be an obstacle to their 
clinical application. Many studies have indicated cytotoxicity 
of SAHH inhibitors, especially irreversible inhibitors, 
whereas the reversible SAHH inhibitor DZ2002 is safer. Mice 
treated for 9 months with daily i.p. injections of DZ2002  
(50 mg/kg/day) showed no signs of severe toxicity (18). 
Signaling defects caused by DZ2002 were restricted to 
CD4+ T cells. However, in our study, mice treated with 
AdOx (10 mg/kg/day) showed profound weight loss. High 
concentrations of AdOx led to a previously unknown 
form of cell death, which was characterized by distinct, 
caspase-independent alterations of the cell shape, including 
a marked protuberation of the nucleus, cytoplasmic 
extensions, actin aggregation, and incomplete chromatin 
condensation (19). Experimental evidence suggests that the 

reversible SAHH inhibitor (DZ2002) is much less toxic 
than irreversible SAHH inhibitors as the cytotoxicity of 
DZ2002 was 16- to 40-fold lower than irreversible SAHH 
inhibitor while conserving its potent immunosuppressive 
functions (5).

SAHH inhibitors inevitably block other transmethylation 
reactions in all cells, especially irreversible SAHH inhibitors 
(12,18). Theoretically, reversible SAHH inhibitors 
irreversibly reduce the enzymatic activity of SAHH. 
The toxicity and narrow therapeutic windows of SAHH 
inhibitors are also a barrier for their clinical application. 
Effective and toxic doses are unknown in SAHH inhibitors 
and need to be established before being used in the clinics. 
Type III SAHH inhibitors seem to be more promising due 
to their reversible binding to the open form of SAHH and 
their safety. Thus, future research efforts should focus on 
the development of safe, reversible SAHH inhibitors. AdOx 
was found to be more potent than DZ2002 as the inhibitory 
effect of AdOx on SAHH activity was maximal at 4 h and 
still apparent after 72 h of incubation (20). The apparent 
oral bioavailability of DZ2002 was 90–159%, and the 
mean terminal half-lives of DZ2002 and were 0.3–0.9 and  
1.3–5.1 h (21). With improvements in the efficacy and 
specificity of existing agents, it is increasingly challenging 
to find new targets that meet patient’s needs. Reversible 
SAHH inhibitors present a promising immunosuppression 
therapy through the inhibition of cellular transmethylations.

In summary, the effects of reversible and irreversible 
SAHH inhibitors in a cardiac transplantation model were 
assessed. DZ2002, a reversible SAHH inhibitor, exhibits 
low toxicity and compelling immunosuppressive effects 
while irreversible SAHH inhibitor AdOx was also potent 
in immunosuppression but had relatively severe toxicity. 
Both inhibitors were effective in maintaining inflammatory 
factors, reducing CD4+ T cell activation, and inducing CD4+ 

T cell apoptosis. We believe that the reversible SAHH 
inhibitors represent a promising immunosuppression 
therapy that could serve as a possible complementary 
therapeutic agent in transplantation.
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