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Abstract

When combining results across related studies, a multivariate meta-analysis allows the joint 

synthesis of correlated effect estimates from multiple outcomes. Joint synthesis can improve 

efficiency over separate univariate syntheses, may reduce selective outcome reporting biases, and 

enables joint inferences across the outcomes. A common issue is that within-study correlations 

needed to fit the multivariate model are unknown from published reports. However, provision of 

individual participant data (IPD) allows them to be calculated directly. Here, we illustrate how to 

use IPD to estimate within-study correlations, using a joint linear regression for multiple 

continuous outcomes and bootstrapping methods for binary, survival and mixed outcomes. In a 

meta-analysis of 10 hypertension trials, we then show how these methods enable multivariate 

meta-analysis to address novel clinical questions about continuous, survival and binary outcomes; 

treatment–covariate interactions; adjusted risk/prognostic factor effects; longitudinal data; 

prognostic and multiparameter models; and multiple treatment comparisons. Both frequentist and 

Bayesian approaches are applied, with example software code provided to derive within-study 

correlations and to fit the models.
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1 Introduction

In meta-analysis, multiple summary results are required when there are multiple effects of 

interest, such as multiple outcomes (Berkey et al., 1995) or multiple time points (Dear, 

1994). For example, in a meta-analysis of hypertension trials, the treatment effect on both 

systolic blood pressure (SBP) and diastolic blood pressure (DBP) will be of interest. In this 

situation, a multivariate meta-analysis model allows a joint synthesis of the multiple 

outcomes (Raudenbush et al., 1988; Becker, 2000; Van Houwelingen et al., 2002; Jackson et 
al., 2011). This produces a summary (pooled) effect for each outcome and accounts for any 

correlation in the outcome effects, which may exist both within studies and between studies. 

Between-study correlation indicates how the true effects on the outcomes are related across 

studies. It is caused by differences across studies in patient and study characteristics that 

modify the true treatment effects on the outcomes: A well-known example is the choice of 

threshold level in diagnostic test studies, which modifies both sensitivity and specificity 

(Reitsma et al., 2005). Within-study correlations indicate the association between the 

estimates of effect on the outcomes within a study and are caused by the same individuals 

contributing related data towards each outcome. In other words, within-study correlation 

arises because of correlated patient outcomes within a trial, and between-trial correlation 

arises because of correlated effects on the outcomes across studies.

Joint synthesis can improve efficiency over separate univariate syntheses (Riley et al., 
2007a), can reduce selective outcome reporting biases (Kirkham et al., 2012), and allows the 

association between outcomes to be modelled, enabling joint inferences across outcomes 

and the prediction of one outcome from another, such as a surrogate outcome. However, a 

major stumbling block is the availability of within-study correlations, which are rarely 

provided in published reports. Methods and approaches have been suggested to deal with 

this problem (Jackson et al., 2011; Berkey et al., 1996; Riley et al., 2008a; Riley, 2009; Nam 

et al., 2003). However, the availability of individual participant data (IPD) from studies 

allows the within-study correlation to be directly calculated. Here, we illustrate how to 

estimate these within-study correlations using IPD and show how their availability enables 

multivariate meta-analysis to address clinically relevant questions about continuous, binary, 

survival and mixed outcomes, across wide range of applications. Some of the approaches 

have been suggested previously, but others are new. We focus mainly on a two-stage 

estimation framework (Simmonds et al., 2005; Riley et al., 2010), where the effect estimates 

and their variances and correlations are obtained for the outcomes in each trial separately 

and then synthesised in a multivariate model. The two-stage approach will be a familiar 

meta-analysis framework for most readers. However, one-stage approaches may be 

preferable for more exact modelling of the likelihood (Hamza et al., 2008; Trikalinos et al., 
2013), estimating patient-level interactions (Riley et al., 2008b) and developing prognostic 

models, and so, we also briefly discuss one-stage approaches in sections 5 and 6 and the 

Discussion.

The article is structured as follows. Section 2 introduces a hypertension data set with 

multiple outcomes as motivation. Section 3 describes the multivariate meta-analysis model 

in detail. Subsequent sections then describe how to use IPD to produce multiple estimates in 

each study, along with their variances and correlations that then allow the multivariate model 
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to be applied. Section 4 considers multiple continuous outcomes and introduces the idea of 

bootstrapping to estimate within-study correlations. Section 5 then considers binary, survival 

and mixed outcomes. Section 6 highlights some specific and novel applications of 

multivariate meta-analysis, and finally, section 7 concludes with discussion.

2 Motivating example

The methods in this article are mainly illustrated through an IPD meta-analysis of 

hypertension trials. Wang et al., 2005 investigated whether hypertension treatments lower 

SBP and DBP and whether they reduce the risks of a subsequent diagnosis of cardiovascular 

disease (CVD) or stroke. They selected randomised controlled trials that tested active anti-

hypertensive drugs against placebo or no treatment, and IPD was sought from trials in the 

INdividual Data ANalysis of Antihypertensive intervention trials (INDANA) data set 

(Gueyffier et al., 1995) or at the Studies Coordinating Centre in Leuven (Belgium) (Liu et 
al., 1998; Staessen et al., 1997; Amery et al., 1985). Ten trials were ultimately included, 

providing IPD for a total of 28 581 patients (Table 1). The trials are summarised in detail 

elsewhere (Riley et al., 2008b; Wang et al., 2005; Riley et al., 2013). The treatment and 

control groups were well balanced in SBP and DBP in each trial at baseline (Riley et al., 
2008b). A meta-analysis of the 10 trials is important to summarise the effect of anti-

hypertension drugs on (i) reducing SBP; (ii) reducing DBP; (iii) reducing the risk of CVD; 

and (iv) reducing the risk of stroke. Specifically, we wish to examine the distribution of 

treatment effects across the trials in order to estimate the average effects of anti-hypertension 

drugs on these four outcomes and also to quantify the amount of between-trial variation in 

the outcome effects. It is also important to examine how correlated the outcome effects are, 

for example, to ascertain whether treatment effectiveness on SBP is correlated with 

treatment effect on DBP.

3 Multivariate meta-analysis model

Before considering the use of IPD, we begin by introducing the general approach to 

multivariate meta-analysis when results (in terms of effect estimates and their variances and 

correlations) for multiple outcomes are available from a set of primary studies.

3.1 General model

Let there be K outcomes of interest in a meta-analysis of N studies, and let  be a vector 

containing the available K effect estimates  for the outcomes in the ith 

study (i=1 to N). The general specification of the multivariate meta-analysis model is

(1)

Here, N denotes a multivariate normal distribution, θi contains the true underlying effects for 

the K outcomes for the ith study, Si is the within-study variance–covariance matrix for the 

ith study (assumed fixed and known) containing the K variances of the effect estimates (in 
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the diagonal: ) and their covariances (in the off-diagonal; for example, 

ρWi(1,2)si1si2 is the within-study covariance for outcomes 1 and 2, where ρWi(1,2) is their 

within-study correlation), μ contains the K average effects for the outcomes, and Σ is the 

between-study variance–covariance matrix containing the K between-study variances of the 

true outcome effects (in the diagonal: ) and their between-study covariances 

(in the off-diagonal; e.g. the between-study covariance for outcomes 1 and 2 is ρB(1,2)τ1τ2, 

where ρB(1,2) is their between-study correlation). The number of rows in each vector is equal 

to the number of outcomes.

If some studies have missing outcome effect estimates (i.e. one or more of the entries of 

 are missing) then, assuming that these are missing at random and for 

computational convenience, such studies can be incorporated by allocating them arbitrary 

values (e.g. set  if missing) with very large within-study variances (e.g. set  = 1 000 

000 if  is missing) and within-study correlations of 0. This replaces missing outcome 

effects with estimates that have negligible weight and information during estimation.

We take Σ to be unstructured in this article, but simplifications are possible; for example, all 

between-study correlations, or all between-study variances, could be assumed to be the 

same. Between-study correlations may be increasingly difficult to estimate as the number of 

outcomes increases, with frequentist estimates often at +1 or −1 when the number of studies 

is few, or the between-study heterogeneity is small relative to the within-study variability 

(Riley et al., 2007b). Furthermore, in the presence of missing outcomes in some studies, 

there must be enough estimated effects, and combinations of these within studies, to make Σ 

identifiable. This is true for our applications throughout the article. A multivariate fixed 

effect model is obtained when Σ is 0, and model (1) is equivalent to two independent 

univariate random-effect meta-analyses when all within and between-study correlations are 

assumed zero.

3.2 Estimation

Estimation of model (1) is needed to obtain estimates of μ and Σ. Estimation can be 

achieved by a variety of options (Jackson et al., 2011), including restricted maximum 

likelihood (REML), method of moments (MM) approaches (Jackson et al., 2010; Jackson et 
al., 2013; Chen et al., 2012), the U statistic (Ma and Mazumdar, 2011), and a Bayesian 

approach (Nam et al., 2003; Wei and Higgins, 2013a; Bujkiewicz et al., 2013). In this article, 

we present results using REML and Bayesian estimation. REML does not by default account 

for the uncertainty about  in the estimation of μ, but confidence intervals (CIs) can be 

inflated to reflect the uncertainty (White, 2009; Jackson and Riley, 2014). After model 

estimation, multivariate extensions to I2 can be calculated (Jackson et al., 2012), for each 

outcome separately and across both outcomes jointly. They express the fraction of variation 

in the meta-analysis that is because of between-study heterogeneity rather than within-study 

sampling error.

For the Bayesian approach, prior distributions are necessary for μ and Σ. We give a vague 

separate normal prior distribution for each component of μ, with a mean of zero and a large 
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variance of 1 000 000. The prior distribution is harder to specify for Σ, especially when there 

are three or more outcomes. The conjugate prior distribution for Σ is an inverse Wishart 

distribution, but this is known to be potentially informative, and separation of the 

components of Σ is preferred to allow realistically vague prior distributions on each term 

(Web Appendix 1) (Wei and Higgins, 2013a; Barnard et al., 2000). Σ is first separated into 

variance and correlation matrices by Σ = V1/2RV1/2, where V1/2 is a diagonal matrix with 

between-study standard deviations as elements and R is the k × k matrix of between-study 

correlations (where k is the total number of outcomes). Then, R is re-parameterised to 

enforce positive-definite constraints. Cholesky decomposition or spherical decomposition 

can achieve this, and we refer the reader to Wei and Higgins who describe this in full (Wei 

and Higgins, 2013a). Our WinBUGS code for a four outcome multivariate meta-analysis 

using either decomposition is given in Web Appendix 1. A product-normal specification of 

Σ is also possible (Spiegelhalter et al., 2000; Bujkiewicz et al., 2013).

In the bivariate setting, an example set of prior distributions is

where ρB(1,2) is the between-study correlation of θi1 and θi2. WinBUGS code for the 

bivariate setting is given in Web Appendix 2. In situations where vague prior distributions 

are required, we suggest that a number of prior distributions are examined, especially when 

the number of studies is small, as the choice of prior distributions for τ1, τ2 and ρB(1,2) may 

affect the posterior results (Lambert et al., 2005). Of course, external evidence regarding τ1, 

τ2 and ρB(1,2) can be incorporated in the prior distributions where available. For example, if 

ρB(1,2) is considered positive, then its prior distribution could be chosen to allow only 

positive values.

3.3 Advantages over univariate meta-analysis

Model (1) is particularly advantageous over separate univariate meta-analyses of each 

outcome when some outcomes are systematically missing (i.e. only one of the outcomes is 

available) in some of the studies (Riley et al., 2007a) or when inferences are to be made 

jointly about the average effects of two or more outcomes (e.g. μ1 and μ2) (Thompson et al., 
2005) or jointly about the predicted outcome effects (e.g. θi1 and θi2) in a new population 

(Buyse et al., 2000). Such predictions are perhaps most suited to the Bayesian framework, in 

particular to propagate the uncertainty in  and allow direct probability statements about the 

magnitude of effects for both outcomes. Web Appendices 2 and 3 gives examples of 

calculating such probability statements from a Bayesian analysis.

4 Multivariate IPD meta-analysis of continuous outcomes

Here onwards, we concentrate on facilitating the multivariate model (1) by using IPD to 

obtain the necessary effect estimates, and their within-study variances and covariances, from 

each study. We begin by considering multiple continuous outcomes, such as SBP and DBP, 
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when given IPD from N randomised trials. In the first stage, each of these studies is analysed 

separately, and then in the second stage, model (1) is applied, as now described.

4.1 First stage

Assume that there is a treatment group (T) and a control group (C) in each trial and that two 

continuous outcomes (k = 1 or 2) are of interest. At baseline (i.e. before randomisation), the 

jth patient in the ith trial provides their SBP and DBP values, which we denote by yBijk, 

where B indicates baseline and k = 1 for SBP and k = 2 for DBP. Also, each patient provides 

their final SBP and DBP values after treatment, which we denote by yFijk (where F indicates 

final). Let xij be 0/1 for patients in the control/treatment group respectively. When such data 

are available, the first step of a two-step IPD multivariate meta-analysis must estimate the 

treatment effects for each outcome in each trial.

4.1.1 Option 1: modelling outcomes separately within each trial—The most 

appropriate linear regression model to use in this situation is analysis of covariance 

(ANCOVA) (Riley et al., 2013), where the outcome follow-up value is the response variable 

and the treatment effect is estimated adjusted for the baseline value. For each outcome and 

each trial separately, the ANCOVA model to be fitted is

(2)

In this model, ɸik is the fixed trial effect for outcome k, βik denotes the mean change in yFijk 

for a one-unit increase in yBijk, θik is the underlying treatment effect for outcome k in trial i, 

and  is the residual variance of outcome k in trial i after accounting for treatment and 

baseline values. The model is simply a linear regression and so can easily be estimated in 

standard statistical software. From this, the treatment effect estimate, , and its variance, 

, are obtained for each outcome in each trial. If baseline values are unavailable, then 

model (2) excluding the baseline value as a covariate will still give unbiased  when 

patients are randomised to the treatment groups, although  will be less efficient.

4.1.2 Option 2: modelling outcomes jointly within each trial—Model (2) can be 

applied to each outcome separately, but for continuous outcomes, one can simultaneously fit 

model (2) for both outcomes as follows:

(3)

In this framework, each patient now contributes two follow-up responses and two baseline 

values (one for each outcome) to a single model containing both outcomes jointly (Riley et 
al., 2008b). It is thus similar to a repeated measure model, and the correlation in patient 

outcome responses is accounted for by the covariance term, σi12. For estimation purposes, it 
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is helpful to re-write model (3) with dummy variables as shown in Web Appendix 3, with 

associated SAS code. When each patient provides both outcomes, then model (3) will give 

approximately the same treatment effect estimates and standard errors as obtained from 

fitting model (2) to each outcome separately. However, model (3) can also include patients 

with one of the outcomes missing and, under a missing at random assumption, will utilise 

the patient-level correlation to ‘borrow strength’ across outcomes. In situations with a large 

proportion of incomplete outcome data (i.e. only one outcome observed), this extra 

information may lead to different treatment effect estimates with lower variances than from 

model (2). Such a scenario is unlikely in well-designed prospective studies such as 

randomised trials.

4.1.3 Estimating within-study correlations directly or via bootstrapping—An 

important part of a multivariate meta-analysis is to estimate and utilise the within-study 

correlations between the outcome effect estimates. For example, consider two outcomes 

(such as SBP and DBP), and let the within-study correlation of  and  in trial i be 

denoted by ρWi(1,2), where

(4)

Model (3) models the covariance between the patient outcome responses, and this naturally 

induces a within-study correlation (ρWi(1,2)) between the estimated treatment effects,  and 

. After estimation of model (3), ρWi(1,2) is therefore calculable directly using the 

variances, , and  the covariance, si(1,2), available from the inverse of Fisher’s 

information matrix. Statistical software such as SAS (Web Appendix 3) provides these 

results upon request.

Model (2), however, does not model patient-level correlation and analyses each outcome 

separately; therefore, the within-study correlations are not estimated. However, they can be 

estimated via non-parametric bootstrapping. This approach randomly selects one patient 

with replacement, then randomly selects a second patient with replacement, and repeats until 

the same sample size is obtained as in the trial. This process is repeated b times so that b 
bootstrap samples are obtained. Then, in each of the bootstrap samples, model (2) is fitted to 

outcome 1 (e.g. SBP) to obtain  and then to outcome 2 (e.g. DBP) to obtain . This 

produces b values of  and , and their observed correlation can be calculated, which 

gives ρWi(1,2). When b is large, the ρWi(1,2) estimated from bootstrapping should be very 

similar to the ρWi(1,2) estimated directly from model (3) (this is demonstrated in section 4.3 

and Table 1).

4.2 Second stage

The first stage therefore provides treatment effect estimates  and their variances , 

for each outcome in each trial, and their within-study correlations (e.g. ρWi(1,2)). Multivariate 

model (1) can now be implemented. For example, if there are two outcomes, then model (1) 
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becomes a bivariate random-effect meta-analysis, which written in full is (Van Houwelingen 

et al., 2002; Jackson et al., 2011)

(5)

4.3 Application to the hypertension data

4.3.1 Within-study correlations—The joint ANCOVA model (3) was applied to each 

of the hypertension trials separately, to estimate the treatment effect on SBP and DBP after 

adjusting for baseline values. The treatment effect estimates and their variances for SBP and 

DBP are shown in Table 1, together with their within-study correlations that are all positive 

and quite high (ranging from 0.45 to 0.79). They are shown visually through the direction of 

the confidence ellipse for the effects in each trial (Figure 1). Therefore, there is a strong 

association between the treatment effect estimates for SBP and DBP, a consequence of the 

high correlation between SBP and DBP values in individuals, and this justifies why 

consideration of correlation is important. The within-study correlations estimated via model 

(2) with bootstrapping were very similar (Table 1).

4.3.2 Between-study correlation—The trial treatment effect estimates were combined 

in a bivariate meta-analysis model (5), using within-study correlations estimated via 

bootstrapping. The frequentist results after REML estimation are shown in Table 2. Bayesian 

analyses led to similar conclusions and are thus not presented in full here; however, the 

WinBUGS code to replicate the analysis is shown in Web Appendix 2. REML estimates a 

high positive between-study correlation of 0.78, indicating that trials with a higher than 

average true treatment effect on SBP also have a higher than average true treatment effect on 

DBP. This can be seen visually in Figure 1 by looking at the relationship across trials. Thus, 

if for some reason the treatment effect on DBP was not observed in a trial, one might use the 

high between-study correlation to predict the effect on DBP from the observed effect on 

SBP.

4.3.3 Summary treatment effects—The REML summary treatment effect estimates 

indicate that, on average, hypertension treatment reduces both SBP ( , 95% CI: 

−12.11 to −8.30) and DBP ( , 95% CI: −5.61 to −3.57) by more than placebo. The 

Bayesian approach obtains similar estimates and gives a posterior probability of almost 1 

that μ1 < 0 and a probability almost 1 that μ2 < 0, providing very strong evidence that 

treatment is effective at reducing each outcome. One can also make joint inferences. For 

example, there is a probability of 0.12 that treatment will reduce both SBP and DBP by at 

least 5 mmHg on average, which illustrates the use of a more stringent minimum reduction 

for clinical acceptability. One might also be interested in the average treatment effect on 

pulse pressure (SBP – DBP), which is  (95% CI: −6.94 to −4.29) using the 

REML estimates. We note that ignoring the correlation between  and  produces a more 

conservative CI of −7.73 to −3.42.
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4.3.4 Predicted treatment effects in a new population—There is heterogeneity in 

treatment effect across trials (  from REML estimation), potentially caused 

by differences in patient-level and study-level characteristics. Given the heterogeneity, 

clinicians might not be interested in the average treatment effect across trials but rather the 

predicted treatment effect (θnew1 and θnew2) when it is implemented in a new population. 

Interest then lies in the bivariate distribution of θnew1 and θnew2 for a new study, that is, the 

joint distribution of true treatment effects across new studies for the two outcomes. The 

Bayesian approach gives a 95% prediction interval of −14.11 to −5.82 for the treatment 

effect on SBP and −7.28 to −1.75 for the treatment effect on DBP. These intervals account 

for the uncertainty in  and . There is a probability of 0.99 that treatment will reduce 

both SBP and DBP more than placebo in a new population. Further, there is a probability of 

0.34 that the treatment will reduce both SBP and DBP by at least 5 mmHg more than 

placebo in a new population. This is the probability that the two predicted effects will fall in 

the marked area of Figure 1.

5 Multivariate IPD meta-analysis for binary, survival and mixed outcomes

We now extend the two-stage framework of section 4 to consider binary, survival, and mixed 

outcomes.

5.1 Binary outcomes

Often, researchers are interested in multiple binary outcomes, and these may also be related 

to one another, especially if they are nested or mutually exclusive. Nested outcomes occur 

when one outcome is a subset of the other, such as unplanned caesarean section and any 
adverse maternal outcome in pregnancy. Mutually exclusive outcomes occur when patients 

with one outcome cannot experience the other, for example, delivery by caesarean section 
and instrumental delivery other than caesarean section. In each trial, within IPD, those 

nested or mutually exclusive binary outcomes can be identified, and the number of events 

obtained for each (although, such information may also be available in study publications, 

for example, in contingency tables). Treatment effect estimates such as of log odds ratios 

(ORs) or log relative risks can then be estimated for each outcome in each study, along with 

their within-study variances. Their within-study correlations can be estimated by the 

formulae provided by Trikalinos and Olkin, 2008 for mutually exclusive outcomes and Wei 

and Higgins, 2013b for nested outcomes. Then, multivariate meta-analysis model (1) can be 

applied.

Multivariate meta-analysis model (1) can also be used to jointly synthesise effects for related 

binary outcomes that are neither nested nor mutually exclusive, such as pain-free walk by 1 
month and reduction in swelling by 1 month after a knee operation. Wei and Higgins, 2013b 

provide formulae for calculating within-study correlations for treatment effects for these 

outcomes, which requires an estimate of the patient-level correlation of outcome responses, 

which could easily be derived with the IPD.

It is also straightforward to implement the bootstrap procedure described in section 4.1.3 to 

estimate their within-study correlation. For example, one can fit to each trial and each 

outcome separately a logistic regression model:
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(6)

where pijk is the probability of patient j in study i experiencing outcome k, and αik is the log 

odds of outcome k in study i for the control group, xij is 1 for those in the treatment group 

and 0 for control group, and θik denotes the log OR (i.e. the treatment effect) in the ith study 

for outcome k. The model can be estimated by maximum likelihood, to give the treatment 

effect estimate  and its variance  for each outcome in each trial. Baseline covariates 

might also be included alongside xij in order to increase power or adjust for baseline 

confounding. To estimate the within-study correlations, the bootstrap is then used, where 

now, logistic regression model (6) is applied to each of the b bootstrap samples, producing b 
pairs of log OR estimates for each pair of outcomes and thereby enabling their correlation to 

be estimated.

Within-study correlations do not need to be derived if, rather than a two-stage framework, a 

one-stage multivariate meta-analysis is rather performed. For example, for nested or 

mutually exclusive outcomes, Trikalinos et al., 2014 show how multinomial distributions can 

be used to model the number of events within studies whilst incorporating random effects to 

allow for between-study heterogeneity and correlation in the true log ORs. The use of 

discrete within-study likelihoods in this way avoids the (potentially inappropriate) large 

sample normality assumption of the log OR estimates in each study and avoids the need for 

continuity correlations (Stijnen et al., 2010). However, in our experience, such one-stage 

meta-analyses can sometimes lead to convergence problems (Riley et al., 2007b), especially 

when trying to accommodating studies with missing outcomes, and thus, the two-stage 

approach may often be more practical.

5.1.1 Application to the hypertension data—Clinicians typically define a normal 

SBP as ≤120 mmHg and a normal DBP as ≤80 mmHg. We now consider these as two binary 

outcomes and evaluate whether hypertensive treatment improves the odds of having a 

normal SBP and DBP by the end of the trial. Model (6) was applied to each outcome in each 

study, to obtain the treatment effect estimates and their variances (data shown in Web 

Appendix 4). Bootstrapping estimated positive within-study correlations, ranging from 

+0.05 to +0.48. Multivariate meta-analysis model (1) was then applied using REML, and the 

summary results show that, compared with control, hypertension treatment improves the 

odds of having a normal SBP and DBP (Table 2). Interestingly, the summary result and 95% 

CI for DBP are similar whether univariate or multivariate meta-analysis is applied (OR = 

2.34, 95% CI: 2.01 to 2.72). However, for SBP, the summary result has a wider CI in the 

multivariate (OR = 2.45, 95% CI: 1.96 to 3.06) compared with univariate (OR = 2.46, 95% 

CI: 2.19 to 2.76) meta-analysis, as a result of a larger estimate of between-study standard 

deviation (0.12 vs 0.043). This highlights how multivariate meta-analysis also borrows 

strength across outcomes for the estimates of heterogeneity. The treatment effect estimates 

for SBP have large variances in some trials, as a result of only a few patients obtaining a 

normal SBP. This imbalance in SBP variances across studies improves the opportunity to 
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borrow strength (Riley et al., 2007a) from the treatment effect estimates for DBP, which 

have consistently smaller variances (Web Appendix 4), via the within-study correlations and 

between-study correlation of +0.35.

5.2 Survival outcomes

Often, researchers are interested in a treatment effect on multiple time-to-event (survival) 

outcomes, for example, the time to disease recurrence and the time to death. These may also 

be correlated, and thus, multivariate meta-analysis is again appealing. For simplicity in this 

paper, we assume that a Cox proportional hazard model is appropriate for all time-to-event 

outcomes. However, we recognise that with IPD, more sophisticated multivariate survival 

models (Wassell and Moeschberger, 1993; Hougaard, 2000; Burzykowski et al., 2001; 

Michiels et al., 2009), multistate modelling (Putter et al., 2007; Price et al., 2011), and one-

stage meta-analyses (Crowther et al., 2012; Rondeau et al., 2011) are possible, and outcomes 

with competing risks can be synthesised using more sophisticated analyses (Ades et al., 
2010). We do not have space to consider such topics in sufficient detail here and so focus our 

attention on facilitating multivariate meta-analysis using standard approaches. Therefore, in 

the event of death, other outcomes that have not occurred are censored at the death time.

Given IPD, one can fit to each trial and each outcome separately a Cox model (Cox, 1972)

(7)

where hijk(t) is the hazard function over time t for having an outcome k event for the jth 

individual in the ith trial. Each trial has its own baseline hazard (h0ik(t)), which denotes the 

hazard of an event in the control group for outcome k, and the parameter θik denotes the log 

hazard ratio (i.e. the treatment effect) in the ith study for outcome k. The model can be 

estimated by numerical maximisation of the partial likelihood (Cox, 1972), to give the 

treatment effect estimate  and its variance  for each outcome in each trial. Baseline 

covariates might also be included alongside xij in order to increase power. A method for 

handling tied failure times in the calculation of the log partial likelihood may also be 

required; here, we use the Breslow method (Breslow, 1975).

Applying model (7) to each outcome separately does not provide the within-study 

correlations between the multiple  of interest. However, as described for the logistic 

regression models for binary outcomes, they can be estimated using the bootstrapping 

procedure described in section 4.1.3. This is also highlighted elsewhere (Bujkiewicz et al., 
2013). Once estimated, the multivariate meta-analysis model (1) can then be fitted.

5.2.1 Application to the hypertension data—Consider the two outcomes of CVD 

and stroke. Model (7) was used in each trial to estimate the treatment effect on CVD 

incidence rate and then again to estimate the treatment effect on stroke incidence rate. 

Bootstrapping was used to estimate the within-study correlations, and these are all positive 

and often high (ranging from 0.10 to 0.78) (Table 1). This suggests an underlying strong 

positive association at the individual level between reduction in stroke incidence and 
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reduction in CVD incidence from using the treatment. This is expected, as stroke is one of 

the main reasons for a diagnosis of CVD (others include angina, heart attack, and heart 

failure).

Estimation of bivariate meta-analysis model (5) using REML gives a between-study 

correlation of +1 (Table 2); however, this is poorly estimated and has very little impact on 

the summary results because both between-study variances are estimated to be almost zero. 

Thus, the results are similar to those from a bivariate fixed effect meta-analysis, and the lack 

of heterogeneity suggests that the effect of treatment may be consistent across populations. 

The summary hazard ratios less than 1 indicate that hypertension treatment is effective at 

reducing both stroke and CVD risk (Table 2). In comparison to univariate meta-analyses, the 

large within-study correlations allow borrowing of strength across outcomes, and this 

produces slightly narrower CIs as a result of smaller standard errors. For example, for stroke, 

the standard error of the summary log hazard ratio is reduced from 0.074 in the univariate 

analysis to 0.070 in the bivariate analysis, a reduction of about 5%. Joint inferences can also 

be made accounting for the correlation. For example, following a bivariate Bayesian 

analysis, the estimated probability that hypertension treatment will reduce the hazard of 

stroke and CVD by at least 20% in a new study is 0.52. If one wrongly ignores the 

correlation between outcomes, the estimated probability is lower at 0.47. In situations where 

different treatment options are being compared (e.g. when multiple treatments exist for the 

same disease or when resource limits the number of treatments that can be purchased by a 

particular health care body), such discrepancies in the estimated probability of success may 

impact upon the priority ranking of each treatment (refer to Network meta-analysis, section 

6.5).

5.3 Mixed outcomes

So far, we have considered multivariate meta-analysis for multiple outcomes of the same 

type. However, multivariate meta-analysis can also be applied for mixed outcomes, For 

example, in the hypertension example, the treatment effects on the continuous outcomes of 

SBP and DBP can be considered jointly with the treatment effects on the survival outcomes 

of stroke and CVD. The availability of IPD allows within-study correlations between these 

mixed outcomes to be estimated, with bootstrapping again a convenient approach. Here, in 

the b bootstrap samples for each study, different types of analyses can be fitted to each 

outcome: for example, an ANCOVA for SBP, an ANCOVA for DBP, a Cox regression for 

CVD, and a Cox regression for stroke. These provide b sets of treatment effect estimates, 

and their correlations give the within-study correlations. Example STATA code is provided 

in Web Appendix 5 to do this.

5.3.1 Application to the hypertension dataset—The REML results for the 

multivariate meta-analysis of all four outcomes (SBP, DBP, stroke and CVD) show that 

hypertension treatment is effective for all four outcomes on average, with the summary 

effect for SBP and DBP <0 and the summary hazard ratio for stroke and CVD <1 (Table 2; 

NB the summary hazard ratios are the exponential of the summary loge hazard ratio 

estimates from the multivariate model). Bayesian estimates were very similar (available on 

request). Interestingly, after accounting for the between-study correlations with SBP and 
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DBP, the multivariate model (1) provides larger estimates of between-study heterogeneity 

for both stroke and CVD (compared with the bivariate results in section 4.4.1). This is 

because of the borrowing of strength across outcomes for the average effects and the 

heterogeneity, as mentioned previously.

The multivariate approach allows joint probability statements across the mixed outcomes. 

For example, the Bayesian multivariate meta-analysis estimates that, if applied to a new 

population, the probability that hypertension treatment will reduce SBP by at least 5 mmHg 

and reduce the hazard of stroke by at least 20% is 0.82. This is illustrated by the probability 

of the effects falling in the shaded area of Figure 2.

6 Special applications of multivariate meta-analysis

So far, we have considered multivariate meta-analysis to jointly estimate treatment effects on 

several outcomes. We now consider some different applications where IPD multivariate 

meta-analysis might be useful.

6.1 Treatment–covariate interactions

Clinicians often want to know how treatment effect is modified by clinical and patient 

characteristics, such as age, sex or biomarker levels. It may therefore be important to extend 

the models in previous sections to include patient-level covariates and estimate treatment–

covariate interactions.

Assume that IPD are available from all trials and there is just one outcome of interest. Let zij 

be a patient-level covariate (e.g. the age of patient j in trial i), which is observed for all 

patients in each trial. Simmonds and Higgins, 2007 suggest a two-step method for estimating 

the treatment–covariate interaction, and we extend their approach here, focusing on one 

continuous outcome. As in section 4, the first stage involves fitting a model to the IPD from 

each trial separately, akin to model (2) but here for just one outcome and with an interaction 

term (Riley et al., 2008b; Higgins et al., 2001):

(8)

The parameters are as explained under model (2) with now θi the treatment effect for those 

patients with zij = 0; ζi is the effect of a one-unit increase of covariate zij on blood pressure 

outcome (yFij); and γwi is the change in treatment effect for a one-unit increase in zij. In 

other words, γwi is the within-trial treatment–covariate interaction, using language consistent 

with articles on interaction estimates elsewhere (Riley et al., 2008b; Riley and Steyerberg, 

2010). When fitted to each trial’s IPD, the model produces an interaction estimate, , and 

its variance, , for each trial. These can be synthesised across trials in a standard 

univariate meta-analysis model (Riley et al., 2008b; Simmonds and Higgins, 2007), such as 

a random-effect model:
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(9)

 is assumed known, and the model provides a summary estimate of the within-trial 

treatment–covariate interaction, μγw′ and the between-trial heterogeneity in the interaction 

.

If the covariate zij is binary (let us say, 1 for males and 0 for females), then μγw gives the 

mean change in treatment effect for males compared with females. However, along with this 

contrast, it may also be informative to know the summary treatment effects for males and 

females separately. Therefore, as an alternative to model (9), one might fit the following 

bivariate meta-analysis to the treatment effect estimates for females  and males 

and their variances  and :

(10)

As before, the within-study variances  are assumed known. 

Generally, the within-study correlation (ρwi(1,2)) will be close to zero; males and females are 

different sets of individuals, but their treatment effects share a common adjustment for 

baseline values in model (8), which induces some correlation. Estimation of model (10) 

provides the summary treatment effect for males , the summary treatment effect for 

females , and the between-study variances (  and ) and between-study correlation 

. The between-study correlation arises as studies with a larger true treatment effect 

for males may be associated with a larger (or smaller) treatment effect for females.

After fitting model (10), the summary interaction (difference in treatment effect for males 

and females) can be estimated by , with its 

. However,  is no longer purely based on 

within-trial information (and hence why we have removed the ‘W’ term here) and rather is 

an amalgamation of the within-trial interactions (e.g. difference in treatment response 

between males and females in the same trial) and between-trial interaction (e.g. difference in 

mean treatment effect from a study with all males compared with a study with all females) 

(Riley et al., 2008b; Riley and Steyerberg, 2010; Thompson et al., 2010). To understand this, 
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it is helpful to consider a study that only provides the treatment effect for females. This 

study can be included within the bivariate model (10) and would impact upon  and 

therefore also upon . Thus, the summary interaction estimate is influenced by a 

study that provides no estimate of within-trial interaction.

It can be shown that  will be based solely on the between-trial interaction when trials only 

contain either males or females (i.e. when the within-trial interactions are not observable). 

Conversely,  will be based solely on within-trial information when the proportion of males 

is the same in each trial (i.e. when between-trial interaction is not observable) (Simmonds 

and Higgins, 2007; Simmonds, 2005). Most IPD meta-analysis situations will be somewhere 

in between.

Some authors (e.g. (Riley et al., 2008b; Riley and Steyerberg, 2010; Thompson et al., 2010; 

Sutton et al., 2008; Jackson et al., 2006)) propose using  (and thus combining within-trial 

and across-trial interactions) to gain power, especially when not all trials provide IPD. The 

use of  is particularly appealing when the between-trial information has large precision 

(Simmonds and Higgins, 2007), as a result of large variation in covariate means across trials 

(an extreme example is when some trials contain only females and other trials only males). 

However, this approach implicitly assumes that the between-trial and within-trial 

interactions are the same. This is a strong assumption, as it is known that between-trial 

relationships are more prone to confounding and ecological bias. Many examples of this 

problem have been shown (Riley et al., 2008b; Riley and Steyerberg, 2010; Simmonds, 

2005; Berlin et al., 2002).

For continuous covariates, model (10) is not appropriate as there are no longer two 

subgroups. However, an alternative is a bivariate meta-analysis with  (the treatment effect 

estimate for that with a zero covariate value) and  (the change in treatment effect for a 

one-unit increase in the covariate), the two responses of interest. By accounting for within-

study and between-study correlations, estimation of the bivariate model will give a summary 

interaction estimate that again combines the within-trial and between-trial interactions (Riley 

et al., 2008b; Riley and Steyerberg, 2010).

6.1.1 Application to the hypertension data—Model (8) was applied to each trial in 

the hypertension data, with sex as a covariate and SBP as the outcome of interest. This 

produces the within-trial interaction estimate  and the treatment effect estimate for 

females  for each trial, their variances and , and within-study correlations 

(ρWi(1,2)), which are close to zero. REML estimation of model (9) gave a summary within-

trial interaction of  (95% CI: −0.32 to 2.17; )). Thus, there is no evidence 

of an overall difference in treatment effect between males and females.

REML estimation of the bivariate model (10) gave a high summary treatment effect for 

females ( ; 95% CI: −12.76 to −8.55; )) and a high summary treatment 

effect for males ( ; 95% CI: −11.11 to −7.63)). The estimated between-study 
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correlation was large (ρB = 0.86), indicating that populations with a larger treatment effect 

for males also have a larger treatment effect for females.

The summary interaction estimate from model (10) is  (95% CI: −0.23 to 

2.80). This summary interaction combines the within-trial and between-trial interactions. It 

is noticeably larger than that based solely on within-trial information (1.28 vs 0.93) and has 

a wider CI as a result of larger estimates of the between-study variances in the bivariate 

model. Thus, the use of between-trial information is providing additional information here, 

although it may also be inducing ecological bias and study-level confounding. Nevertheless, 

all summary interaction estimates provide no evidence of a difference in treatment effect for 

males compared with females.

6.2 Prognostic or risk factor studies: combining partially and fully adjusted results

A major advantage of IPD is the ability to adjust for confounders and prognostic variables. 

This allows adjustment for baseline imbalance in randomised trials and can improve 

statistical power. In prognostic (or risk) factor studies, it also allows adjusted prognostic 

associations to be estimated, to reveal whether a novel factor retains its prognostic value 

after adjusting for existing prognostic factors. Nevertheless, even with IPD, some studies 

may not provide the adjustment variables of interest. In this setting, The Fibrinogen Studies 

Collaboration (The Fibrinogen Studies Collaboration, 2009) used a bivariate meta-analysis 

to account for the correlation between partially (P) adjusted and fully (F) adjusted prognostic 

factor effects, to borrow strength from partially adjusted effect estimates in studies 

where fully adjusted effect estimates  are unavailable. The model is as follows, and for 

full details, refer to The Fibrinogen Studies Collaboration, 2009:

(11)

The siP and siF are the standard errors of  and , respectively. Bootstrapping can 

estimate the within-study correlations (ρWi(P,F)) between partially and fully adjusted results 

in those studies that provide both (The Fibrinogen Studies Collaboration, 2009), as 

described in the preceding texts and shown in Web Appendix 5. A similar idea to utilise 

correlations to borrow strength is considered by others (Greenland, 1987; Steyerberg et al., 
2000; Debray et al., 2012).

6.2.1 Application to the hypertension data—As an illustration, assume that the first 

five trials in Table 1 provide IPD with treatment group, smoking, age and BMI available for 

all patients; however, the last five trials only provide IPD with smoking and treatment group. 

We now ask a new question: Is smoking a prognostic factor for stroke? Thus, the trials are 

now observational studies for this purpose. A Cox regression model can be fitted to the IPD 

for each of the 10 trials, to obtain partially adjusted hazard ratio estimates (that is unadjusted 
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for age and BMI, but adjusted for treatment). In the first five trials, an extended Cox model 

can also be fitted to the IPD to obtain fully adjusted hazard ratio estimates (adjusted for age, 

BMI and treatment). Therefore, the first five trials provide both  and , whilst the last 

five trials only provide . In the five trials with both, bootstrapping provides the within-

study correlations for the partially and fully adjusted log hazard ratio estimates; these ranged 

from 0.89 to 0.99. Applying bivariate model (11) to all 10 trials using REML estimation 

gives a summary fully adjusted hazard ratio for smoking of 1.92 (95% CI: 1.44 to 2.57; 

); however, a univariate meta-analysis of just the five trials providing fully adjusted 

results gives a far higher summary hazard ratio of 2.70 (95% CI: 1.87 to 3.90; ). 

The utilisation of correlation thus reveals a lower adjusted hazard ratio than suggested by the 

five trials alone and a narrower 95% CI.

6.3 Longitudinal data

Jones et al. (2009) describe how to undertake a multivariate meta-analysis of randomised 

trials with longitudinal continuous outcomes. These essentially extend the models 

introduced in section 4, where the multiple outcomes now become multiple time points. The 

approach depends on whether one decides to model time as a factor or as continuous. When 

time is to be treated as a factor, the first step of the multivariate approach obtains the 

treatment effect estimates at each time point, with their variances and within-study 

correlations. When time is continuous with a linear trend assumed, differences in intercepts 

and slopes of the regression lines for the treatment and control groups are estimated, again 

with their variances and within-study correlation. The second step is then a multivariate 

meta-analysis of the trial estimates. Jones et al. (2009) show that accounting for the within-

study correlations is important, as the estimate and standard error of the meta-analysis result 

at each time point can dramatically differ when naively assuming correlations are zero. 

However, they note that IPD studies are unlikely to provide repeated measurements at all the 

same follow-up times, and therefore, if time is analysed as a factor, similar time points (e.g. 

6 months in trial 1 and 7 months in trial 2) may need to be grouped in order to proceed. 

Trikalinos and Olkin consider multivariate meta-analysis of treatment effect estimates at 

multiple time points for binary outcomes (Trikalinos and Olkin, 2012), and their formulae 

for deriving within-study correlations are easily applied with IPD.

6.4 Development of multiparameter models for prognostic, dose–response and 
diagnostic research

Another area where the whole regression equation (including the intercept or baseline 

hazard, if modelled) is important is for prognostic models (risk prediction models) 

(Steyerberg et al., 2013), where the fitted equation (e.g. logistic regression model) is needed 

to predict outcome risk for individuals based on their covariate values. Given IPD from 

multiple studies, the same prognostic model could be fitted in each study and their 

regression coefficients combined in a multivariate meta-analysis, to produce an overall 

model. This also allows the heterogeneity of effects for particular prognostic factors to be 

quantified and may guide decisions about which factors to include or exclude. For example, 

a factor with opposing effects across studies (e.g. OR > 1 in some studies, OR < 1 in others) 

may be best excluded, as a model will be more reliable for practice if the direction of a 
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factor’s effect is consistent. If a factor has a consistent direction of effect but with varying 

magnitude (e.g. OR of 2 in some studies but 3 in other studies), then its inclusion may be 

warranted to improve a model’s discrimination, although potentially at the expense of 

reduced calibration (Debray et al., 2013).

Other uses of multivariate meta-analysis for multiparameter models are considered in detail 

elsewhere (Gasparrini and Armstrong, 2011; Gasparrini et al., 2012). One particularly 

important application is for examining dose–response relationships (Sauerbrei and Royston, 

2011), for example, between the amount of alcohol intake and risk of cancer (Greenland and 

Longnecker, 1992; Orsini et al., 2012). Interest is in how increasing the dose or value of a 

factor increases (or decreases) the risk of a poor outcome. Linear and non-linear 

relationships can be fitted in each study, and then, a multivariate meta-analysis used to 

synthesise intercepts and slopes (for linearity) and additionally other terms (such as spline 

terms, quadratic terms, etc.) that allow for non-linearity, whilst accounting for the within-

study correlation between all parameters. This produces a summary relationship across 

studies, and misleading inferences are possible if correlation is ignored. For example, Orsini 

et al. (Orsini et al., 2012) identify a linear trend between alcohol intake and lung cancer risk 

when using the multivariate approach (p = 0.03) but not when wrongly ignoring correlation 

(p = 0.58).

In diagnostic or screening test research, multivariate meta-analysis methods are being used 

to deal with correlation between sensitivity and specificity. Typically, such methods have 

allowed one pair of sensitivity and specificity estimates per study (Harbord et al., 2007). 

However, multiparameter models with multivariate meta-analysis can accommodate multiple 

pairs of results per study, which arise when test accuracy estimates are reported at multiple 

thresholds (Hamza et al., 2009; Riley et al., 2014). Monotonic relationships can be enforced 

within and between studies, such that sensitivity decreases and specificity increases as the 

threshold increases, and this enables a summary receiver operating characteristic curve to be 

produced.

6.5 Network meta-analysis

We have focused on multiple outcomes, but multivariate meta-analysis is also a natural 

framework for network meta-analysis of multiple treatments (White et al., 2012). Network 

meta-analysis relies heavily on comparability of different treatment comparisons (Salanti, 

2012). IPD allows the analysis to be performed in an identical way in all studies – using the 

same outcome definition, the same analysis model and the same methods for covariate 

adjustment – and so should reduce the potential for inconsistency. Another possible source 

of inconsistency is treatment-by-covariate interaction, and IPD – even if only in a subset of 

trials – allows models to be fitted that allow for this interaction (Saramago et al., 2012; 

Donegan et al., 2013).

Recent work has included multiple outcomes within the network meta-analysis (Ades et al., 
2010; Schmid et al., 2014; Efthimiou et al., 2014a; Efthimiou et al., 2014b) and includes an 

example where the ranking of treatments changes when the correlation between the multiple 

outcomes are accounted for (Efthimiou et al., 2014b). Within-study correlations are required 
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when multiple outcomes are analysed or when multiarm trials are included (White et al., 
2012); they can be estimated by the methods described in the preceding texts.

7 Discussion

We have described methods and applications of multivariate meta-analysis when IPD are 

available to calculate the within-study correlations, which are otherwise often difficult to 

calculate (Wei and Higgins, 2013b). Non-parametric bootstrapping is the most generally 

applicable method to estimate within-study correlations, although section 4 also described 

how to estimate them directly from a model for multiple continuous outcomes. By using 

correlations, the multivariate approach offers many potential benefits over separate 

univariate analyses. In our examples, we showed how multivariate meta-analysis allows joint 

probability inferences across outcomes, borrowing of strength (especially when some 

outcomes are (selectively) missing), more appropriate standard errors (e.g. for longitudinal 

data), and novel options to estimate adjusted results and treatment–covariate interactions. 

Many other novel applications are possible. For example, meta-analysis of surrogate 

outcome studies (Buyse et al., 2000; Michiels et al., 2009; Daniels and Hughes, 1997; Gail 

et al., 2000; Buyse, 2009), where a primary aim is to estimate and use the correlation 

between a surrogate outcome and a true outcome (such as between CD4 count and AIDS); 

prognostic studies where the absolute survival risk at multiple time points is needed (Arends 

et al., 2008); and investigations of the association between treatment effect and baseline risk 

(Van Houwelingen et al., 2002; Senn, 2010; Van Houwelingen et al., 1993).

We assumed that IPD are available in all studies. However, many of the methods and 

applications discussed in this paper allow the incorporation of additional non-IPD studies, if 

they directly provide estimates of (or data informing) some of the effects for the outcomes of 

interest. For example, adjusted prognostic factor results are notoriously prone to selective 

reporting bias, with non-significant adjusted results commonly excluded and only 

unadjusted or partially adjusted results shown. The bivariate model (11) allows non-IPD 

studies that provide only partially adjusted (or unadjusted) results to be included, and these 

may then still contribute (through the between-study correlation and any within-study 

correlations in IPD studies) towards the pooled adjusted result. One might expect the pooled 

adjusted estimate to be lower after accounting for studies that do not report adjusted results, 

as a result of their selective reporting. Even when non-IPD studies provide all the effects of 

interest, they are unlikely to provide their within-study correlations. Bujkiewicz et al., 2013 

suggest including these studies by placing an informative prior distribution for their missing 

within-study correlations, based on the within-study correlation in available IPD studies. 

Specifically, they apply a double bootstrap procedure in an IPD study to estimate the within-

study correlation and its uncertainty, which are then used to specify a prior distribution for 

the missing within-study correlations in other studies.

Some of the approaches discussed could also be fitted using a one-stage IPD model, in 

particular the continuous outcome models in section 4 (Riley et al., 2008b), the longitudinal 

modelling in section 6.4 (Jones et al., 2009), and the multiparameter modelling in section 6.5 

(Orsini et al., 2012). This may be quicker and advantageous with rare events or small patient 

numbers, for example, to allow for more exact binomial or multinomial sampling 
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distributions to be modelled within studies (Trikalinos et al., 2013; Trikalinos et al., 2014; 

Stijnen et al., 2010; Hamza et al., 2009). One-stage analysis may also be beneficial for 

advanced modelling of competing risks and correlated survival outcomes (Rondeau et al., 
2011) and also multistate models (Price et al., 2011; Ades et al., 2010), which we have not 

considered here. However, one-stage models can be more computationally intensive, are 

difficult to specify for survival or mixed outcomes, and can have convergence issues (Riley 

et al., 2007b), which – in our experience – is particularly problematic when some outcomes 

are missing across studies. Both one-stage and two-stage models allow non-IPD studies to 

be combined with IPD studies where relevant (Riley et al., 2008b; Riley and Steyerberg, 

2010; Sutton et al., 2008; Donegan et al., 2013; Riley et al., 2007c).

Finally, we recognise that the multivariate model is not without limitations (Jackson et al., 
2011), even when IPD are available. In particular, there can be difficulty estimating 

between-study correlations (Riley et al., 2007b), and the use of a trial-level multivariate 

normal distribution assumes a linear relationship in the true effects across trials, which is 

hard to validate. In both one-stage and two-stage frameworks, the multivariate normal 

distribution is commonly assumed for the true effects across studies because it is convenient, 

can be implemented in most statistical software packages through REML estimation, and 

naturally extends the univariate setting where a normal distribution is often used. However, 

Baker and Jackson, 2008 note that, unlike within studies where the central limit theorem 

suggests that normal sampling distributions of effect estimates will occur when sample sizes 

become large, between studies “the Central Limit Theorem does not really imply anything 

for the distribution of the random effect ….We can only appeal to the Central Limit 

Theorem here with the vague idea that the unknown source of variation between studies 

might be the sum of several factors”. If one wishes to avoid the multivariate normality 

assumption between studies, then non-parametric estimation methods can be used such as 

MM (Jackson et al., 2010; Jackson et al., 2013; Chen et al., 2012; DerSimonian and Laird, 

1986). However, if interested in the joint predictive distribution of effects, then a parametric 

specification is preferable. Lee and Thompson, 2008 suggest a number of flexible 

alternatives to the normality assumption, for both univariate and bivariate settings, whilst a 

longer tailed distribution has been proposed in the univariate setting (Baker and Jackson, 

2008). Recently, in the setting of test accuracy studies where sensitivity and specificity are 

of interest, a one-stage meta-analysis using a beta-binomial model has been proposed (Kuss 

et al., 2014), with the correlation between sensitivity and specificity accounted for using 

bivariate copulas.

In conclusion, with its potential statistical benefits and a wide range of areas for application, 

multivariate meta-analysis is likely to gain increasing interest in the future, and we have 

shown how to implement the approach when IPD are available from multiple studies.

Supporting information

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Relationship between the treatment effect estimates on systolic blood pressure (SBP) and 

diastolic blood pressure (DBP), within and across trials. The crosses indicate a pair of 

estimates from one trial, and the angle of the confidence ellipse around each estimate 

indicates the within-study correlation. The solid circle denotes the pair of summary 

estimates from the meta-analysis, and the circle around it denotes its confidence ellipse. 50% 

(rather than 95%) confidence ellipses are given for cosmetic reasons, as otherwise the 

regions are large and overlap considerably. * estimated from a Bayesian bivariate meta-

analysis model, with prior distributions as specified in section 3.2. This is the proportion of 

the joint posterior distribution for the underlying treatment effects of these two outcomes 

that falls within this region.
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Figure 2. 
Relationship between the treatment effect estimates on systolic blood pressure (SBP) and 

stroke, within and across trials. The crosses indicate a pair of estimates from one trial, and 

the angle of the confidence ellipse around each estimate indicates the within-study 

correlation. The solid circle denotes the pair of summary estimates from the meta-analysis, 

and the circle around it denotes its confidence ellipse. 50% (rather than 95%) confidence 

ellipses are given for cosmetic reasons, as otherwise the regions are large and overlap 

considerably. * estimated from a Bayesian four-outcome multivariate meta-analysis model, 

with prior distributions as specified in section 3.2 and Web Appendix 1. This is the 

proportion of the joint posterior distribution for the underlying treatment effects of these two 

outcomes that falls within this region.
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Table 2.

Bivariate and multivariate meta-analysis results for the hypertension data as obtained from REML estimation

Model Outcome Effect type

Summary
treatment

effect

95% CI for the
summary

effect
^

Between-study
standard

deviation(s)*
Between-study
correlation(s)

Bivariate
a SBP Mean difference −10.21 −12.11 to −8.30   2.71 SBP, DBP 0.78

DBP Mean difference   −4.59   −5.61 to −3.57   1.48

Bivariate SBP ≤ 120 Odds ratio     2.45     1.96 to 3.06   0.119 SBP, DBP 0.35

DBP ≤ 80 Odds ratio     2.34     2.01 to 2.72   0.204

Bivariate CVD HR     0.78     0.69 to 0.89 <0.000001 CVD, stroke 1.00**

Stroke HR     0.68     0.60 to 0.78 <0.000001

Multivariate SBP Mean difference −10.22 −12.14 to −8.30   2.73 SBP, DBP 0.79

DBP Mean difference   −4.63   −5.67 to −3.60   1.51 SBP, CVD −0.31

CVD HR     0.79     0.69 to 0.91   0.05 SBP, stroke −0.53

Stroke HR     0.73     0.61 to 0.87   0.14 DBP, CVD −0.83

DBP, stroke −0.94

CVD, stroke 0.97

a
These results correct those bivariate REML results displayed elsewhere that used slightly different trial estimates and variances for this 

hypertension data (Riley et al., 2008b; Jackson et al., 2013).

^
Inflated to account for uncertainty in the estimation of between-study standard deviation and correlation.

*
Measured on the log HR scale for stroke and CVD and on log OR scale for SBP ≤ 120 and DBP ≤ 80.

**
Estimation at edge of boundary space is a consequence of between-study standard deviation estimates close to zero.
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