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ABSTRACT

Endovascular strategies play a vital role in the treatment of peripheral arterial disease 
(PAD). However, luminal loss or restenosis after endovascular intervention remains a 
significant challenge. The main underlying mechanisms are negative vascular remodeling 
and elastic recoil in balloon angioplasty. During stenting, the main reason for this complex 
is neointimal proliferation. Endothelial cell injury due to endovascular intervention initiates 
a series of molecular events, such as overexpression of growth factors, cytokine secretion, 
and adhesion molecules. These induce platelet activation and inflammatory processes, 
which trigger the proliferation and migration of vascular smooth muscle cells into the 
intima, resulting in neointimal hyperplasia. During this process, PAD progression is mainly 
caused by chronic inflammation, in which macrophages play a central role. Of the current 
strategies, drug release interventions aim to suppress restenosis using antiproliferative 
drugs, such as sirolimus and paclitaxel, during drug release. These drugs inhibit vascular 
reendothelialization and reduce late in-stent restenosis. For this reason, immunotherapy 
can be considered an important alternative. Interventions that polarize macrophages to 
the M2 subtype are particularly important, as they shape the immune response in an anti-
inflammatory direction and contribute to tissue repair. However, there are several challenges 
to overcome, such as localizing antiproliferative or polarizing agents only to areas of vascular 
injury. This review discusses, based on the early study observations, immunotherapeutic 
approaches to prevent restenosis after endovascular intervention for the treatment of PAD.
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INTRODUCTION

Peripheral arterial disease (PAD) is a significant burden on healthcare systems, affecting 
more than 200 million people worldwide [1,2]. Clinically, it ranges from asymptomatic to 
severe life-threatening presentations [3]. If PAD patients are left untreated, cardiac events, 
such as myocardial infarction and events related to the central nervous system, such as 
stroke, are likely to develop [4].
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Endovascular strategies have been the first-line therapy for symptomatic PAD, although 
there is no consensus on which method should be prioritized [4]. Unfortunately, luminal 
loss and restenosis after endovascular interventions has been a significant challenge [5]. The 
underlying mechanisms are complex; however, this phenomenon is mainly due to negative 
vascular remodeling and elastic recoil in the case of balloon angioplasty (BA) or neointimal 
proliferation in the case of stenting [6,7].

The occurrence of restenosis in the pre-stent period ranged 40–60% in percutaneous 
transluminal angioplasty [6]. It decreased to 17–41% during the period of bare metal stent, 
predominantly mitigating the effects of elastic recoil and negative remodeling. The formation of 
neointimal proliferation leading to in-stent restenosis (ISR) is a result of the response to injuries 
occurring after endovascular intervention. Although there is ISR due to neointimal proliferation 
after BA, this mechanism occurs more exaggeratedly in stent cases [6,8,9]. Drug-eluting stents 
(DES) have further reduced the rate of restenosis to < 10%, especially with the introduction of the 
second generation, a biodegradable and biocompatible polymer that provides controlled drug 
release, and a drug-coated balloon [10,11]. Although early elastic recoil and vascular remodeling 
were prevented to some extent by the stents, restenosis associated with neointimal hyperplasia 
could not be completely prevented in the long term [9]. The underlying mechanisms may 
induce factors associated with functional impairment of PAD, and a better understanding of 
these pathways may help guide new medical therapies for treatment [12]. Immunotherapeutic 
approaches are also being investigated for this reason [13,14].

This review aims to evaluate the role of immunotherapy in the prevention of restenosis after 
endovascular intervention in the treatment of PAD.

VASCULAR RESPONSE TO ENDOVASCULAR 
INTERVENTION
Despite promising technological advances in stent technology, managing the balance 
between revascularization of the target lesion and restenosis after endovascular intervention 
remains a highly complex issue owing to the underlying molecular mechanisms.

Both BA and stent placement disrupt the endothelial cell (EC) layer. EC damage affects not only 
the function of the vascular barrier, but also its secretory function [15]. This EC injury initiates a 
series of molecular events that induce platelet activation and aggregation, followed by infiltration 
of leukocytes and monocytes into the lesion site [16]. Platelets and inflammatory cells secrete 
growth factors, such as fibroblast growth factor 2 (FGF-2), epidermal growth factor (EGF), 
platelet-derived growth factor (PDGF), and insulin-like growth factor (IGF). These growth 
factors are responsible for initiating vascular smooth muscle cells (VSMCs) proliferation through 
tyrosine kinase receptors [16,17]. VSMCs switch from a quiescent contractile phenotype to a 
synthetic phenotype and migrate to the intima. The shifted VSMC migration into the intima and 
the accumulation of extracellular matrix are hallmarks of intimal hyperplasia [16]. Circulating 
mitogens, such as angiotensin II and plasmin, may be involved in VSMC proliferation and 
migration owing to overexposure based on endothelial denudation [18] (Fig. 1).

Importantly, matrix metalloproteinases (MMPs) are known to play a key role in the 
degradation of proteins such as collagen and elastin. In particular, MMP-2 and -9 appear to 
be clearly involved in the migration of SMCs to the intima and promote the development of 
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intimal hyperplasia in in vivo models. Inhibition of MMP activity is envisioned as an approach 
in the treatment of cardiovascular diseases [19].

Although specific mechanisms are unclear, various factors, such as oxidized low-density 
lipoprotein (LDL), hyperglycemia, and reactive oxygen species, cause vascular endothelial 
damage. This damage, which can be attributed to abnormal signaling of cytokines and other 
molecules, results in alterations in gene expression and cellular behavior [20,21]. Endothelial 
progenitor cells (EPCs) play an important role in endothelial repair and angiogenesis by 
differentiating into mature ECs [16]. Due to this feature of EPC, 3 basic mechanisms are of 
great importance in the treatment of endothelial damage: transport of EPCs to endothelial 
injury sites, delivery of certain genes to EPCs, and use of certain drugs that can delay the 
aging of EPCs. Some drugs, such as LDL-cholesterol-lowering and anti-diabetic drugs, are 
already used to reduce adverse events in risky patients [22-24].

Remodulation of the imbalance between stimulatory growth factors/cytokines (such 
as PDGF, FGF, transforming growth factor [TGF]-β, and IGF-1) and inhibitory factors 
(endothelial-derived nitric oxide) that occurs as a result of injury can be envisioned as 
important therapeutic targets. In this context, vascular endothelial growth factor (VEGF, 
particularly VEGF-A), which acts nitric oxide-dependently, is one of the most extensively 
studied targets in preclinical studies [16,25].

MONOCYTE/MACROPHAGE RESPONSE FOLLOWING 
ENDOVASCULAR INTERVENTION
Stent implantation also induces immune cell migration by activating the expression 
of cell adhesion molecules, such as ICAM-1, PECAM-1, and VCAM-1, around the stent 
strut. Subsequently, monocytes that adhere to these cell adhesion molecules migrate 
to the subendothelial space and transform into macrophages, M1 or M2 depending on 
microenvironmental signals [26]. These significant changes in immune populations may 
explain the clinical phenotypes of restenosis and their variation in severity [5].
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Figure 1. Basic steps of restenosis after stenting.



These cells produce pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α, 
interleukin (IL)-1, IL-6, and interferon-γ. These cytokines contribute to the progression of 
the inflammatory process and, therefore, to stenosis [27] (Fig. 1). On the contrary, anti-
inflammatory cytokines, such as IL-10 and TGF-β, also play a role in this process. The balance 
between pro-inflammatory and anti-inflammatory responses significantly determines the 
extent of disease progression [28].

Among these immune cells, macrophages play a predominant role in maintaining chronic 
inflammation [29]. However, macrophages do not exist as pure populations at the sites 
of vascular inflammation. Diversity and plasticity are the 2 distinguishing features of 
macrophages. Classically activated M1 macrophages are pro-inflammatory, associated with 
VSMC switching, and increase endothelial damage by secreting lytic enzymes. Alternatively, 
activated M2 macrophages are associated with anti-inflammatory reactions and tissue 
remodeling [14]. M2 macrophages can be further divided into subphenotypes: M2a (wound 
healing/anti-inflammatory), M2b (immune-mediated/pro-inflammatory), M2c (regulatory/
anti-inflammatory), and M2d (tumor-associated/proangiogenic). However, in in vivo studies 
it is generally discussed as the broad M2 phenotype [30].

Following endovascular injury, monocytes initially adhere to adhesion molecules and 
differentiate into M1 macrophages, which sustain further endothelial damage and facilitate 
smooth muscle cell proliferation during restenosis [25]. M2 macrophages triggered by 
IL-4 and IL-13 contribute to tissue repair by secreting several molecules such as fibronectin 
and IGF-1. The M2 phenotype also secretes anti-inflammatory cytokines, primarily IL-10 
and TGF-β [31]. However, the precise role of each subset is not yet known in the context 
of PAD [12]. The presence of CD68-positive and CD86-positive M1 macrophages on 
immunohistochemical examination suggests the presence of phagocytic inflammatory 
macrophages and inflammation in the neointima. IL-33 secreted by damaged ECs promotes 
M1 differentiation. IL-37, in contrast, promotes CD206-positive M2 and suppresses the M1 
macrophage phenotypic switch [28].

ANTIPROLIFERATIVE EFFECTS OF CURRENT DEB/DES 
USE
Paclitaxel or sirolimus that is the most commonly used have an antiproliferative effect only 
during the elution period of the drug [32,33]. Furthermore, these agents are both nonspecific 
and cytotoxic, and significantly increase the risk of long-term morbidity and mortality due 
to their off-target effects, which are activity that differs from the targeted biological effect 
[32,34]. Due to the broader therapeutic index and lower risk of dose-related toxicity, less 
mortality outcomes are expected for sirolimus [35]. On the other hand, a meta-analysis 
study comparing paclitaxel-coated devices with control arms showed that the mortality rate 
gradually increased in patients treated with paclitaxel-coated devices at follow-up up to the 
5th year, despite a similar mortality rate at first year [36]. To address these challenges, a new 
generation of biodegradable stents and cell-selective drugs are currently in development 
[8,37,38].
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IMMUNOTHERAPY IN RESTENOSIS

Antiproliferative drugs used to prevent vascular EC proliferation inhibit reendothelialization 
between the metal surface of the stent and the blood. This reduces long-term vascular 
healing and increases late ISR and stent thrombosis due to blood contact with the metal 
surface of the stent [39,40] (Fig. 2A).

Immunotherapy can be considered an important alternative in the prevention of ISR because 
the chronic vascular inflammation is known to play a central role in the progression of 
restenosis. However, immunotherapies are not currently recommended for the clinical 
management of PAD. On the other hand, several small-sized studies in human have 
demonstrated the therapeutic benefits of therapies that reduce inflammation, such as anti-IL-
1β and anti-TNF-α agents [41-43]. Although they have promising anti-inflammatory effects, 
they may cause immune-related off-target effects in perivascular or other distant areas due to 
the pleiotropic nature of cytokines (affecting multiple systems or more than one phenotype), 
especially during systemic administration [44].

The most appropriate approach should be to identify the specific pathology in the pathways 
involved in restenosis and apply individual treatments. For example, rare defects in 
genes related to nitric oxide signaling have been observed in members of a family with 
early myocardial infarction. However, causal pathway pathologies remain unclear [45]. 
Macrophages play a dominant and central role in maintaining chronic inflammation 
[14]. Moreover, M1 macrophages sustain further endothelial damage, shape the immune 
response in the inflammatory direction, and facilitate proliferation and phenotypic changes 
of VSMC by secreting pro-inflammatory cytokines during restenosis development [29]. In 
addition, M2 macrophages shape the immune response in an anti-inflammatory manner and 
contribute to tissue repair [31]. In this context, macrophages can be considered an important 
and effective therapeutic target for preventing and resolving vascular inflammation. This 
approach for targeting macrophages can be achieved primarily in 2 ways:

1)  By reducing the increase in the number of M1 macrophages following endovascular 
intervention by administration of certain agents, such as inhibitors of typical 
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A

B

Figure 2. Differences between drug eluting endovascular interventions (A) and macrophage polarization (B) in 
preventing restenosis. Green cells, M1 (pro-inflammatory) macrophages; Yellow cells, M2 (anti-inflammatory) 
macrophages. Adapted from [32], with permission from Tan et al. 
VSMC, vascular smooth muscle cell.



inflammatory cytokines (IL-1β, TNF-α, and IL-6), chemokines (CCL2 and CCL3), or 
growth factors [13], or

2)  By rapidly polarizing them towards M2 phenotype by administering some polarizing 
molecules such as IL-4, IL-10, TGF-β1, and PGE2 [46].

Several animal studies have shown that therapeutic M2 polarization (Table 1) [47-51], which 
is the second approach, is associated with plaque regression and has a permanent effect on 
the disease [52]. However, in these applications, even if the local inflammation is reduced, 
undesirable and uncontrollable systemic events may develop. Adopting this approach 
intravenously also requires further consideration of the known blood flow effects [32]. Some 
bioengineered materials, such as polylactic-co-glycolic acid polymer-coated scaffolds, can 
make a significant contribution by providing controlled and local release of some molecules 
that provide M2 macrophage polarization (Fig. 2B) [48]. However, it is difficult to avoid the 
systemic effects of these agents owing to degradable polymers or passive absorption. To 
localize these agents only to the areas of vascular injury, nanoparticles (NPs) decorated with 
target ligands may be a more reasonable solution [32] (Fig. 3A). Indeed, NPs have recently 
found a wide range of studies for treatment and diagnostic purposes. However, it should 
not be ignored that some of them tend to show toxicity at the cellular level in tissues and 
organs. Some NPs can even produce highly reactive forms of oxygen that can cause tissue 
damage, including inflammation and other toxic effects [53,54]. Modification strategies to 
increase the safety of NPs should be evaluated in detail, taking into account their physical and 
pharmacokinetic properties.

Some studies on magnetic nanoparticles (MNPs) coated with target ligands and therapeutic 
agents have reported that MNPs can be localized around targeted tissues such as malignant 
tissue by applying an external magnetic field (EMF) [55]. This type of strategy may also be 
envisaged for preventing luminal loss after endovascular intervention if the implant is made 
of nonmagnetic alloys. After systemic administration, MNPs loaded with target ligands and 
M2-polarizing agents can be localized at sites of vascular injury by applying an EMF (Fig. 3B). 
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Table 1. Selected examples investigating macrophage polarization in preclinical peripheral arterial disease
Study Polarizing application Essential 

mechanism
Control Experimental 

model
Outcomes Ref.

Hachim et al. 
(2017)

IL-4 loaded mesh M2 polarization Unloaded mesh C57BL6 mice - Decreased M1/M2 ratio [47]
-  Diminished formation of fibrotic capsule 

surrounding implant
Pellegrin et al. 
(2014)

Ischemic condition M1 polarization Non-ischemic 
conditions

C57BL6 mice Early stage: [48]
- Increased M1/M2 ratio
- Increased IFN-γ/IL-4 ratio

Later stages:
- Neutral state of the polarization

Ganta and Annex 
(2021)

Anti-VEGF165b 
monoclonal antibody

VEGFR1 inhibition Placebo C57BL6 - Increased S100A8/S100A9 [49]
- Increased M1/M2 ratio

Fu et al. (2018) Hydrogen-saturated 
water

M2 polarization Dehydrogenized 
water

Balb/c mice - Decreased M1/M2 ratio [50]
- Decreased ROS

Wolfs et al. (2014) Helminth-derived 
soluble egg antigens

M2 polarization PBS C57BL6 mice - Decreased M1/M2 ratio [51]
- Increased IL-10 production
-  Decreased intraplaque TNF-a, MCP-1, ICAM-1, 

VCAM-1, and CD68
VEGFR1, downstream regulators of macrophage polarization; S100A8/S100A9, downstream mediator of M1 macrophages.
IL, interleukin; INF, interferon; PBS, phosphate buffered saline; TNF, tumor necrosis factor; MCP-1, monocyte chemotactic protein-1; ICAM-1, intercellular 
adhesion molecule-1; VCAM-1, vascular cell adhesion molecule-1.



We can expect an optimal result from this application when performed from the outer surface 
of the body closest to the site of vascular injury. Because localized immunotherapy enhances 
the macrophage-polarizing effect and reduces non-specific immune responses, similar to the 
results of cancer treatments [56].

Various pharmacological treatments that can be applied instead of or in addition to invasive 
treatment to prevent restenosis have been investigated. These drugs, which can be grouped 
into several main groups, are used to prevent neointimal growth due to the proliferation 
of smooth muscle cells according to the pathophysiological mechanism that may cause 
restenosis (Table 2).
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A

B

Figure 3. Schematic representation of 2 proposed ways to localize cell polarizing agents at sites of vascular 
injury. (A) Nanoparticle loaded with targeting ligands and cell-polarizing agents. (B) Shell-coated magnetic 
nanoparticles loaded with targeting ligands and cell polarizing agents, the localization effect of which is 
enhanced by the application of an external magnetic field. Adapted from [32], with permission Tan et al. 
IL, interleukin.

Table 2. Selected pharmacological drugs against in stent restenosis (modified from [57], with permission of Patel et al.)
Group Immunosuppressive Antiproliferative Migration inhibitor Accelerator of healing Antithrombin
Selected agents Limus group: Taxol (paclitaxel) Batimastat VEGF Heparin

Sirolimus Actinomycin Prolylhydrosylase inhibitors 17b-estradiol Hirudin and iloprost
Tacrolimus Methotrexate C-proteinase inhibitors EPC antibodies Abciximab
Everolimus Mitomycin Metalloproteinase inhibitors TKI
Zotarolimus C-myc antisense

Others: Taxol derivative (QP-2)
Methylprednisolone
Dexamethasone
Cyclosporine
Mycophenolic acid
Interferon-1b
Tranilast
Leflunomide

Main characteristics Stopping cell cycle Weakening neointimal 
growth

Preventing endothelial cell 
migration into the stent

Promoting healing of 
the vascular system

Preventing stent thrombosis 
and platelet aggregation

VEGF, vascular endothelial growth factor; EPC, endothelial progenitor cell; TKI, tyrosine kinase inhibitor.



CONCLUSION REMARK

Endovascular interventions play a life-saving role in PAD treatment. Significant advances 
have been made in endovascular intervention over the past 2 decades. However, 
restenosis after endovascular intervention remains a significant challenge. Despite the 
new and different platforms that release drugs, the long-term risks of morbidity and 
mortality remain unresolved. Current early studies show that immunotherapies aimed at 
modulating macrophages to the M2 subset hold strong promise. Developments that enable 
immunomodulatory agents to be localized only in the stented area will play a vital role in 
preventing side effects following PAD treatment.

LIMITATION OF THIS STUDY

This review had some limitations. Currently, there are no immunotherapeutic medications 
in clinical use for PAD treatment. Therefore, the review was designed in a traditional format, 
and only the findings of promising early study reports were highlighted. Several issues need 
to be addressed, such as effectiveness, safety, and standardization.
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