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SUMMARY
Deep learning technology is rapidly advancing and is nowused to solve complex problems. Here, we used deep learning in convolutional

neural networks to establish an automated method to identify endothelial cells derived from induced pluripotent stem cells (iPSCs),

without the need for immunostaining or lineage tracing. Networks were trained to predict whether phase-contrast images contain endo-

thelial cells based onmorphology only. Predictions were validated by comparison to immunofluorescence staining for CD31, amarker of

endothelial cells. Method parameters were then automatically and iteratively optimized to increase prediction accuracy. We found that

prediction accuracy was correlated with network depth and pixel size of images to be analyzed. Finally, K-fold cross-validation confirmed

that optimized convolutional neural networks can identify endothelial cells with high performance, based only on morphology.
INTRODUCTION

Machine learning consists of automated algorithms that

enable learning from large datasets to resolve complex

problems, including those encountered in medical science

(Gorodeski et al., 2011; Heylman et al., 2015; Hsich et al.,

2011). In deep learning, a form of machine learning, pat-

terns from several types of data are automatically extracted

(Lecun et al., 2015) to accomplish complex tasks such as

image classification, which in conventional machine

learning requires feature extraction by a human expert.

Deep learning eliminates this requirement by identifying

the most informative features using multiple layers in neu-

ral networks, i.e., deep neural networks (Hatipoglu and Bil-

gin, 2014), which were first conceived in the 1940s to

mimic human neural circuits (McCulloch and Pitts,

1943). In such neural networks, each neuron receives

weighted data from upstreamneurons, which are then pro-

cessed and transmitted to downstream neurons. Ulti-

mately, terminal neurons calculate a predicted value based

on processed data, and weights are then iteratively opti-

mized to increase the agreement between predicted and

observed values. This technique is rapidly advancing due

to innovative algorithms and improved computing power

(Bengio et al., 2006; Hinton et al., 2006). For example, con-

volutional neural networks have now achieved almost the

same accuracy as a clinical specialist in diagnosing diabetic

retinopathy and skin cancer (Esteva et al., 2017; Gulshan

et al., 2016). Convolutional neural networks have also

proved useful in cell biology such as morphological classi-

fication of hematopoietic cells, C2C12 myoblasts, and
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induced pluripotent stem cells (iPSCs) (Buggenthin et al.,

2017; Niioka et al., 2018; Yuan-Hsiang et al., 2017).

iPSCs, which can be established from somatic cells by

expression of defined genes (Takahashi and Yamanaka,

2006), hold great promise in regenerative medicine (Yuasa

and Fukuda, 2008), disease modeling (Tanaka et al., 2014),

drug screening (Avior et al., 2016), and precision medicine

(Chen et al., 2016). iPSCs can differentiate into numerous

cell types, although differentiation efficiencies vary among

cell lines and are sensitive to experimental conditions (Hu

et al., 2010; Osafune et al., 2008). In addition, differenti-

ated cell types are difficult to identify without molecular

techniques such as immunostaining and lineage tracing.

We hypothesized that phase-contrast images contain

discriminative morphological information that can be

used by a convolutional neural network to identify endo-

thelial cells. Accordingly, we investigated whether deep

learning techniques can be used to identify iPSC-derived

endothelial cells automatically based only onmorphology.
RESULTS

Development of an Automated System to Identify

Endothelial Cells

We differentiated iPSCs as previously described (Patsch

et al., 2015), obtaining mesodermal cells at around

day 3 and specialized endothelial cells at around day 5

(Figure S1A). At day 6, structures that resemble vascular

tubes were formed (Figure S1B). CD31 staining

confirmed that endothelial cells were obtained at an
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efficiency of 20%–35%, as assessed by flow cytometry.

Differentiation efficiency was strongly variable (Fig-

ure S1C), highlighting the need for an automated cell

identification system to assess iPSC differentiation or

to identify and quantify the cell types formed.

The basic strategy to identify endothelial cells by convo-

lutional neural networks is shown in Figure 1A. In brief,

differentiated iPSCs were imaged by phase contrast and

by immunofluorescence staining for CD31, a marker of

endothelial cells. The latter were then binarized into white

and black pixels corresponding to raw pixels above and

below a threshold value, respectively. Subsequently, input

blocks were extracted randomly from phase-contrast im-

ages, and matching target blocks equivalent to or within

input blocks were extracted from both phase-contrast and

binarized immunofluorescence images. Binarized target

blocks were then classified as unstained (0) or stained (1)

depending on the ratio of white pixels to black, to generate

answers. Finally, input blocks were analyzed in LeNet, a

small network (Lecun et al., 1998), and AlexNet, a large

network (Krizhevsky et al., 2012), to predict phase-contrast

target blocks as unstained or stained. Predictions were

compared with answers obtained from binarized target

blocks, and weights were automatically and iteratively

optimized to train the neural networks and thereby in-

crease accuracy (Figure 1A).

Networks were then optimized according to Figure 1B.

Number of blocks, input block size, and target block size

were first optimized using the small network, along with

staining threshold, the ratio of white pixels to black for a

target block to be classified as stained. To improve perfor-

mance, as assessed by F1 score and accuracy, the small

network was compared with the large network, observed

errors were analyzed, and binarized target blocks were rebi-

narized by visual comparison of raw fluorescent images

with phase-contrast images. Finally, the optimized network

was validated by K-fold cross-validation (Figure 1B). To this

end, we obtained 200 images from each of four indepen-

dent experiments, of which 640 were used for training

and 160 for validation to collect data shown in Figures 2

and 3. From each image, 200 blocks were randomly ex-

tracted, and 500–128,000 of the blocks were used for

training while 32,000 blocks were used for validation

(Figure 1C).

Improvement of F1 Score and Accuracy by

Optimization

To train the networks we optimized several experimental

conditions, including number of input blocks, target block

size, and input block size. Performancewas evaluated based

on F1 scores, which aggregates recall and precision, and on

accuracy, which is the fraction of correct predictions. As

noted, we first used 500–128,000 blocks for training (Fig-
1688 Stem Cell Reports j Vol. 10 j 1687–1695 j June 5, 2018
ure 1C) to determine the number of blocks required to

achieved convergence (Table S1). Inflection points in F1

scores and accuracy were observed at 16,000 blocks, and

convergence was achieved at 32,000 blocks for an input

and target block size of 128 3 128 pixels, as well as for an

input block size of 512 3 512 pixels and a target block

size of 32 3 32 pixels (Figure 2A). Hence, 32,000 blocks

were used for training in subsequent experiments. Next,

the optimal combination of block size and staining

threshold was determined by input blocks of 32 3 32,

64 3 64, 128 3 128, 256 3 256, and 512 3 512 pixels.

We note that 32 3 32-pixel blocks contained only single

cells, while 512 3 512-pixel blocks contained entire col-

onies and surrounding areas (Figure S2A). Based on F1

scores, performance was best from an input block size of

512 3 512 pixels combined with a staining threshold of

0.3 (Figures 2B and 2C; Table S2). Both F1 score and accu-

racy increased with input block size (Figures 2D, S2B, and

S2C), indicating that areas surrounding cells should be

included to increase accuracy. In contrast, target block

size did not affect predictive power (Figure 2E) or the corre-

lation between input block size and F1 scores and accuracy

(Figure S2D and Table S3).

Effect of Network Size on Predictive Power

As network architecture is critical to performance, we

compared the predictive power of the small network LeNet

(Lecun et al., 1998) after training on 128,000 blocks with

that of the large network AlexNet (Krizhevsky et al.,

2012) (Figure 3A). F1 scores and accuracy from the latter

were higher (Figures 3B and S3A), suggesting that extrac-

tion of complex features by a large network improves cell

identification by morphology. Performance was further

enhanced by analyzing true positives, true negatives, false

positives, and false negatives (Figures 3C and S3B). We

found that true positives and true negatives were typically

obtained in areas with uniformly distributed cells. In

contrast, areas with heterogeneous appearance, such as at

the border between abundantly and sparsely colonized sur-

faces, often led to false positives or false negatives. To

examine whether F1 scores are influenced by heteroge-

neous appearance (Figure S4A), we scored the complexity

of all 32,000 512 3 512-pixel validation blocks as the

average difference between adjacent pixels, normalized to

the dynamic range (Saha and Vemuri, 2000). Blocks with

complexity of <0.04 were considered sparsely colonized,

while blocks with complexity of 0.04 to 0.08 typically con-

tained uniformly distributed cells with clear boundaries.

All other images had complexity >0.08 and contained

dense colonies with indistinct cell borders. In both the

small and large networks (Figures S4B, S4C, and S4D), F1

scores were highest for blocks with complexity of 0.04 to

0.08 (typically 0.06), implying that variations in cell
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Figure 1. Analysis of Induced Pluripotent Stem Cell-Derived Endothelial Cells Using Convolutional Neural Networks
(A) Training protocol. Input blocks were extracted from phase-contrast images and predicted by networks to be unstained (0) or stained
(1) for CD31. Target blocks containing single cells were extracted from immunofluorescent images of the same field, binarized based on
CD31 staining, and classified as stained or unstained based on the ratio of white pixels to black. Network weights were then automatically
and iteratively adjusted to maximize agreement between predicted and observed classification. Scale bars, 400 mm (upper panels), 5 mm
(middle panels), and 80 mm (bottom panels).
(B) Optimization of experimental parameters to maximize F1 score and accuracy.
(C) Two hundred images each were obtained from four independent experiments. Images were randomized at 80:20 ratio into training and
evaluation sets, and 200 blocks were randomly extracted from each image.
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Figure 2. Dataset Adjustment
(A) F1 score and accuracy as a function of number of input blocks. Left: network performance using 1283 128-pixel (px) input blocks and
128 3 128-px target blocks. Right: performance using 512 3 512-px input blocks and 32 3 32-px target blocks.
(B and C) F1 score as a function of input block size and staining threshold. The optimal threshold is boxed in red and the optimal input
block size is boxed in blue.
(D) Average F1 score for different input block sizes.
(E) F1 score for different target block sizes.
See also Figure S2 and Tables S1–S3.
density and morphology affect network performance, in

line with incorrect predictions as shown in Figures 3C

and S3B. In light of this result, we speculated that weak
1690 Stem Cell Reports j Vol. 10 j 1687–1695 j June 5, 2018
staining, non-specific fluorescence, and autofluorescence

in dense colonies may also degrade performance. Accord-

ingly, we rebinarized target blocks by visual comparison
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with raw fluorescent images (Figure 3D). Following this

step, 26,861 of 128,000 blocks (21%) were classified as

stained, while fully automated binarization scored 40,852

of 128,000 blocks (32%) as stained (Table S4A). Notably,

the F1 score and accuracy rose above 0.9 and 0.95, respec-

tively, in the large network (Figure 3E and Table S4A).

K-Fold Cross-Validation

Finally, we assessed network performance and generaliza-

tion by K-fold cross-validation, in which k subsets of data

are divided into k � 1 training datasets and one validation

dataset. Training and validation are then performed k times

using different combinations of training and validation da-

tasets. In our case, 800 images were collected in four inde-

pendent experiments, of which various combinations of

600 images from three experiments were used for training

and 200 images from one experiment were used for valida-

tion (Figure 4A). The F1 score and accuracy were approxi-

mately 0.7 and higher than 0.7 for the small network

with automatically binarized target blocks, but over 0.75

and over 0.9, respectively, for the large network with rebi-

narized target blocks (Figures 4B and 4C; Table S4B).
DISCUSSION

In this study, we demonstrated that deep learning tech-

niques are effective in identifying iPSC-derived endothelial

cells. Following optimization of parameters such as number

of input blocks, target block size, input block size, staining

threshold, and network size, we achieved satisfactory F1

scores and accuracy. Notably, we found that a larger input

block increasespredictionaccuracy, indicating that the envi-

ronment surrounding cells is an essential feature, aswas also

observed for differentiated C2C12 myoblasts (Niioka et al.,

2018). We note that the immediate microenvironment is

also an essential determinant of differentiation (Adams

and Alitalo, 2007; Lindblom et al., 2003; Takakura et al.,

2000), and that the positive correlation between input block

sizeandF1scoreoraccuracymayprovehelpful in future stra-

tegies to identify differentiated cells by morphology.

In comparison with other machine learning techniques,

deep learning is straightforward and achieves high accu-

racies. Indeed, deep learning algorithms have won the Im-
Figure 3. Network Optimization
(A) Comparison of LeNet and AlexNet, which are small and large deep
(B) F1 score learning curves from the small and large network.
(C) Representative true positive, false positive, true negative, and fa
(D) Immunofluorescent images were binarized automatically, or rebin
contrast images. Scale bars, 100 mm.
(E) F1 score and accuracy were compared following training of the sma
blocks.
See also Figures S3 and S4; Table S4.
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ageNet Large-Scale Visual Recognition Challenge since

2012 (He et al., 2015; Krizhevsky et al., 2012; Szegedy

et al., 2014; Zeng et al., 2016), and have also proved useful

in cell biology (Buggenthin et al., 2017; Niioka et al., 2018;

Van Valen et al., 2016; Yuan-Hsiang et al., 2017). Although

we used the older-generation networks LeNet and AlexNet,

newer networks achieve even better accuracy in image clas-

sification (Esteva et al., 2017; Gulshan et al., 2016). Several

techniques, such as increasing network depth (Simonyan

and Zisserman, 2014), residual learning (He et al., 2015),

and batch normalization (Ioffe and Szegedy, 2015), may

also enhance performance, although these were not imple-

mented in this study, since results were already satisfactory.

Inspection revealed some issues in binarizing heteroge-

neous areas in images with weak staining, non-specific

fluorescence, and autofluorescence. To lower the number

of false positives and improve performance, we rebinarized

these images by comparing raw fluorescent images with

phase-contrast images. In addition, cell density signifi-

cantly affected F1 scores, implying that cells should be

cultured carefully to a suitable density, or that networks

should be trained to distinguish between true and false pos-

itives, especially when images are heterogeneous. Finally,

K-fold cross-validation showed that iPSC-derived endothe-

lial cells were identified with accuracy approximately 0.9

and F1 score 0.75, in line with similar attempts (Buggen-

thin et al., 2017; Niioka et al., 2018; Yuan-Hsiang et al.,

2017).

Importantly, the data show that iPSC-derived endothe-

lial cells can be identified based on morphology alone,

requiring only 100 ms per block in a small network and

275 ms per block in a large network (Figure S4E). As

morphology-based identification does not depend on la-

beling, genetic manipulation, or immunostaining, it can

be used for various applications requiring native, living

cells. Thus, this system may enable analysis of large data-

sets and advance cardiovascular research and medicine.
EXPERIMENTAL PROCEDURES

iPSC Culture
iPSCs were maintained in mTeSR with 0.5% penicillin/strepto-

mycin on culture dishes coated with growth factor-reduced
neural networks.

lse negative images. Scale bars, 80 mm.
arized by manual comparison of raw fluorescent images to phase-

ll and large network on automatically binarized or rebinarized target
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See also Table S4.
Matrigel, and routinely passaged every week. Media were changed

every other day. Detailed protocols are described in Supplemental

Experimental Procedures.

Endothelial Cell Differentiation
iPSCs cultured onMatrigel-coated 6-well plates were enzymatically

detached on day 7, and differentiated into endothelial cells as

described in Supplemental Experimental Procedures.

Flow Cytometry
At day 6 of differentiation, cells were dissociated, stained with

APC-conjugated anti-CD31, and sorted on BD FACSAria III. As a

negative control, we used unstained cells. Detailed protocols are

described in Supplemental Experimental Procedures.

Immunocytochemistry
At day 6 of differentiation, cells were fixed with 4% paraformalde-

hyde, blocked with ImmunoBlock, probed with primary anti-

bodies to CD31, and labeled with secondary antibodies as

described in Supplemental Experimental Procedures.

Preparation of Datasets
All phase-contrast and immunofluorescent images were acquired

at day 6 of differentiation. Two hundred images were automati-

cally obtained from each of four independent experiments. Of

these, 640 were used for training and 160 were used for validation

in Figures 2 and 3. For K-fold validation in Figure 4, 600 images

from three experiments were used for training and 200 images

from one experiment were used for validation, in all possible com-

binations. Datasets were constructed by randomly extracting 200
input blocks from each phase-contrast image. On the other

hand, target blocks were extracted from binarized immunofluores-

cent images. Detailed procedures are described in Supplemental

Experimental Procedures.
Deep Neural Networks
We used LeNet, a small network that contains two convolution

layers, two max pooling layers, and two fully connected layers,

as well as AlexNet, a large network that contains five convolution

layers, three max pooling layers, and three fully connected layers.

Network structures are shown in Figure 3A and Supplemental

Experimental Procedures.
Performance Evaluation
Performance was evaluated based on F1 scores, an aggregate of

recall and precision, and on accuracy, the fraction of correct predic-

tions. Detailed information is provided in Supplemental Experi-

mental Procedures.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental

Procedures, four figures, and four tables and can be found with

this article online at https://doi.org/10.1016/j.stemcr.2018.04.

007.
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