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Backgrounds: Diabetic retinopathy (DR), the main retinal vascular complication of DM, is
the leading cause of visual impairment and blindness among working-age people
worldwide. The aim of this study was to investigate the difference of plasma metabolic
profiles in patients with DR to better understand the mechanism of this disease and
disease progression.

Methods: We used ultrahigh-performance liquid Q-Exactive mass spectrometry and
multivariate statistical analyses to conduct a comprehensive analysis of plasma
metabolites in a population with DR and proliferative DR (PDR). A risk score based on
the level of the selected metabolite was established and evaluated using the least absolute
shrinkage and selection operator regularization logistic regression (LASSO-LR) based
machine learning model.

Results: 22 differentially expressed metabolites which belonged to different metabolic
pathway were identified and confirmed to be associated with the occurrence of DR. A risk
score based on the level of the selected metabolite pseudouridine was established and
evaluated to strongly associated with the occurrence of DR. Four circulating plasma
metabolites (pseudouridine, glutamate, leucylleucine and N-acetyltryptophan) were
identified to be differentially expressed between patients with PDR and other patients,
and a risk score formula based on these plasma metabolites was developed and
assessed to be significantly related to PDR.

Conclusions: Our work highlights the possible use of the risk score assessment based
on the plasma metabolites not only reveal in the early diagnosis of DR and PDR but also
assist in enhancing current therapeutic strategies in the clinic.
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INTRODUCTION

In both developing and developed countries, the prevalence of
diabetes mellitus (DM) is rising. By 2045, it is estimated that 629
million people worldwide will have DM (1). The proportion was
reported to be less than 1% in the 1980s in China, while a series
of large-scale and well-conducted population surveys have
shown that the prevalence has risen sharply to 9-12% in the
past few years, with more than one million persons affected (2,
3). Diabetic retinopathy (DR), the main retinal vascular
complication of DM, is the leading cause of visual impairment
and blindness among working-age people worldwide (4). In
addition, the existence of DR also suggests an increased risk of
life-threatening systemic vascular complications (5, 6). By 2010,
worldwide, DM-related eye disease contributed to the fifth most
common cause of moderate-to-severe vision loss and blindness,
accounting for nearly four million cases of visual impairment
and more than eight hundred thousand cases of blindness (7).

DR is a progressive and devastating disease, and much of the
blindness associated with DR can be prevented with early diagnosis
and therapy. DR is classified according to its severity as
nonproliferative DR (NPDR) in the early stages and proliferative
DR (PDR) in the later stages; while PDR is often associated with
visual impairment, NPDR is often asymptomatic (8). Therefore,
profiling and early detection of DR are specifically vital in
preventing NPDR from progressing to PDR. One challenge
associated with the use of common retinal imaging methods
widely utilized to screen and diagnose DR is training primary
healthcare workers to assess these retinal images (9). However, an
exciting area of research is the diagnosis and assessment of the
occurrence, development and prognosis of disease based on liquid
biopsy and the identification of easily accessible biomarkers;
notably, plasma/serum multiomics can disclose systemic changes
associated with biological dysfunction (10, 11). Thus, the
development of DR diagnosis and PDR monitoring biomarkers
must be advanced from a modern perspective so that treatment
efforts for DR can be enhanced in the clinic.

Metabolomics research has been applied to qualitatively and
quantitatively analyze all low-molecular-weight metabolites in a
sample, identify metabolites with significant differences and
important biological significance between different groups, and
further clarify the metabolic processes and pathophysiological
changes in an organism during the disease process (12, 13). This
type of research moves from the genome to providing a complete
illustration of the phenotype (14). Metabolomics is a powerful
technology that can be leveraged to study biomarkers of various
diseases, including DM. Several recent studies have revealed that
the development of DM is closely related to amino acid
metabolism, including that of branched chain amino acids,
aromatic amino acids, tyrosine and other aromatic amino-
containing acids, glycine, glutamine and glutamic acid (15).
Despite the biological function of DM becoming increasingly
apparent, the role of metabolites in regulating microvascular
complications of DM such as DR remains under investigation.

In our work, we investigated plasma metabolomic biomarker
profiling of DR patients and disease progression. We used
ultrahigh-performance liquid Q-Exactive mass spectrometry
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(UPLC-QE-MS) and multivariate statistical analyses to conduct
a comprehensive analysis of plasma metabolites in a population
with DR and PDR. A risk score based on the level of the selected
metabolite pseudouridine was established and evaluated using
the least absolute shrinkage and selection operator regularization
logistic regression (LASSO-LR) based machine learning method,
and this score was strongly associated with the occurrence of DR.
Subsequently, four circulating plasma metabolites (pseudouridine,
glutamate, leucylleucine and N-acetyltryptophan) were identified to
be differentially expressed between patients with PDR and other
patients, and a risk score formula based on these plasmametabolites
was developed and assessed to be significantly related to the severity
of DR.
METHODS

Chemicals and Reagents
HPLC-grade methanol was supplied by Tedia Company, Inc.
(Fairfield, OH, USA). Formic acid (FA) was provided by Sigma-
Aldrich Co., Ltd (St. Louis, MO, USA).

Plasma Sample Collection
This study was managed at the The Affiliated Suqian Hospital of
Xuzhou Medical University between August 2019 and January
2021, and the ethics committee of The Affiliated Suqian Hospital
of Xuzhou Medical University (2019–102–07) approved the study,
which was conducted according to the ethical standards for human
experimentation and the World Medical Association (WMA)
Declaration of Helsinki. The cases were T2DM patients with DR,
and the controls were T2DM patients without DR. T2DM was
diagnosed according to standard criteria recommended by WHO
since 1999. All participants received detailed ophthalmic
examinations and were separately assessed based on digital retinal
photographs, while different stages of DR was diagnosed with
fundus fluorescence angiography method (16). The inclusion
criteria were as follows (1): T2DM (2); ≥18 years old (3);
following the same therapy programs consists of basal insulin
(Insulin Degludec) and metformin. Participants with following
situation would be excluded (1): any other eye diseases or history
of eye surgery (2); acute or chronic inflammatory disease,
cardiovascular diseases, malignancy, liver or renal dysfunction and
any other severe chronic systemic disease (3); poor quality of fundus
photographs, which were not clear for DR diagnosis. According to
inclusion criteria and exclusion criteria, 42 patients with clinical and
histopathology-confirmed DR, including 21 PDR and 21 NPDR
patients, and 32 age- and sex-matched T2DM patients without DR,
were recruited between August 2019 and January 2021 at the
Hospital of The Affiliated Suqian Hospital of Xuzhou Medical
University. According to diabetic nephropathy diagnostic criteria
(17), 6.25% (2/32) in T2DM group, 19.0 (4/21) in DR group and
61.9% (13/21) in PDR group were assessed to diabetic nephropathy.

Sample Preparations for Metabolomics
Peripheral venous blood samples including 42 DR patients and 32
T2DM patients without DR, were drawn from the elbow vein in the
fasting state in the morning and stored in ethylenediaminetetraacetic
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acid vacuum tubes (BD Vacutainer, Franklin Lakes, NJ, USA) and
then centrifuged at 1300 g for 10min at 4°C. Plasma was immediately
separated and stored at -80°C. Sample preparation for nontargeted
metabolomics was performed according to the manufacturer’s
instructions. One hundred microliters of each sample were slowly
lysed at 4°C, 400 µL of precooled methanol was added, vortexed for
60 s, and incubated at -80°C for 8 hours, and the protein was
precipitated by centrifugation at 16,000 g for 10 min at 4°C. The
supernatant was used for UHPLC analysis.

Metabolite Profile Analysis and
Metabolite Identification
The samples were separated by UHPLC and then analyzed by a
Thermo QE HF-X mass spectrometer carried out by Clinical Mass
Company (Nanjing, China). Electrospray ionization (ESI) positive
and negative ion modes were applied. The ESI source conditions
after C18 chromatographic separation were as follows: sheath gas
flow rate: 50; Aux gas flow rate: 13; sweep gas flow rate: 0; capillary
temperature: 300°C; spray voltage: ± 3.5 kV; scan m/z range: 67-
1000 Da; and product ion scan m/z range: 67-1000 Da. Secondary
mass spectra were obtained using information-dependent
acquisition (IDA) and high sensitivity mode, with an N collision
energy of 15, 30, 45 eV. Aliquots of samples were mixed for the
preparation of QC samples. QC samples were inserted in the sample
cohort throughout the analysis to monitor and evaluate system
stability. The MSdial program was used for peak extraction of the
data, and the SIMCA program was used for principal component
analysis (PCA) and orthogonal partial least-squares discriminant
analysis (OPLS-DA). Then, metabolite structure identification was
performed by exact mass number matching and secondary
spectrum matching by searching public databases.

Correlation-Based Metabolic Network
Analysis and Metabolic Pathway Analysis
The MS signal intensities confirmed that significantly changed
metabolites were converted by log transformation and
autoscaling and applied to calculate Pearson’s correlation
coefficient, followed by correlation-based metabolic networking
analysis using Cytoscape 3.7. Variable metabolites were imported
and analyzed using MetaboAnalyst software (http://www.
metaboanalyst.ca) to perform pathway analysis to display the
role of disturbed metabolic pathways.

Biochemical Measurements
All patients’ medical histories were acquired, and age, sex, body
mass index (BMI), and duration were obtained after a physical
examination. Patients underwent blood and urine laboratory tests
that included fasting plasma glucose (FPG), glycated hemoglobin |
glycosylated hemoglobin (HbA1c), urine Albumin to creatinine
(UACR), triglycerides, high-density lipoprotein cholesterol (HDL-
c), low-density lipoprotein cholesterol (LDL-c) and total
cholesterol (TC).

Statistical Analysis
Data are presented as the mean ± SD. Continuous data were
analyzed with Student’s t-test or the Mann-Whitney U test using
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SPSS 22.0 software (SPSS, Chicago, IL, USA). As the association
of HbA1c level with severity of retinopathy has been investigated
and assessed, Pearson correlation and partial correlation were
used to analyze the relationships between plasma HbA1c level
and risk score (GraphPad Prism). LASSO-LR based machine
learning model was then performed to derive an DR or PDR
diagnosis risk score. Receiver operating characteristic (ROC)
analysis was utilized to estimate the sensitivity and specificity
by the standard method. The general acceptance level of
significance was P < 0.05.
RESULTS

Clinical Features of Subjects
In the present work, we explored the association between the
plasma metabolite fingerprint and proliferative retinopathy in
DM patients. Detailed demographic characteristics of the
enrolled participants are shown in Table 1, FPG, HbA1c and
UACR levels were markedly higher in DR patients (P < 0.001). In
addition, no significant differences were found for BMI, or levels
of triglycerides, HDL-c, LDL-c and TC between the DR and
control groups (P > 0.05).

Metabolomics Workflow
The study workflow is shown in Figure 1. Plasma samples were
collected from subjects and analyzed with the UHPLC-QE MS
platform with both the electrospray ionization positive (ESI+)
and negative (ESI-) modes. Raw data were normalized using
Pareto scaling for subsequent data analysis after extraction of the
background and alignment of the metabolic peaks. Different
metabolic features and metabolites were extracted by combining
the criteria of fold change (FC) >1.2 and P<0.05 and visualized
with volcano plots and heat maps. Thirty significantly different
metabolites were screened by the threshold of variable important
in projection (VIP) value >1 and P value <0.05, of which
correlation analysis and pathway analysis were performed.
TABLE 1 | Detailed demographics of the enrolled patient.

Detailed demographics of the enrolled patients

DR NDR

n 42 32
Gender (male/female) 18/24 15/17
Age (years) 52 (45–62) 50 (45–61)
Dibabets duration (years) 13 (11.4-19) 12.5 (10.5-18.5)
BMI (kg/m2) 26.8 (23.8-29.4) 25.4 (22.3-28.9)
triglycerides (mmol/L) 1.3 (0.78-1.9) 1.7 (0.86-2.3)
HDL-c (mmol/L) 0.89 (0.59-1.23) 0.92 (0.63-1.29)
LDL-c (mmol/L) 2.96 (2.03-3.61) 2.78 (2.13-3.53)
TC (mmol/L) 4.86 (3.62-5.52) 4.72 (3.30-5.38)
FPG (mmol/L) 10.05 (8.97-11.31) 8.11 (6.71-8.93)
UACR (mg/g) 37.4 (6–213) 17.3 (4.1-45.2)
HbA1c (1%) 9.47 (8.78-10.69) 8.03 (7.58-8.63)
October 2021 | Volume 12
DR, Diabetic retinopathy; BMI, body mass index; FPG, fasting plasma glucose; HbA1c,
glycated hemoglobin glycosylated hemoglobin; HDL-c, high-density lipoprotein
cholesterol; LDL-c, low-density lipoprotein cholesterol; TC, total cholesterol; UACR,
urine albumin to creatinine.
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The LASSO-LR was utilized to select diagnostic markers to
predict DR and PDR among the subjects via penalized
maximum likelihood. Evaluation of the risk score formula was
performed using ROC analysis, and the relationship between the
risk score and HbA1c level was investigated.

Metabolic Profiling of DR
We first compared the metabolic signatures between DR and
control T2DM patients in both ESI+ and ESI− modes of
untargeted metabolomics. In total, more than 50,000 metabolic
features were consistently found in all plasma samples from the
discovery cohort, including 25742 features in ESI+ mode and
31374 features in ESI- mode. QC samples were tightly clustered
in principal component analysis (PCA), validating the stability
and reproducibility of the instrumental analysis (Figures 2A, B).
The OPLS-DA score plot displays a clear demarcation between
the DR group and the control group in ESI+ mode with R2Y =
0.939 and in ESI- mode with R2Y = 0.991, suggesting significant
changes in plasma metabolites in the DR group (Figures 2C, D).

Identification of Differential Metabolites
To reveal the plasma metabolic characteristics in DR patients
and identify and confirm high-confidence metabolites that
contribute to DR, we distinguished the differences by ESI+ and
ESI- based on the criteria of FC>1.2 and P<0.05, respectively.
In addition, a VIP value greater than 1.0, which was calculated by
OPLS-DA scoring, was selected as a significantly different
metabolic feature for analysis. Thus, metabolic characteristics
with significant differences were extracted and visualized by
Frontiers in Endocrinology | www.frontiersin.org 4
volcano plots (Figures 3A, B). According to a public
metabolite library, 22 metabolites were identified and
confirmed after inputting the refined significant metabolic
features, containing 13 and 5 metabolites from the ESI+ and
ESI- models, respectively, and 4 metabolites with dual mode.
They were classified into 13 subcategories according to the
chemical taxonomy in the Human Metabolome Database
(HMDB) with the largest proportion of the significantly
different metabolites which was classified as amino acid (7/22)
(Table 2). Hierarchical clustering analysis also revealed
differentially expressed metabolites between DR and
NDR (Figure 3C).

Metabolite Correlation Analysis and
Pathway Enrichment Analysis
To further investigate the interrelationships between the
significantly different metabolites, we utilized the Metscape
plugin (http://metscape.ncibi.org/) in Cytoscape (https://
cytoscape.org/), a tool available for interactive exploration and
visualization of metabolic networks in metabolite changes, and
constructed the metabolic network (Figure 3D). We identified
45 pairs of correlations with correlation coefficients ≥0.4 or ≤-0.4
among the 22 significantly different metabolites. KEGG pathway
enrichment analysis was performed for 22 dysregulated
metabolites involving 18 metabolic pathways. Based on the
enrichment factor and P-value, histidine metabolism, purine
metabolism, riboflavin metabolism, d-glutamine metabolism
and nitrogen metabolism were the five most significantly
enriched metabolic pathways (Figure 3E).
FIGURE 1 | Workflow of metabolomics for metabolomic profiling and data interpretation of plasma samples from DR and NDR.
October 2021 | Volume 12 | Article 757088
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Development and Evaluation of a
Diagnostic Panel for DR
To further elucidate the metabolite signature for DR, a LASSO-
LR model was utilized to select diagnostic metabolites to predict
DR among the subjects via penalized maximum likelihood,
which gives the most normalized model for the application of
one or ten markers (Figure 3A). The normalization path was
calculated for the LASSO-LR model at a grid of values for the
normalization parameter lambda, which identified one
(pseudouridine) or ten differentially expressed metabolites
(Figure 4A). The OPLS-DA score plot displays a clear
demarcation between the DR group and the control group at
the level of pseudouridine with R2Y = 0.867 (Figure 4B).
According to the levels of the selected metabolites, the
following formula was derived to calculate the DR risk score
for each patient: risk score (DR) = -0.23× Ln (pseudouridine) +
1.88. Based on the study of the relationship between the risk
score distribution and DR status, the results showed that the rate
of DR in the low-risk score party was primarily lower than that in
the high-risk score party (Figure 4C). In addition, the risk scores
for the DR group were predominantly higher than those for the
NDR group (Figure 4D). The sensitivity and specificity of the
risk score for DR were 97.6% and 53.1%, respectively, with an
AUC of 0.80 (95% CI = 0.70 to 0.90) (Figure 4E). Then, it was
also shown that the risk score was positively correlated with the
level of HbA1c according to a linear correlation analysis (R =
0.603, P < 0.001) (Figure 4F).
Frontiers in Endocrinology | www.frontiersin.org 5
Plasma Metabolomics Approach to
Monitor the Progression of DR
According to the International Clinical DR and Diabetic Macular
Edema Disease Severity Scale, 21 PDR patients and 53 non-PDR
patients, including 32 control cases and 21 NPDR patients, were
distinguished. Then, the same procedure of LASSO-LR analysis
was performed to select metabolites to monitor PDR. The
normalization path was calculated for the LASSO-LR model at
a grid of values for the normalization parameter lambda, which
identified four (pseudouridine, glutamate, leucylleucine and
N-acetyltryptophan) differentially expressed metabolites
(Figure 5A). As shown in Figure 5B, the plasma concentrations
of pseudouridine, N-acetyltryptophan and glutamate were
predominantly upregulated, whereas that of leucylleucine was
found to be downregulated in PDR patients. According to the
levels of the four selected metabolites, the following formula was
derived to calculate the PDR risk score for each patient: risk score =
0.23 × Ln(pseudouridine) + 0.16 × Ln(N-acetyltryptophan) -
0.065 × Ln(leucylleucine) + 0.11 × Ln(glutamate) -3.63. Based on
the relationship between the risk score distribution and DR status,
the results showed that the rate of PDR cases in the low-risk score
party was primarily lower than that in the high-risk score party
(Figure 5C). Statistical analysis showed that the risk scores of the
PDR group were significantly higher than those of the non-PDR
group (Figure 5D). The sensitivity and specificity of the risk score
for DR were 76.2% and 77.4%, respectively, with an AUC of 0.82
(95% CI = 0.71 to 0.90) (Figure 5E). Ultimately, it was also shown
A B

DC

FIGURE 2 | Multivariate statistical analysis results. PCA score plot of the analysis in ESI (–) mode (A) and ESI (+) mode (B). OPLS-DA score plot of the analysis in
ESI (–) mode (C) and ESI (+) mode (D).
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that the risk score was positively correlated with the level of HbA1c
according to a linear correlation analysis (R = 0.36, P <
0.01) (Figure 5F).
DISCUSSION

DR, the main retinal vascular complication of DM, is the leading
cause of visual impairment and blindness among working-age
people worldwide. Therefore, early and accurate identification of
DR and disease progression among T2DM patients is essential
for clinicians when evaluating the disease status of patients and
formulating suitable therapy efforts such as anti-vascular
endothelial growth-factor agents, intraocular injection of
steroids or timely laser therapy for preservation of sight in DR
patients. In our work, we demonstrated that the levels of
circulating plasma metabolites were significantly differentially
expressed between the DR and NDR groups. A risk score based
on the level of pseudouridine was established and evaluated using
Frontiers in Endocrinology | www.frontiersin.org 6
the LASSO-LR model, which was strongly associated with the
occurrence of DR. Subsequently, four circulating plasma
metabolites, including pseudouridine, glutamate, leucylleucine
and N-acetyltryptophan, were identified to be differentially
expressed between PDR and not-PDR, and a risk score
formula based on these four plasma metabolites was developed
in the same way and assessed to be significantly related to the
severity of DR. Our work highlights the possible use of plasma
metabolites in the early diagnosis of DR and PDR in the clinic.

A panel of differentially expressed plasma metabolites was first
identified after comparing DR and NDR subjects and was found to
be significantly enriched in histidine metabolism, purine
metabolism, riboflavin metabolism, d-glutamine/d-glutamate
metabolism and others. Histidine, an essential amino acid
(EAA) in mammals, is derived from growth and amino acid
composition in tissues. An increasing number of studies have
revealed the effect of histidine catabolism on carnosine synthesis,
which contributes to strong antioxidant effects (18) and the
efficiency of chemotherapy agents (19), preventing cataracts
A B

D E

C

FIGURE 3 | Representative Volcano plot (fold change >1.2 and p-value < 0.05) in ESI (+) mode (A) and ESI (+) mode (B) metabolomics data. (C)
Representative heatmap of significant different metabolites (fold change >1.2, VIP>1 and p-value < 0.05). (D) Correlation-based metabolic network analysis.
(E) Metabolic pathway analysis.
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TABLE 2 | Differential metabolites identified from metabolomics profiling.

Metabolite name Mode VIP FC P Value Subclass

Pantothenic acid POS 1.53 1.553 0.0057 vitamin
(–)-Riboflavin POS 2.05 2.819 0.0076 vitamin
D-(+)-Pantothenic acid NEG 1.16 1.357 0.0310 vitamin
Pseudouridine NEG 1.63 1.720 0.0047 uridine
D-GLUCURONIC ACID NEG 1.30 1.316 0.0455 sugars
Dehydroisoandrosterone sulfate NEG 1.19 0.598 0.0456 steroids
Hypoxanthine NEG/POS 2.60 0.360 0.0079 purine derivatives
N2,N2-Dimethylguanosine POS 1.11 1.439 0.0331 nucleoside
sn-Glycero-3-phosphocholine POS 1.01 0.705 0.0301 lipid
Propionylcarnitine POS 1.05 1.276 0.0267 lipid
Acetylcarnitine POS 1.38 1.584 0.0088 enzyme
Inosine NEG/POS 2.18 0.315 0.0363 creatinine
Cholic acid NEG/POS 2.53 0.244 0.0172 cholic acid
Butyryl carnitine POS 1.48 1.561 0.0024 carnitine
UROCANIC ACID POS 1.33 1.373 0.0002 azole
N-Fructosyl isoleucine POS 1.09 1.496 0.0474 amino acid
N-acetyltryptophan POS 1.95 3.762 0.0341 amino acid
Leucylleucine POS 3.24 0.329 0.0002 amino acid
Kynurenic acid POS 1.90 0.541 0.0000 amino acid
3-Methylhistidine POS 1.86 2.264 0.0010 amino acid
Phenylacetylglutamine NEG/POS 2.10 3.262 0.0188 amino acid
Glutamine NEG 1.98 2.560 0.0196 amino acid
Frontiers in Endocrinology | www.frontiersin.org
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POS, Positive; NEG, Negative; FC, Fold change; VIP, Variable important in projection.
A B

D E F

C

FIGURE 4 | Development of risk score for DR using the least absolute shrinkage and selection operator regularization (LASSO-LR) model. (A) Dotted vertical lines
were drawn at the optimal values with Lambda (log), by using the minimum criteria and the 1 standard error of the minimum criteria (the 1-SE criteria). (B) OPLS-DA
score plot of the analysis using selected metabolite. (C) Distribution of the risk score in the group. (D) Statistical analysis for distribution of risk score between DR
and NDR (****p<0.0001). (E) ROC curves were created to evaluate the power of risk score. (F) A linear correlation analysis between risk score and HbA1c levels.
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(20). The major pathway of histidine catabolism could proceed in
four steps to yield glutamate, with many functions, including the
development of DM (21). Our data are in accordance with
previous studies showing that purine metabolism plays a role in
the development of DR (22). Purines, the basic composition of
nucleotides in the process of cell proliferation, are associated with
various molecular functions, such as cell cycle regulation, signal
transduction and immune function. Uric acid, the final product of
purine metabolism, is an independent predictor of cardiac
allograft vasculopathy after heart transplantation (23).
Frontiers in Endocrinology | www.frontiersin.org 8
Additionally, uric acid has been reported to be a risk factor
related to extremity vasculopathy in T2DM (24). Riboflavin, a
water-soluble vitamin, is an essential nutrient in higher organisms
and is involved in oxidation-reduction reactions in many
metabolic pathways and in energy production in the respiratory
chain that occurs in the mitochondria. Impairment of flavin
homeostasis may lead to multisystem dysfunction, including
neuromuscular disorders and cardiovascular disease (25).
Moreover, diabetic patients have been reported to suffer from
riboflavin deficiency, and flavin imbalance plays a vital role in the
A

B

D

E F

C

FIGURE 5 | Development of risk score for PDR using the least absolute shrinkage and selection operator regularization (LASSO-LR) model. (A) Dotted vertical lines
were drawn at the optimal values with Lambda (log), by using the minimum criteria and the 1 standard error of the minimum criteria (the 1-SE criteria). (B) Statistical
analysis of pseudouridine, glutamate, leucylleucine and N-acetyltryptophan between PDR and not-PDR group (**p < 0.01; ***p < 0.001; ****p < 0.0001).
(C) Distribution of the risk score in the group. (D) Statistical analysis for distribution of risk score between PDR and not-PDR group (****p < 0.0001). (E) ROC curves
were created to evaluate the power of risk score. (F) A linear correlation analysis between risk score and HbA1c levels.
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appearance of DR (26). The above evidence indicates that
metabolic pathways may contribute to the process of DR.

Our results also showed that the pseudouridine gradient
increased in DR and PDR subjects. From screening and fitting
results based on LASSO-LR analysis, variable selection and
regularization were performed when fitting a generalized linear
curve. The variable profiling here mentions not setting all the
variables into the model for fitting but to selectively set the
variables into the model to obtain better performance parameters
to avoid overfitting (27). Through LASSO-LR based machine
learning methods, the optimal number of metabolites can be
screened from a large number of variables, and equations based
on these metabolites can be established. To our knowledge, there
has been no metabolomics research on the impact of
pseudouridine in patients who have undergone DR and disease
progression. It has generally been acknowledged that
pseudouridine, a fundamental metabolite, is a c-glycosyl
pyrimidine that consists of uracil having a beta-D-
ribofuranosyl residue attached at position 5. Pseudouridine is
also associated with RNAmodification (28), owing to the relative
abundance and inertness of the isomer compared with other
mNS in cells, and comprises approximately 5% of all cellular
RNA nucleotides (29). The unique structural properties of
pseudouridine contribute to the folding of tRNAs and rRNA,
and recent research suggests that pseudouridylation influences
the coding potential of mRNA. Recently, pseudouridine has been
identified and observed in the plasma, urine or tissue of cancer
patients with multiple malignancies, including prostate cancer
(30), hepatocellular carcinoma lymphoma (31), colorectal cancer
(32) and chronic kidney disease (33). Pseudouridine has also
been shown to be a novel diagnostic metabolic marker of heart
failure, which is similar to the observation of the Alexander D
team, who found that pseudouridine was elevated in dilated
cardiomyopathy patients (34). Besides, the relationship of
pseudouridine and the risk of diabetes had been disclosed.
Pseudouridine inhibits glucose utilization at the postreceptor
level through lowering the intracellular Ca concentration to
affect the progress ion of T2DM (35) , and plasma
pseudouridine predict both the risk and prevalence (36) and
insulin resistance of T2DM (37). Moreover, plasma
pseudouridine has been shown to be correlated with declining
renal function and albuminuria in diabetic kidney disease (38,
39), suggesting a close relationship between the level of plasma
pseudouridine and diabetic microangiopathy.

Glutamate, another metabolite that was shown to be associated
with DR and PDR in our work, is the most abundant and versatile
amino acid in the body. Under normal conditions, glutamate is
the principal excitatory neurotransmitter in the brain and is
involved in learning and memory (40). In addition, glutamate
may play a role in acute brain damage after traumatic brain
injury, cerebral ischemia and status epilepticus (41, 42), immune
system (43), the endocrine system (44), kidney and coronary
artery disease (45) and others. The roles of plasma glutamine acid
in DR and disease progression have not yet been illustrated.
However, some evidence has revealed their effect on the
development of DM and DM-related complications. Glutamate
Frontiers in Endocrinology | www.frontiersin.org 9
is significantly associated with the risk of developing T2DM (45,
46). In addition, other studies have suggested that DM is
accompanied by an accumulation of glutamate in the retina,
which causes neurotoxicity and the development of DR (47,
48), while glutamine is regarded as the most individual
metabolite for the presence of DR (49).

There were a few limitations in our study, one of which is its
small sample size with only 78 plasma samples applicable for
metabolomic analysis, which is unfavorable for investigating the
robustness of the model. Therefore, the sensitivity and specificity
of the diagnostic model should be assessed with an expanded
number of patients as well as in a prospective cohort. In addition,
the absolute concentration of candidate metabolites was not
quantified and validated in our study, making them difficult to
apply in the clinic.

In brief, liquid biopsy metabolomics could be applied to
discriminate metabolic subphenotypes of DR and disease
progression, with the identification and validation of
specific circulating discriminant metabolites. Based on the
aforementioned results, we were able to develop a risk score
according to the level of metabolites for DR and PDR. Further
investigations are required to quantitatively detect candidate
metabolites in an expanded cohort. Nevertheless, our work
demonstrated that this risk score based on molecular
signatures should enable the monitoring of the appearance of
disease and disease progression at an early stage.
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