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Abstract 

Introduction: Staphylococcus aureus is a gram‑positive bacterium that causes serious infection. With the increasing 
resistance of bacteria to current antibiotics, it is necessary to learn more about the molecular mechanism and cellular 
pathways involved in the Staphylococcus aureus infection.

Methods: We downloaded the GSE33341 dataset from the GEO database and applied the weighted gene co‑
expression network analysis (WGCNA), from which we obtained some critical modules. Kyoto Encyclopedia of Genes 
and Genomes (KEGG) and Gene Ontology (GO) were applied to illustrate the biological functions of genes in these 
modules. We constructed the protein‑protein interaction (PPI) network by Cytoscape and selected five candidate hub 
genes. Five potential hub genes were validated in GSE30119 by GraphPad Prism 8.0. The diagnostic values of these 
genes were calculated and present in the ROC curve based on the GSE13670 dataset. Their gene functions were ana‑
lyzed by Gene Set Enrichment Analysis (GSEA).

Results: A co‑expression network was built with 5000 genes divided into 11 modules. The genes in green and 
turquoise modules demonstrated a high correlation. According to the KEGG and GO analyses, genes in the green 
module were closely related to ubiquitination and autophagy. Subsequently, we picked out the top five hub genes in 
the green module. And UBB was determined as the hub gene in the GSE30119 dataset. The expression level of UBB, 
ASB, and MKRN1 could significantly differentiate between Staphylococcus aureus infection and healthy controls based 
on the ROC curve. The GSEA analysis indicated that lower expression levels of UBB were associated with the P53 signal 
pathway.

Conclusions: We identified some hub genes and significant signal enrichment pathways in Staphylococcus aureus 
infection via bioinformatics analysis, which may facilitate the development of potential clinical therapeutic strategies.
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Introduction
As a gram-positive bacterium, [1–3] Staphylococcus 
aureus can infect various tissue and organs in human 
beings, causing mild skin infection or even severe ill-
nesses [4]. It causes conditions such as endocarditis, 
osteomyelitis, septicemia, and toxic shock syndrome 

Open Access

*Correspondence:  gysygxg@gmail.com
1 Department of Clinical Laboratory Medicine, The Third Affiliated 
Hospital of Guangzhou Medical University, Guangzhou 510150, China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12866-021-02392-y&domain=pdf


Page 2 of 11Li et al. BMC Microbiology          (2021) 21:329 

toxin (TSST), [5–7] primarily through the production of 
a variety of toxic factors and toxins [5, 6]. Though most 
of the antibiotics used to treat Staphylococcus aureus 
work well, emerging evidence has shown that Staphylo-
coccus aureus’s resistance becomes a major issue for clin-
ics [2, 6]. For instance, the methicillin-resistant S. aureus 
(MRSA), [8, 9] one of the most common resistant strains, 
leads to increased mortality and morbidity, which makes 
it difficult for clinicians to prescribe the suitable treat-
ment therapy [1, 10]. By forming colonies in human nares 
and skin, Staphylococcus aureus causes mild symptoms 
while invading deeper tissues and exposed organs in a 
vulnerable environment, which causes severe diseases 
[2, 6]. Given the lack of effective treatment regimens and 
vaccines for drug-resistant Staphylococcus aureus, [11, 
12] it is necessary to explore potential target genes asso-
ciated with Staphylococcus aureus.

In this study, we construct a gene co-expression net-
work using the WGCNA method and select some mod-
ules that pique our interest for further analysis. KEGG 
and GO analyses were applied to explore the biological 
functions of the modules. We obtained five hub genes 
through STRING and Cytoscape and explored the rela-
tionship between these genes and Staphylococcus aureus 
infection prognosis through the ROC curve. Moreover, 
we further addressed the biological roles of these genes 
during infection through GSEA. These results offer some 
critical genetic candidates for treating Staphylococcus 
aureus infection, which may facilitate vaccine develop-
ment and treatment optimization for Staphylococcus 
aureus infection.

Methods and materials
Data inclusion and processing
Figure  1 displayed the workflow in our study. The data 
processing methods applied in our study were carried out 
in accordance with relevant guidelines and regulations. 
The Gene Expression Omnibus (GEO) is a comprehen-
sive database of gene expression, collecting microarray 
and high-throughput resources. (http:// www. ncbi. nlm. 
nih. gov/ geo/). In this study, we downloaded the gene 
expression profile of GSE33341 [13] from the GEO data-
base. The GSE33341 dataset was based on the GPL1261 
platform of Affymetrix Mouse Genome 430 2.0 Array 
and GPL571 platform of Affymetrix Human Genome 
U133A 2.0 Array. We extracted the data that included 32 
human samples infected with Staphylococcus aureus and 
43 healthy counterparts. Then, we converted gene probes 
into gene symbols based on microarray annotation infor-
mation on the GPL571 platform. For probes correspond-
ing to multiple gene symbols, we randomly selected one 
gene symbol for matching the probes. Probes with no 
corresponding gene symbols were removed. For gene 

symbols corresponding to multiple probes, we reserved 
the probe with the highest average value. Through the 
above steps, we ensure the one-to-one correspondence 
between probes and gene symbols. Furthermore, genes 
with negative values were deleted.

Weighted gene co‑expression network analysis
The top 5000 genes with high expression values in 32 
infected samples were selected to construct co-expres-
sion modules through the R package “WGCNA”.(Fig. 2A) 
WGCNA is a systems biology approach applied to search 
for highly correlated gene modules or identify biomarkers 
for candidate diseases [14]. When the soft thresholding 
power β was 7, the scale-free  R2 of the co-expression net-
work was close to 0.9. (Fig. 2B). Therefore, network con-
struction and module detection were continued based on 
the soft thresholding power β. To enhance the reliability 
of the results, we set the minimum number of genes in 
modules as 30. We further defined 0.4 as the threshold 
for cut height to merge modules with high correlation.

Functional and pathway enrichment analyses of genes 
in the critical modules
WGCNA can divide genes with similar functions into the 
same module. Therefore, genes in the same co-expression 
modules possess a higher degree of connectivity, which 
means they may play similar roles. According to the 
TOM matrix heat map, we identified two key modules 
that were significantly associated with Staphylococcus 
aureus infection.

KEGG is an integrated database for analyzing genomes 
and biological data [15–17]. (www. kegg. jp/ kegg/ kegg1. 
html) Gene ontology (GO) is an international stand-
ardized classification system for gene function, cover-
ing biological process, molecular function, and cellular 
components [18]. To study the biological function of the 
genes in the important modules, we performed KEGG 
and GO pathway enrichment analyses by R language. 
P < 0.05 was set as the cut-off value.

Hub genes identification
PPI network is a useful tool to understand cell functions 
and disease machinery, which is crucial in predicting the 
function of interacting proteins [19]. We imported the 
genes previously obtained from the critical modules into 
the online database STRING (version 11.0; https:// string- 
db. org/), which helps constructing the PPI network. The 
combined score was set as over 0.4. Subsequently, we 
searched the key modules and hub genes in the PPI net-
work by the MCODE plugin and CytoHubba plugin in 
Cytoscape software. Finally, we defined the top five genes 
that displayed the highest degree of connectivity in key 
modules as hub genes.

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://www.kegg.jp/kegg/kegg1.html
http://www.kegg.jp/kegg/kegg1.html
https://string-db.org/
https://string-db.org/
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Validation of hub genes in datasets
To ensure the result’s rigor, we used two other data-
sets, GSE30119 [20] and GSE13670 [21], to verify the 
hub genes. In the GSE30119 dataset, the data of 99 
infected samples and 44 healthy samples were extracted 
from whole blood and imported into GraphPad Prism 
(version 8.0.2) for t-tests and non-parametric tests. 
The hub genes with P < 0.05 were considered signifi-
cant. In the GSE13670 dataset, 15 infected blood sam-
ples and 15 healthy samples were utilized to plot ROC 
curves, from which we obtained their AUC through the 
“pROC” package. ROC curve is usually a helpful tool to 
evaluate the efficiency of gene diagnosis [22]. The hub 

genes with AUC > 0.7 were deemed useful for disease 
diagnosis.

Gene set enrichment analysis
GSEA is an analytical method concentrating on groups 
of genes that share common biological functions and 
regulation [23]. To learn about the biological function, 
we performed the GSEA for the hub gene. Based on the 
median expression level of the hub gene, 32 infection 
samples were classified into the low-expression and the 
high-expression group. GSEA 4.1.0 was used to perform 
the analysis, and the c2.cp.kegg.v7.2.symbols.gmt in the 
Molecular Signatures Database (MSigDB) was selected as 

Fig. 1 Workflow of the study. Fig. 1 displayed data preparation, processing, and analysis in this study
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the reference gene set. The results met nominal p-value 
< 0.05, FDR < 25% and normalized enrichment score > 1 
were considered statistically significant.

Results
Gene co‑expression network construction and significant 
module identification
After preliminary screening, we screened out 13, 345 
genes from 32 infection samples to undergo WGCNA. 
The top 5000 genes with high expression values were 
screened out and used to construct the co-expression 
network. Through WGCNA analysis, 5000 genes were 
divided into 12 co-expression modules (Fig. 2C). Since 
yellow and blue modules had a high similarity, they 
were merged when MEDissThres was setting as 0.4. 
(Additional  file  1) Therefore, there were a total of 11 
modules, eventually (Fig.  2D). The turquoise module 
is the most extensive module and includes 1952 genes. 
The number of genes in the green-yellow module was 
the lowest, which only comprised 39 genes. A total of 

92 genes that did not belong to any of the ten mod-
ules were classified as grey module. Next, we analyzed 
the interactions between genes in the co-expression 
modules. The results (Fig.  3A) revealed some notice-
able differences in the correlation among other mod-
ules, especially the turquoise and green module, which 
aroused our attention and interest for further research. 
Moreover, we analyzed the connection between differ-
ent co-expression modules by calculating the connec-
tivity of eigengenes. As shown in Fig.  3B, 11 modules 
were divided into two clusters. One comprised pink, 
black, red, purple, and turquoise modules; the other 
included blue, brown, grey, green, green-yellow, and 
magenta modules. We observed that there were higher 
adjacencies between several pairs of modules from 
Fig. 3C, such as the brown and black, brown and blue, 
red and black, turquoise and purple modules.

Fig. 2 Construction of co‑expression modules for Staphylococcus aureus by WGCNA. (A) Clustering of samples in GSE33341 to identify outliers. 
There is no obvious outlier that needed to remove. (B) Determination of soft‑thresholding power in WGCNA analysis. The figure showed the 
scale‑free fitting index (left) and average connectivity (right) corresponding to different soft thresholds. And soft thresholding power selected was 
7. (C) The cluster Dendrogram of 5000 genes . Each branch represents a gene and the different colors below represent different modules. A total of 
11 co‑expression modules were constructed. (D) The cluster Dendrogram after merging. When setting the height cutoff value as 0.4, the blue and 
yellow modules with high correlation are merged. Eventually, there were ten modules in total 
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Functional enrichment analysis of genes in modules 
of interest
KEGG and GO were applied to obtain biological func-
tions for the genes in the green and turquoise modules. 
According to the KEGG and GO enrichment analysis, 
the green module was defined as the critical module to 
undergo further analysis. The results of KEGG and GO 
analyses of the turquoise module were displayed in Addi-
tional  file  2. Based on the KEGG analysis, mitophagy—
animal and ubiquitin-mediated proteolysis were the 
most enriched terms in the green module (Fig.  4A). In 
terms of biological pathways, genes in the green mod-
ule were enriched in the proteasomal protein catabolic 
process and myeloid cell differentiation catabolic pro-
cess. (Fig.  4B) Concerning MF, genes were significantly 
enriched in ubiquitin-protein ligase binding (Fig.  4C). 
For CC, genes were involved in the vacuolar membrane. 
(Fig. 4D)

PPI network analysis and hub genes identification
We built the PPI network of genes in the green mod-
ule with the help of STRING. (Additional  file  3) And 

we identified the dense regions among the PPI network 
through the MCODE plugin. (Fig.  5A, B, C) Finally, we 
picked out the significant module with the highest score 
(score: 16), 16 nodes, and 120 edges from the green 
module (Fig. 5A). The genes with the top five MCC val-
ues in the final module were defined as hub genes(ASB1, 
CDC34, SKP1, MKRN1, and UBB) (Fig. 5D).

Verification and efficacy evaluation of hub genes
In the GSE30119 dataset, with the standard of P < 0.05, 
UBB was defined as the hub gene (Fig.  5E). In the 
GSE13670 dataset, the area under the curve (AUC) of 
ASB1, UBB, and MKRN1 were both greater than 0.7, 
which suggested their potential diagnostic significance 
(Fig.  6A, B, C, and Additional  file  4). In conclusion, we 
defined UBB as our hub gene to conduct further analysis 
in our study.

Gene set enrichment analysis
After the GSEA for the final selected hub genes, we 
found that the KEGG P53 signaling pathway was asso-
ciated with the samples with lower expression of UBB 
while KEGG porphyrin and chlorophyll metabolism was 

Fig. 3 Key module identified by WGCNA. (A) Interaction relationships between genes in the co‑expression modules. The brightness of yellow in 
the middle represents the correlation between the various modules. The figure showed that there were significant differences in the correlation 
among different modules. And red revealed that genes in the same module have closer relationships. (B) Hierarchical clustering dendrogram of 
the eigengenes. (C) Heatmap of the eigengene adjacencies. The depth of the color represents the connectivity of critical genes between different 
modules. And the red indicated a positive correlation while the blue indicated a negative correlation
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associated with the samples with higher expression of 
UBB (Fig. 6D and E).

Discussion
Multiple drug-resistant Staphylococcus aureus has 
become a public health issue, which renders the clini-
cal treatment of the infection difficult [24]. We aimed to 
analyze the RNA transcriptional profiles and explore the 
highly correlated genes that participate in Staphylococcus 
aureus infection. In this study, a total of 5000 differen-
tially expressed genes were constructed into 11 modules 
by WGCNA. Based on this, we applied bioinformatics 
methods to explore the characteristics of Staphylococcus 
aureus infection.

Through WGCNA analysis, we defined the green 
module as the key module and the genes in the green 
module were extracted for analysis. According to 
KEGG analysis, mitophagy and ubiquitin-mediated 
proteolysis were the most significant enrichment 

results of the genes in the green module, both of which 
were closely associated with cell defense. Mitophagy 
is a metabolic process that participates in the removal 
of excessive or damaged mitochondria in eukaryotic 
cells, thus maintaining the stability of the intracellular 
microenvironment [25]. The previous study [26, 27] has 
proven that systemic sepsis or pneumonia caused by 
Staphylococcus aureus is associated with mitochondrial 
lung damage. Mitophagy is a strategy adopted by cells 
to eliminate damaged mitochondria and prevent their 
harmful byproducts, such as reactive oxygen species 
(ROS), from interfering with normal cell components 
like DNA and lipids [26, 28].

According to the GO analysis, the proteasomal protein 
catabolic process was one of the significant enrichment 
items in biological process. Proteasomal degradation 
was a crucial catabolic pathway in cells. And the up-
regulation of this process contributes to activating the 
adaptive immune system and eliminating intracellular 

Fig. 4 KEGG and GO analysis of the genes in the green module. (A) Enriched KEGG pathways of the green module. (B) GO enrichment of green 
module in Biological Process terms. (C) GO enrichment of green module in Molecular Function. (D) GO enrichment of green module in Cellular 
Component. The dot sizes represent the number of the enriched genes in the corresponding GO term, and the colors indicate the adjusted P‑value
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Fig. 5 Hub genes identification and validation. (A‑C) The modules extracted from the PPI network by the MCODE plugin. (D) The hub genes with 
the highest MCC score in the key module. (E) The expression of the hub genes in control and infection group
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pathogens [29]. In terms of molecular function, genes 
in the green module were also significantly enriched in 
ubiquitin–protein ligase binding, ubiquitin−like protein 
ligase binding, ubiquitin−protein transferase activity, 
and ubiquitin-like protein transferase activity. These all 
had a close connection with the ubiquitination process. 
Ubiquitination is a sequential process in which ubiqui-
tin binds with target proteins via enzymatic cascade and 
degrades them through proteasome or lysosome path-
ways [30, 31]. It plays an essential role in the regulation 

of immune responses and the defense against pathogens 
[32]. For example, Neumann, Yvonne, and Sakowski Erik 
reported that intracellular Staphylococcus aureus was 
ubiquitinated by the host cell shortly after the invasion 
and confused with lysosomes [33, 34]. In addition, ubiq-
uitination is crucial in mitophagy. Damaged mitochon-
dria were eliminated by binding to the ubiquitin ligase 
parkin [35].

Therefore, combining with KEGG, BP, and MF analy-
sis, we concluded that the up-regulation of the protein 

Fig. 6 Diagnostic significance ability prediction and Gene Set Enrichment Analysis of UBB. (A, B, C) ROC curve of hub genes including ASB1, 
UBB, and MKRN1. The area under the ROC curve (AUC) for each gene displayed its accuracy for differentiation of Staphylococcus aureus infection 
and healthy subjects about sensitivity and specificity. (D, E) The enriched GSEA terms with significant statistics of UBB. Based on the normalized 
enrichment scores, the top one GSEA enrichment terms in the high and low expression group of UBB
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ubiquitination pathway and mitophagy might help defend 
against Staphylococcus aureus infection.

Concerning cellular components, the vacuolar mem-
brane is the most notable enrichment result. Some stud-
ies reported that Staphylococcus aureus can survive 
phagocytosis by macrophages and neutrophils and repli-
cate in the cell as a vacuolar pathogen [36, 37]. In addi-
tion, the vacuolar pathogen can escape from vacuolar 
and replicate in the cytosol by modifying the vacuolar 
membranes, leading to a vicious cycle of host phagocyto-
sis, host cell death, and bacterial release [36]. Therefore, 
we inferred that block enzymes that modify vacuolar 
membranes, such as phospholipases, can help prevent 
bacterial escape.

Protein-protein interactions are crucial for know-
ing about biological processes in living cells [38]. We 
selected the top-five critical genes from the PPI net-
work to investigate their biological function in Staphy-
lococcus aureus infection. According to the ROC curve, 
ASB1, UBB, and MKRN1 can effectively act as potential 
diagnostic markers for distinguishing samples of Staph-
ylococcus aureus infection from healthy counterparts. 
ASB1, a member of the ASB family, acted as a positive 
regulator of NF-κB– and MAPK-mediated inflamma-
tory signaling pathways [39]. Appropriate inflammatory 
response helps immune cells fight microbial infections 
while excessive inflammatory response can damage tis-
sues and cells [40]. The study pointed that ASB1 defi-
ciency protected mice from LPS- or bacteria-induced 
death by inhibiting inflammation [39]. Therefore, 
we speculated that inhibition and down-regulation 
of ASB1 in the late stage of infection can against the 
inflammatory injury induced by Staphylococcus aureus. 
Makorin ring finger protein 1 (MKRN1) is a ubiquitin 
ligase, which is vital against viral pathogens [41]. Some 
studies displayed that the high expression of MKRN1 
can help host cells to defend against infection by induc-
ing ubiquitination of pparγ that is beneficial to M. 
tuberculosis growth [41]. However, there are few studies 
about the role of MKRN1 in the Staphylococcus aureus. 
Through the verification of the dataset GSE30119, UBB 
was also identified as a hub gene. UBB was known to 
be a vital gene that encodes ubiquitin, one of the most 
conserved proteins that play a significant role in target-
ing cellular proteins for degradation by the 26S protea-
some [42]. GSEA results revealed that the group with a 
low expression of UBB was closely associated with the 
p53 signaling pathway in Staphylococcus aureus infec-
tion. P53 is well known for its anti-cancer function and 
regulation of autophagy [43–45]. Abundant evidence 
revealed that cytosolic p53 could also disturb the pro-
cess of mitophagy through inhibitory interaction with 
Parkin, a ubiquitin E3 ligase [43, 44] Zhang, Fei pointed 

out that the upregulation of p53 inhibited mitochon-
drial translocation of Parkin and activation of Parkin’s 
E3 ubiquitin ligase, which eventually stopped cells 
from effectively removing damaged mitochondria [46]. 
Therefore, we speculate that this was a strategy for bac-
teria to avoid death.

In this study, we found that ubiquitination and 
mitophagy play important roles in defending against 
Staphylococcus aureus infection. In addition, we also 
identified some hub genes which act as regulators in 
Staphylococcus aureus infection. However, more molecu-
lar biological experiments will be needed to confirm the 
function of the identified genes.
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