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ABSTRACT SARS-CoV-2 variants of concern (VOCs) continue to pose a public health
threat which necessitates a real-time monitoring strategy to complement whole genome
sequencing. Thus, we investigated the efficacy of competitive probe RT-qPCR assays for
six mutation sites identified in SARS-CoV-2 VOCs and, after validating the assays with
synthetic RNA, performed these assays on positive saliva samples. When compared with
whole genome sequence results, the SD69-70 and ORF1aD3675-3677 assays demonstrated
93.60 and 68.00% accuracy, respectively. The SNP assays (K417T, E484K, E484Q, L452R) dem-
onstrated 99.20, 96.40, 99.60, and 96.80% accuracies, respectively. Lastly, we screened 345
positive saliva samples from 7 to 22 December 2021 using Omicron-specific mutation
assays and were able to quickly identify rapid spread of Omicron in Upstate South Carolina.
Our workflow demonstrates a novel approach for low-cost, real-time population screening
of VOCs.

IMPORTANCE SARS-CoV-2 variants of concern and their many sublineages can be character-
ized by mutations present within their genetic sequences. These mutations can provide
selective advantages such as increased transmissibility and antibody evasion, which influen-
ces public health recommendations such as mask mandates, quarantine requirements,
and treatment regimens. Our RT-qPCR workflow allows for strain identification of SARS-
CoV-2 positive saliva samples by targeting common mutation sites shared between variants
of concern and detecting single nucleotides present at the targeted location. This differen-
tial diagnostic system can quickly and effectively identify a wide array of SARS-CoV-2
strains, which can provide more informed public health surveillance strategies in the
future.

KEYWORDS COVID-19, RT-qPCR, SARS-CoV-2, variants of concern, clinical methods,
diagnostics

SARS-CoV-2 has caused more than 407 million infections and more than 5.7 million
deaths globally (1). Under neutral genetic drift conditions, SARS-CoV-2 mutates at

an estimated rate of 1 � 1023 substitution per base per year (2). While most mutations
are insignificant, some mutations provide selective advantages, such as increased transmissi-
bility and antibody evasion (3–5). Several emerging strains share common nucleotide substi-
tutions at sites that may confer advantageous phenotypic traits (6) and have been deemed
variants of concern (VOCs) by public health authorities (7).

The gold standard for differentiating variants of SARS-CoV-2 is whole genome sequenc-
ing, which provides excellent resolution of genetic information (8). However, for timely
clinical diagnostic applications, such as real-time population surveillance and treatment
recommendations, using whole genome sequencing is less feasible because it is not rou-
tinely performed in clinical laboratories (9). Additionally, diagnostic sequencing is limited
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by slow turnaround times and high cost per sample (10). This necessitates a low-cost strat-
egy for population-level surveillance of SARS-CoV-2 variants.

RT-qPCR has been used to detect population-level spread of SARS-CoV-2 VOCs, includ-
ing Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), and Delta (B.1.617.2). Alpha was initially
traced through populations via S gene target failure (11). This prompted researchers to
design assays that rely on target gene failure for detection of deletions or single nucleotide
polymorphisms (SNPs) in VOCs (12, 13). However, RT-qPCR assays featuring competitive
probes for both reference and mutation sequences increases specificity, providing a more ro-
bust strain-typing panel. Such assays have been used to detect Spike (S) deletion 69–70 along
with several SNPs characteristic of Alpha and Gamma (14). Additionally, commercially available
Spike SNP assays have been used to detect Alpha, Beta, Gamma, and Delta from specimens
originating from hospitalized individuals (15). While these assays have been validated for
extracted RNA originating from nasopharyngeal swabs, little work has demonstrated the effi-
cacy of RT-qPCR VOC detection in saliva. Saliva-based RT-qPCR has been established as an
accurate diagnostic tool comparable to traditional nasopharyngeal swab tests (16–20). Saliva
samples provide many benefits, such as room temperature storage (21), simple self-collection
of samples (22), and heat-based RNA extraction (23). Furthermore, these advantages have led
to its use for many community surveillance programs aimed at testing non-hospitalized
patients (24–28). Thus, saliva-based testing warrants examination as a SARS-CoV-2 VOC detec-
tion strategy.

Many VOCs contain advantageous genotypes that have emerged independently,
indicating that mutation site assays are an effective strategy to monitor emerging dangerous
strains (29). We chose to evaluate assays for biochemically significant mutations that also
provide differential strain typing for SARS-CoV-2 VOCs, namely, SD69-70, ORF1aD3675-3677,
K417T, E484K, E484Q, and L452R. We designed an in-house assay for SD69-70, which has
been associated with enhancement of other Spike receptor binding domain (RBD) muta-
tions to increase infectivity in strains such as B.1.1.7 (30). We also designed an assay for
ORF1aD3675-3677; although it has not been experimentally linked to improved viral fitness,
it has been used to differentiate between Beta and Gamma VOCs (12). We also evaluated
the efficacy of TaqPath assays for K417T, E484K, E484Q, and L452R in saliva. Computational
modeling has indicated that RBD residues K417, E484, and L452 are critical for increasing vi-
ral binding affinity to host cell receptors (31). K417T and K417N SNPs (32) and many substi-
tutions at E484 (33) also reduce viral susceptibility to neutralizing antibodies. Additionally,
L452R increases both structural stability and viral fusogenicity, and decreases cell-mediated
immune response (34). Conveniently, the currently circulating Omicron variant (B.1.1.529/
BA.1) harbors both L452R and SD69-70, so we used these assays to quickly identify its emer-
gence at Clemson University and the surrounding Upstate South Carolina in December
2021. All assays were validated via comparison against whole genome sequence results.

RESULTS
Analytical sensitivity and efficiency of mutation site-specific RT-qPCR assays.

We evaluated the sensitivity of the mutation site-specific RT-qPCR assays via serial 10-fold dilu-
tions of SARS-CoV-2 synthetic RNA of characteristic strains (B.1, B.1.1.7, B.1.351, P.1, B.1.617.1,
B.1.617.2). The dilution range for all assays was 4 � 10° to 4 � 106 genome copies/assay
(Table 1). We calculated RT-qPCR efficiency for both mutation and reference probes using the
equation: E = 21 1 10(21/slope). Efficiencies of the mutation probes ranged from 89.52%
to 112.04% (Table 1, other data included in Table S1 in the supplemental material). R2

values for all mutation probes were $0.9927. The limit of detection (LoD) for SD69-70
was 40 genome copies/assay. LoDs for ORF1aD3675-3677, K417T, E484K, E484Q, and
L452R were 4 genome copies/assay. LoD for the control gene (N gene) was also 4 ge-
nome copies/assay (Supplemental File 1), which is comparable to the range of detection
for saliva-based clinical assays for SARS-CoV-2 screening (16, 35, 36).

Analytical specificity of deletion assays and comparison with saliva samples.
We assessed analytical specificity by performing SD69-70 and ORF1aD3675-3677 dele-
tion assays on synthetic RNA from six characteristic SARS-CoV-2 strains at 4�104 ge-
nome copies/assay (Fig. 1). We did not observe cross-reactivity or amplification failure
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for any synthetic RNA on either assay. However, the deletion probe from ORF1aD3675-3677
produced low fluorescent output. We observed a wide range of fluorescent output from
sequenced positive saliva samples (n = 125) on both deletion assays. For both deletion
assays, samples with low viral copy number (determined by N1 Ct values) were more likely
to produce results that could not be resolved. This was especially observed in samples with
N1 Ct. 25; 9.09% of samples above this threshold failed on SD69-70, while 27.27% of sam-
ples above this threshold failed on ORF1aD3675-3677 (Supplemental File 2).

Analytical specificity of Spike SNP assays and comparison with saliva samples. We
assessed analytical specificity by performing K417T, E484K, E484Q, and L452R assays
on synthetic RNA from six characteristic SARS-CoV-2 strains at 4 � 104 genome copies/assay
(Fig. 2). We did not observe cross-reactivity for any synthetic RNA on any assay. Amplification
failure was expected and occurred for strains lacking both reference and mutation sequences
at the locus (e.g., B.1.351 lacks both alleles at K417T, B.1.351 and P.1 lack both alleles at E484Q,
and B.1.617.1 lacks both alleles at E484K), which indicates high specificity of all assays per-

FIG 1 Allelic discrimination plots of deletion assays ORF1aD3675-3677 and SD69-70. Synthetic RNA controls from six SARS-CoV-2
type strains were amplified in triplicate at 4 � 104 genome copies/assay via TaqPath RT-qPCR along with no template controls. The
deletion probe from the ORF1aD3675-3677 assay produced low intensity fluorescence. Sequenced positive saliva samples (n = 125)
were loaded in duplicate to determine the detection range of the assay in saliva. Data were plotted by using the absolute
fluorescence of each reporter dye probe.

TABLE 1 Performance of RT-qPCR deletion assays in salivaa

Genome copies/RT-qPCR assay

Mean Cq values+/- SD

SD69-70 ORF1aD3675-3677 K417T E484K E484Q L452R
4� 106 13.116 0.17 12.686 0.11 19.196 0.06 19.126 0.07 19.436 0.07 19.476 0.11
4� 105 16.336 0.04 16.216 0.09 22.276 0.27 22.106 0.04 22.616 0.02 21.206 0.67
4� 104 19.616 0.10 19.406 0.03 24.846 0.57 25.256 0.04 25.726 0.08 24.716 0.23
4� 103 23.056 0.04 22.806 0.03 29.206 0.86 28.566 0.09 29.266 0.10 27.606 0.14
4� 102 26.546 0.11 26.236 0.08 34.006 1.07 32.236 0.07 32.996 0.10 31.166 0.10
4� 101 30.056 0.15 29.326 0.14 37.146 1.58 35.246 0.26 36.216 0.11 34.486 0.08
4� 100 nd 32.356 0.44 39.856 0.83 38.566 0.33 38.646 0.15 37.066 0.42

E 97.12% 101.44% 89.52% 102.19% 101.40% 112.04%
R2 0.9997 0.9995 0.9927 0.9994 0.9979 0.9953
aLimits of detection are in bold.
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FIG 2 Allelic discrimination plots of SNP assays for Spike K417T, E484K, E484Q, and L452R. Synthetic RNA controls
from six SARS-CoV-2 type strains were amplified in triplicate at 4 � 104 genome copies/assay via TaqPath RT-qPCR
along with no template controls. Synthetic RNA strains that failed to amplify on K417T, E484K, E484Q, or L452R assays
lacked both targeted alleles. Sequenced positive saliva samples (n = 125) were loaded in duplicate to determine the
detection range of the assay in saliva. Data were plotted by using the absolute fluorescence of each reporter dye
probe.
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formed on synthetic RNA. In saliva, we observed tight clustering of fluorescent output from
sequenced positive samples (n = 125) on all SNP assays. Furthermore, of the 96 replicates that
produced an inconclusive result on individual SNP assays, 74 were due to the presence of an
alternate allele: 70 replicates containing E484K (B.1.351 and P.1 lineages) were inconclusive on
E484Q, 4 replicates containing K417N were inconclusive for K417T (B.1.351 lineage and AY.2
sublineage) (Supplemental File 3 in the supplemental material). All 96 replicates still produced
a presumptive strain identification based on the results for the other five assays.

Clinical performance of deletion assays and spike SNP assays in saliva.We compared
assay results with whole genome sequence results to determine clinical sensitivity and
specificity (Tables 2 and 3). True negatives and true positives are defined as correctly called
reference and mutation sequences, respectively. False negatives are defined as incorrectly
called reference sequences when the mutation sequence is present, and false positives are
defined as incorrectly called mutation sequences when the reference sequence is present.
Samples that produced N1 Ct values beyond the limit of detection were considered invalid.
For each assay, sample results with allele-specific Ct values above the assay limit of detection
were considered inconclusive. Furthermore, due to possible nonspecific binding in the SNP
assays, sample results with relative fluorescent output (RFU) values outside of the 99% confi-
dence interval (95% for L452R) of allele-specific RFU were also considered inconclusive
(Supplemental Files 4 and 5, logic shown in Fig. S3 in the supplemental material).

We calculated the total accuracies, individual probe accuracies, clinical sensitivity and speci-
ficity, as well as positive and negative predictive values: (%PPV and %NPV, respectively) for the
deletion assays (Table 2). The total accuracy of SD69-70 was 93.6% (95% CI: [90.57, 96.63]);

TABLE 2 Performance of deletion assays in salivaa

Assay
Screening assay
result

Whole genome
sequencing result Assay clinical analysis

Reference Deletion % Accuracy
% Clinical
sensitivity

% Clinical
specificity % PPV % NPV

SD69-70 Reference 179 0 93.60
[90.57, 96.63]

100.0
[100.0]

98.35
[96.48, 100.0]

94.83
[89.13, 100.0]

100.0
[100.0]Deletion 3 55

Inconclusive 11 2

ORF1aD3675-3677 Reference 104 0 68.00
[62.22, 73.78]

100.0
[100.0]

97.20
[94.03, 100.0]

95.65
[90.84, 100.0]

100.0
[100.0]Deletion 3 66

Inconclusive 14 63
aUpper-bound values cannot exceed 100.0%. This applies to all measurements. 95% confidence interval is represented in brackets.

TABLE 3 Performance of Spike SNP assays in salivaa

Assay
Screening
assay result

Whole genome sequencing result Assay clinical analysis

Reference Substitution Alternate % Accuracy
% Clinical
sensitivity

% Clinical
specificity % PPV % NPV

K417T Reference 176 0 0 99.20
[98.10, 100.0a]

97.30
[93.55, 100.0]

100.0
[100.0]

100.0
[100.0]

98.88
[97.33, 100.0]Substitution 0 64 0

Inconclusive 2 0 8

E484K Reference 173 0 0 96.40
[94.09, 98.71]

88.31
[80.67, 95.95]

100.0
[100.0]

100.0
[100.0]

95.05
[91.90, 98.20]Substitution 0 68 0

Inconclusive 2 7 0

E484Q Reference 179 0 0 99.60
[98.88, 100.0]

98.59
[95.83, 100.0]

100.0
[100.0]

100.0
[100.0]

99.44
[98.35, 100.0]Substitution 0 0 0

Inconclusive 1 0 70

L452R Reference 181 2 0 96.80
[94.62, 98.98]

88.41
[80.38, 96.47]

100.0
[100.0]

100.0
[100.0]

95.77
[92.90, 98.64]Substitution 0 61 0

Inconclusive 4 2 0
aUpper-bound value cannot exceed 100.0%. This applies to all measurements. 95% confidence interval is represented in brackets.
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92.68% of reference sequences and 96.49% of deletion sequences could be identified with
the associated probes. For ORF1aD3675-3677, the total accuracy was 68% (95% CI: [62.22,
73.78]); 85.95% of reference sequences and 51.16% of deletion sequences could be identified
with the associated probes. Clinical specificity was 94.82% (95% CI: [96.48, 100.0]) and 95.65%
(95% CI: [94.03, 100.0]) for SD69-70 and ORF1aD3675-3677, respectively. Clinical sensitivity for
both deletion assays was 100.0%. The N gene Ct values from the deletion assays indicated

FIG 3 Application and interpretation of differential VOC assays. (A) VOC strain typing by mutation site. Each strain will produce a different combination of
results from the six assays. Strains with an alternate allele at the mutation site will produce inconclusive results. BA.1 and BA.2 patterns were determined by
publicly available strain data. All other strain results were validated with synthetic RNA. (B) Example of strain-typing workflow using minimal steps. Saliva
samples that are determined positive by routine diagnostic testing can be analyzed with various assays that produce differential results for each VOC.
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comparable viral loads even after the samples were stored at 280°C for over 6 months
(Supplemental File 2). We also calculated the total accuracies, clinical sensitivity and specificity,
as well as positive and negative predictive values for the Spike SNP assays in saliva (Table 3).

Presumptive strain identification of positive saliva samples. Combinatorial results of
the six mutation sites we investigated can produce signature identification patterns for each
SARS-CoV-2 VOC (Fig. 3A). Consequently, we created a clinical workflow for differential strain
typing based on these mutation sites (Fig. 3B). Following assay validation, SARS-CoV-2 posi-
tive saliva samples were obtained from December 7 to 16, 2021 (n = 162). Based on current
circulating strains, we performed the L452R assay and identified 13 samples with reference
sequence at this site. We performed the SD69-70 assay on these 13 samples and identified
11 with the deletion. All 13 samples were sequenced as previously described and confirmed
to be B.1.1.529 B.1.1.529/BA.1 (Omicron). We also screened 183 additional samples from
December 17 to 22, 2021 to estimate prevalence of Omicron and identified 107 prospective
Omicron-positive saliva samples (Supplemental File 6 in the supplemental material).

DISCUSSION

SARS-CoV-2 VOCs continue to pose a significant threat to public health in the United
States, especially with the rapid spread of Delta starting in March 2021(31) and, most recently,
Omicron in early December 2021 (32). High transmission rates and the related clinical out-
comes of these VOCs necessitate affordable and expeditious public health surveillance strat-
egies. The lack of adequate and efficient SARS-CoV-2 variant surveillance has hindered the
evaluation of clinical outcomes related to VOCs (34). To address these limitations, our lab
implemented a simple VOC screening method following our established saliva-based SARS-
CoV-2 testing procedure (35). We perform weekly surveillance testing of the entire population
at Clemson University (25) and provide free testing to the surrounding community (24), which
allows for real-time monitoring of current and future VOCs.

Deletion and SNP assay analyses. We designed two standard RT-qPCR assays for
the SARS-CoV-2 deletion sites SD69-70 and ORF1aD3675-3677. The accuracy of the SD69-70
assay in saliva was 93.6% (95% CI: [90.57, 96.63]) (Table 2). Two B.1.1.7 samples produced
false negative results for both deletion assays, possibly due to nonspecific binding of both
reference probes. The accuracy of the ORF1aD3675-3677 assay was 68.0% (95% CI: [62.22,
73.78]); 85.9% of reference sequences could be successfully identified with the reference
probe, but only 51.1% of deletion sequences could be successfully identified with the dele-
tion probe. We believe this is due to the relative fluorescence intensity from the competitive
probe pair rather than binding affinity or reaction efficiency, as both probes produced repli-
cable amplification from synthetic RNA. The reference probe was tagged with the SUN fluor
(37), which produces high fluorescent output that can prevent the thermocycler from identi-
fying amplification from the weaker Cy5-tagged deletion probe. We attempted to account
for this by adjusting probe mixing ratios, but this did not improve the fluorescent output of
the Cy5 probe. Altering the probe pairing would likely improve the efficacy of this assay. We
also performed both assays using the Luna One-Step RT-qPCR System (New England
Biolabs, Ipswich, MA) but were unable to detect signal from the SUN probe for ORF1a3675-
3677 reference sequence.

We validated four TaqPath Spike SNP assays in saliva for SARS-CoV-2 substitution sites. The
accuracies of K417T, E484K, E484Q, and L452R assays were$ 96.4% (Table 3). Even in low viral
load samples, saliva does not confound the fidelity of the assays, as the targeted sequences
were accurately identified. Moreover, none of the competitive probes produced amplification
at sites with an alternate allele. We did observe low-level amplification from off-target binding
in the E484K, K417T, and L452R assays. High concentrations of minor groove binding probes
can produce background fluorescent signal (38). We could not further investigate if the probe
concentration ratio was causing background signal because the commercial kits were pre-
mixed. However, because the assays produced well-separated signal clusters, a genotype
could still be determined for samples with low-level off-target amplification.

Probe detection parameters and analysis. We determined the Ct cutoff value for
each deletion and SNP assay using the absolute quantification approach estimated from
analytical sensitivity (39) and observed inconsistencies in the deletion assay limits of
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detection. In the SD69-70 assay, the internal control probe passed the Ct threshold ear-
lier than the deletion probe across the 10-fold dilution series except for the lowest dilu-
tion, which showed a reversed relationship (4 � 10 genome copies) (Supplemental File 1
in the supplemental material). Therefore, we opted to use the lower deletion probe Ct
cutoff for the SD69-70 assay in saliva. Additionally, both assays were more likely to pro-
duce inconclusive results in saliva as the viral load decreased (indicated by N1 Ct value);
this effect was more evident in the ORF1aD3675-3677 assay (Supplemental File 2).

Limits of detection inconsistencies were not observed with the SNP assays. However,
nonspecific binding of the reference probes necessitated additional RFU cutoff parameters
(Fig. S3 in the supplemental material). For both deletion and SNP assays, we included both
a reference and mutation control to provide a suitable constant for absolute quantification
of Ct values to account for technical limitations (40). This allowed for objective regulation
of the RFU cutoff parameters to minimize investigator bias.

Public health surveillance applications. We developed an efficient strain-typing
strategy to minimize the number of reactions necessary to differentiate between all com-
mon VOCs that had been characterized up to 22 December 2021 (Fig. 3). This workflow is
flexible based on publicly available data regarding local strain composition. We demon-
strated this by monitoring SARS-CoV-2 positive samples to detect the Omicron variant from
7 to 22 December 2021 by prioritizing distinct mutation sites between Delta and Omicron
(specifically, L452R and SD69-70). We screened 345 positive samples, and we expedited 13
suspect samples for whole genome sequencing when the results did not match the estab-
lished pattern for Delta. This allowed us to confirm the presence of Omicron within days of
sample collection.

RT-qPCR screening for VOCs provided a strain composition estimate in December
2021 that allowed our public health surveillance team to adjust SARS-CoV-2 testing and health
recommendations in a time-sensitive manner. This would not have been possible solely rely-
ing on whole genome sequencing because of slow turnaround time and cost. Furthermore,
our assay set was capable of distinguishing AY.2, a subvariant of Delta, from other lineages in
the Delta clade. Taken together, these results demonstrate that our assay set is robust and
monitors an adequate number of sites to identify emerging strains. Finally, presumptive strain
identification also influenced patient treatment recommendations from our collaborating
physicians. Specifically, physicians recommended sotrovimab (41) for COVID-19 treatment, as
Delta was the predominant circulating strain at the time. Our assays indicated patient samples
were positive for Omicron, which is resistant to monoclonal antibody treatment (42). This
allowed for physicians to pursue other treatment avenues.

Although our assay workflow is robust and can identify many emerging strains, increas-
ing the number of targeted mutation sites further enhances the potential for strain differen-
tiation. Any number of assays can be used in combination to expand the workflow, and
assay order can be prioritized based on high-prevalence strains, however, it is important to
prioritize recurring mutation sites (e.g., E484) in SARS-CoV-2 VOCs (43) to maintain time- and
cost-effectiveness. To address this, we are validating Spike SNP assays for K417N, N501Y,
and G339D as these mutations have emerged independently in multiple lineages.

Expanding the assay set is also advantageous for detecting strains that contain many alter-
nate alleles at targeted mutation sites, such as BA.1 and BA.2 (Fig. 3A). If an alternate allele is
present at the target site, the specificity of minor groove binding prevents either reference or
mutation probe from binding to the sequence. Therefore, amplification does not occur for
these reactions and provides no affirmative results. We recommend assay combinations that
minimize the number of undetermined results since these are indistinguishable from assay fail-
ures without whole genome sequencing. For instance, it is better to use the E484Q assay
rather than the E484K assay to differentiate between the Kappa and Delta variants because
one of the probes will produce amplification if there is adequate viral content. Our data show
that low viral load samples have an increased likelihood to produce inconclusive results
(Supplemental File 2). Therefore, we recommend running samples that produce many unde-
termined results on an assay that targets the N gene (e.g., SD69-70 or ORF1aD3675-3677) or
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any alternative assay (16, 35, 36) to verify adequate viral load (Ct , assay limit of detection).
This eliminates the possibility of undetermined results related to poor quality samples.

Depending on cost analysis, we would also like to implement multiplexed SNP assays.
Currently, none of the assays can be multiplexed as they contain overlapping fluorophores.
However, custom minor groove binding probe sets can be modified with up to four unique
fluorophores that could provide results for two SNPs in the same reaction. Custom probes
are more expensive but can reduce the complexity of the workflow. New predictive compu-
tational tools can identify recurring mutation sites correlated to emerging strains (44, 45),
which can expedite RT-qPCR test development for real-time monitoring. Following presump-
tive identification, whole genome sequencing of select samples should still be performed to
ensure the most accurate surveillance strategy.

MATERIALS ANDMETHODS
RT-qPCR primer and probe design for deletion assays SD69-70 and ORF1aD3675-3677. Consensus

genome sequences from Alpha (EPI_ISL_710528), Beta (EPI_ISL_678597), Gamma (EPI_ISL_792683), Delta
(EPI_ISL_1544014), and a reference strain (MN908947.3) were downloaded from GenBank. Sequences were
aligned using ClustalW (SnapGene v.5.4.2) to confirm that the deletions were only present in VOCs. Validated
primer sets designed for the N gene (36), SD69-70 (12), and ORF1aD3675-3677 regions (12) matched this align-
ment. Each assay includes three probes tagged with different fluorophores: one targeting the N gene, one
targeting the reference sequence, and one targeting the deletion sequence (Table 4). Novel reference and de-
letion probes were designed with short sequences to prevent primer dimer formation in a multiplex assay for-
mat. All probes were double quenched to minimize noise and maximize endpoint fluorescence.

Optimization of deletion and SNP assays. SD69-70 and ORF1aD3675-3677 deletion assays were
performed with TaqPath 1-Step RT-qPCR kit (Thermo Fisher, Waltham MA, USA) using reactions with 4 mL of
template in a final volume of 20mL. Primers and probes were used at final concentrations of 500 nM for each
primer and 125 nM for each probe (Integrated DNA Technologies, Coralville, IA). SARS-CoV-2 TaqMan Assays
for S substitutions K417T, E484K, E484Q, and L452R were performed per manufacturer's instructions (Thermo
Fisher) with 4mL of template. Thermocycler conditions are described in Table S2 in the supplemental material.

Standard curve and limit of detection analysis.We used TWIST synthetic SARS-CoV-2 RNA control
2 (GenBank ID: MN908947.3), control 14 (GISAID ID: EPI_ISL_710528), control 16 (GISAID ID: EPI_ISL_678597),
control 17 (GISAID ID: EPI_ISL_792683), control 18 (GISAID ID: EPI_ISL_1662307), and control 23 (GISAID ID:
EPI_ISL_1544014) (Twist Biosciences, San Francisco, CA) to determine the limits of detection of the screen-
ing RT-qPCR assays. We tested a seven-fold dilution series from 1,000,000 copies/mL to 1 copy/mL for both
reference and mutation RNA controls in triplicate for each assay and confirmed that the lowest concentra-
tion was detected in all three replicates. Standard curves were created to find correlation coefficients and
determine efficiencies of each probe and primer set.

Specificity analysis. We performed all six assays on TWIST synthetic SARS-CoV-2 RNA control 2 (B),
control 14 (B.1.1.7), control 16 (B.1.351), control 17 (P.1), control 18 (B.1.617.1), and control 23 (B.1.617.2) (Twist
Biosciences, San Francisco, CA). All synthetic RNA was diluted to 10,000 copies/mL and each reaction was per-
formed in triplicate. Allelic discrimination plots were created for each assay to determine cross-reactivity of ref-
erence and mutation probes at each target site.

Whole genome sequencing. Ethical review for this study was obtained by the Institutional Review
Board of Clemson University. This study uses archived deidentified samples and data. The samples and data sets

TABLE 4 RT-qPCR assays for deletion and substitution sites in SARS-CoV-2 variants of concern

Assay Manufacturer Names and 59! 39 Sequences Fluorophore
SD69-70 IDT SD69-70

Fw primer;
TCAACTCAGGACTTGTTCTTACCT
Rv primer;
TGGTAGGACAGGGTTATCAAAC
Ref probe; Cy5668/CCATGCTAT/TAO/ACATGTCTCTGGGAC/IBRQ
Del probe; HEX/CCATGCTAT/ZEN/CTCTGGGACCAATG/IABkFQ

-a

-
Cy5
HEX

†ORF1aD3675-3677 IDT ORF1aD3675-3677
Fw primer;
TGCCTGCTAGTTGGGTGATG
Rv primer;
TGCTGTCATAAGGATTAGTAACACT
Ref probe; SUN/CTAGTTTGT/ZEN/CTGGTTTTAAGCTAA/IABkFQ
Del probe; Cy5668/GGTTGATAC/TAO/TAGTTTGAAGCTAA/IAbRQ

-

-
Cy5
SUN

K417N, E484K, L452R, E484Q ThermoFisher TaqMan Reference probeb

Substitution probeb
FAM
VIC

a-, indicates that there is no fluorophore for those entries.
bSequences are unavailable from the manufacturer.
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were stripped of patient identifiers prior to any SARS-CoV-2 sequencing and experiments for this study. Heat-
treated saliva samples were sequenced at a commercial lab (Premier Medical Laboratory Services, Greenville, SC).
RNA was extracted from saliva samples via magnetic beads (Omega Bio-Tek, Norcross, GA) and recovered SARS-
CoV-2 RNA quantity was assessed via Logix Smart Assay (Codiagnostics, Salt Lake City, UT). Samples with suffi-
cient RNA quality were processed and sequenced on either an Illumina NovaSeq 6000 or NextSeq500/550 flow
cell. Sequences were demultiplexed, assembled, and analyzed with DRAGEN COVID Lineage (Illumina, v.3.5.3).

Saliva screening. We performed all six assays in duplicate on sequenced saliva samples (n = 125) that
had greater than 95% non-N genome coverage to validate assay parameters. Saliva samples from the univer-
sity SARS-CoV-2 surveillance program (24, 25) were heat-treated to extract viral RNA and confirmed to be
SARS-CoV-2 positive via RT-qPCR (35). Due to extended storage time at 280°C for some positive samples,
sample validity was determined using N1 Ct values to account for possible degradation. Sample identifica-
tion was performed using a single-blind method and all assays were performed on all samples, removing in-
vestigator bias. We selected lineages B.1.1.7 (Alpha, n = 30), B.1.351 (Beta, n = 2), P.1 (Gamma, n = 32),
B.1.617.2/AY (Delta, n = 32), and other lineages not of concern (n = 29). We did not have any confirmed
B.1.617.1 (Kappa, n = 0) saliva samples. Five samples were excluded from analysis due to inadequate N1
amplification. GenBank accession numbers of all the sequences used to validate the assays in saliva are avail-
able in supplemental data in the supplemental material.

Statistical analysis.We calculated accuracies ([true positives1 true negatives]/sample size� 100%), clin-
ical sensitivity (true positives/[true positives1 false negatives] � 100%), clinical specificity (true negatives/[true
negatives1 false positives]� 100%), positive predictive value (PPV) (true positives/[true positives1 false posi-
tives]� 100%), and negative predictive value (NPV) (true negatives/[true negatives1 false negatives]� 100%)
of the assays using whole genome sequencing results for comparison. We also calculated 95% confidence
intervals for all measurements.

Data availability. All the data, worksheets, and standard curves used for this study are available in
the Supplemental Files. The listing of available sequences on GenBank and GISAID for each sample are
listed in Supplemental File 3, Sequenced Sample List with GenBank and GISAID Information.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, XLSX file, 0.1 MB.
SUPPLEMENTAL FILE 2, XLS file, 0.5 MB.
SUPPLEMENTAL FILE 3, XLS file, 0.1 MB.
SUPPLEMENTAL FILE 4, XLSX file, 0.2 MB.
SUPPLEMENTAL FILE 5, XLSX file, 0.3 MB.
SUPPLEMENTAL FILE 6, XLSX file, 0.03 MB.
SUPPLEMENTAL FILE 7, PDF file, 0.4 MB.
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