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ABSTRACT
Objectives: Reliable monitoring of influenza seasons
and pandemic outbreaks is essential for response
planning, but compilations of reports on detection and
prediction algorithm performance in influenza control
practice are largely missing. The aim of this study is to
perform a metanarrative review of prospective
evaluations of influenza outbreak detection and
prediction algorithms restricted settings where
authentic surveillance data have been used.
Design: The study was performed as a metanarrative
review. An electronic literature search was performed,
papers selected and qualitative and semiquantitative
content analyses were conducted. For data extraction
and interpretations, researcher triangulation was used
for quality assurance.
Results: Eight prospective evaluations were found that
used authentic surveillance data: three studies
evaluating detection and five studies evaluating
prediction. The methodological perspectives and
experiences from the evaluations were found to have
been reported in narrative formats representing
biodefence informatics and health policy research,
respectively. The biodefence informatics narrative
having an emphasis on verification of technically and
mathematically sound algorithms constituted a large
part of the reporting. Four evaluations were reported as
health policy research narratives, thus formulated in a
manner that allows the results to qualify as policy
evidence.
Conclusions: Awareness of the narrative format in
which results are reported is essential when
interpreting algorithm evaluations from an infectious
disease control practice perspective.

INTRODUCTION
Experiences from winter influenza seasons1

and the pandemic pH1N1 outbreak in 20092

suggest that existing information systems
used for detecting and predicting outbreaks
and informing situational awareness show
deficiencies when under heavy demand.
Public health specialists seek more effective
and equitable response systems, but meth-
odological problems frequently limit the use-
fulness of novel approaches.3 In these
biosurveillance systems, algorithms for

outbreak detection and prediction are essen-
tial components.4 5 Regarding outbreak
detection, characteristics influential for suc-
cessful performance include representative-
ness of data and the type and specificity of
the outbreak detection algorithm, while
influential outbreak characteristics comprise
the magnitude and shape of the signal and
the timing of the outbreak.6 After detection,
mathematical models can be used to predict
the progress of an outbreak and lead to the
identification of thresholds that determine
whether an outbreak will dissipate or develop
into an epidemic. However, it has been
pointed out that present prediction models
have often been designed for particular situa-
tions using the data that are available and
making assumptions where data are
lacking.7 8 In consequence, also biosurveil-
lance models that have been subject to evalu-
ation seldom produce output that fulfils
standard criteria for operational readiness.9

For instance, a recent scoping review of influ-
enza forecasting methods assessed studies
that validated models against independent
data.10 Use of independent data is vital for
predictive model validation, because using

Strengths and limitations of this study

▪ A metanarrative review of influenza detection and
prediction algorithm evaluations was restricted to
settings where authentic prospective data were
used.

▪ Application of a semiqualitative review method
allowed attention to be paid to critical dissimilar-
ities between narratives, for example, the learn-
ing period dilemma caused by the statistical
models used in algorithms to detect or predict
an influenza-related event must be determined in
a preceding time interval.

▪ Application of the review inclusion criteria
resulted in the exclusion of a large number of
papers. These papers may have contained add-
itional narratives, but not on the appropriate
topic.
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the same data for model fitting and testing inflates esti-
mates of predictive performance.11 The review con-
cluded that the outcomes predicted and metrics used in
validations varied considerably, which limited the possi-
bility to formulate recommendations. Building on these
experiences, we set out to perform a metanarrative
review of evaluations of influenza outbreak detection
and prediction algorithms. To ensure that the review
results can be used to inform operational readiness, we
restricted the scope to settings where authentic prospect-
ive surveillance data had been used for the evaluation.

METHODS
A metanarrative review12 was conducted to assess publica-
tions that prospectively evaluated algorithms for the
detection or short-term prediction of influenza out-
breaks based on routinely collected data. A metanarrative
review was conducted because it is suitable for addressing
the question ‘what works?’, and also to elucidate a
complex topic, highlighting the strengths and limitations
of different research approaches to that topic.13

Metanarrative reviews look at how particular research
traditions have unfolded over time and shaped the kind
of questions being asked and the methods used to
answer them. They inspect the range of approaches to
studying an issue, interpret and produce an account of
the development of these separate ‘metanarratives’ and
then form an overarching metanarrative summary. The
principles of pragmatism (inclusion criteria are guided
by what is considered to be useful to the audience), plur-
alism (the topic is illuminated from multiple perspec-
tives; only research that lacks rigour is rejected),
historicity (research traditions are described as they
unfold over time), contestation (conflicting data are
examined to generate higher order insights), reflexivity
(reviewers continually reflect on the emerging findings)
and peer review were applied in the analysis.12 Four steps
were taken: an electronic literature search was carried
out, papers were selected, data from these papers were
extracted and qualitative and semiquantitative content
analyses were conducted. For data extraction and ana-
lyses, researcher triangulation (involving several research-
ers with different backgrounds) was used as a strategy for
quality assurance. All steps were documented and
managed electronically using a database.
To be included in the review, an evaluation study had

to apply an outbreak detection or prediction algorithm
to authentic data prospectively collected to detect or
predict naturally occurring influenza outbreaks among
humans. Following the inclusive approach of the meta-
narrative review methodology, studies using clinical and
laboratory diagnosis of influenza for case verification
were included.14 For the evaluations of the prediction
algorithms, correlation analyses were also accepted,
because interventions could have been implemented
during the evaluation period. In addition, studies were
required to compare syndromic data with some gold

standard data from known outbreaks. All studies pub-
lished from 1 January 1998 to 31 January 2016 were
considered.
PubMed was searched using the following search term

combinations: ‘influenza AND ((syndromic surveillance)
OR (outbreak detection OR outbreak prediction OR
real-time prediction OR real-time estimation OR real-
time estimation of R))’. The database searches were
conducted in February 2016. Only articles and book
chapters available in the English language were selected
for further analysis. To describe the characteristics of the
selected papers, information was documented regarding
the main objective, the publication type, whether syn-
dromic data were used, country, algorithm applied and
context of application.
Information about the papers was analysed semiquan-

titatively by grouping papers with equal or similar
characteristics and by counting the number of papers
per group. In the next step, text passages, that is, sen-
tences or paragraphs containing key terms (study aims,
algorithm description and application context) were
extracted and entered into the database. If necessary,
sentences before and after a statement containing the
key terms were added to ensure that the meaning and
context were not lost. The documentation of data about
the papers and the extraction of text were conducted by
one reviewer and critically rechecked by a second
reviewer. Next, content analysis of the extracted text was
performed. The meaning of the original text was con-
densed. The condensed statements contained as much
information as necessary to adequately represent the
meaning of the text in relation to the research aim, but
were as short and simple as possible to enable straight-
forward processing. If the original text contained several
pieces of information, then a separate condensed state-
ment was created for each piece of information. To
analyse the information contained in the papers, a
coding scheme was developed inductively. Also, a seman-
tical system was developed to facilitate interpretation of
algorithm performance. Values for the area under the
curve (AUC) exceeding 0.90, 0.80 and 0.70, respectively,
were chosen to denote very strong (outstanding), strong
(excellent) and acceptable performance.15 The same
limits are used to interpret the area under the weighted
receiver operating characteristic curve (AUWROC) and
volume under the time-ROC surface (VUTROC)
metrics. Sensitivity, specificity and positive predictive
value (PPV) limits were set at 0.95, 0.90 and 0.85,
respectively, when weekly data were analysed, and 0.90,
0.85 and 0.80 when daily data were analysed, denoting
very strong (outstanding), strong (excellent) and accept-
able discriminatory performance. To interpret the
strength of correlations, limit values were modified from
the Cohen scale.16 This scale defines small, medium and
large effect sizes as 0.10, 0.30 and 0.50, respectively. The
limits for the present study were set at 0.90, 0.80 and
0.70 for analyses of weekly data, and 0.85, 0.75 and 0.65
for daily data, denoting very strong (outstanding), strong
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(excellent) and acceptable predictive performance. A
summary of the sematic system is provided in table 1.
Condensed statements could be labelled with more

than one code. The creation of the condensed state-
ments and their coding was carried out by one reviewer
and rechecked by a second reviewer. Preliminary ver-
sions were compared and agreed upon, which resulted
in final versions of the condensed statements and
coding. The information about the detection and pre-
diction algorithms was summarised qualitatively in tables
and analysed semiquantitatively on the basis of the
coding. Next analysis phase consisted of identifying the
key dimensions of algorithm evaluations, providing a
narrative account of the contribution of each dimension
and explaining conflicting findings. The resulting two
narratives (biodefence informatics and health policy
research) are presented using descriptive statistics and
narratively without quantitative pooling. In the last step,
a wider research team and policy leaders (n=11) with
backgrounds in public health, computer science, statis-
tics, social sciences and cognitive science were engaged
in a process of testing the findings against their expecta-
tions and experience, and their feedback was used to
guide further reflection and analysis. The final report
was compiled following this feedback.

RESULTS
The search identified eight studies reporting prospective
algorithm performance based on data from naturally
occurring influenza outbreaks: three studies17–19 evalu-
ated one or more outbreak detection algorithms and
five20–24 evaluated prediction algorithms (figure 1).
Regarding outbreak detection, outstanding algorithm

performance was reported from a Spanish study18 for
two versions of algorithms based on hidden Markov
models and Serfling regression (table 2). Simple regres-
sion was reported to show poor performance in this
study. The same technique displayed excellent perform-
ance on US influenza data in a study comparing algo-
rithm performances on data from two continents, as did
time-series analysis and the statistical process control
method based on cumulative sum (CUSUM).19

However, the performance of these three algorithms was

found to be poor to acceptable when applied on Hong
Kong data in the latter study.
Regarding prediction algorithms, a French study pre-

dicted national-level influenza outbreaks over 18
seasons,24 observing excellent performance for a
non-parametric time-series method in 1-week-ahead
predictions and poor performance in 10-week-ahead
predictions. A study using county-level data from the
USA22 reported outstanding predictive performance for
a Bayesian network algorithm. However, the predictions
in that study were made on days 13 and 22 of one single
ongoing outbreak. Another study using telenursing data
from a Swedish county to predict influenza outbreaks
over three seasons, including the H1N1 pandemic in
2009, showed outstanding performance for seasonal
influenza outbreaks on a daily basis and excellent per-
formance on a weekly basis.20 However, the performance
for the pandemic was poor on a daily and on a weekly
basis (see online supplementary material file).
An explanation of the apparent diversity of evaluation

methods and findings is that the methodological per-
spectives and experiences from algorithm evaluations
were reported in two distinct narrative formats. These
narrative formats can be interpreted to represent biode-
fence informatics and health policy research, respect-
ively (table 3).

The biodefence informatics narrative
Assessments informing construction of technically and
mathematically sound algorithms for outbreak detection
and prediction were reported from mathematical model-
ling and health informatics contexts. Research in these
fields was described in a biodefence informatics narra-
tive. The setting for this narrative is formative evaluation
and justification of algorithms for detection and predic-
tion of atypical outbreaks of infectious diseases and bio-
terror attacks. In other words, these studies can be said
to answer the system verification question: ‘Did we build
the system right?’25 The narrative is set in a context
where algorithms need to be modified and assured for
detection and prediction of microbiological agents with
unusual or unknown characteristics, for example, novel
influenza virus strains or anthrax.26 The number of

Table 1 Summary of semantic system used to interpret algorithm performance

Performance

Measurement Outstanding Excellent Acceptable

Outbreak detection and prediction

AUC, AUWROC, VUTROC 0.90 0.80 0.70

Sensitivity, specificity, PPV (weekly) 0.95 0.90 0.85

Sensitivity, specificity, PPV (daily) 0.90 0.85 0.80

Only outbreak prediction

Pearson’s correlation (weekly) 0.90 0.80 0.70

Pearson’s correlation (daily) 0.85 0.75 0.65

AUC, area under the curve; AUWROC, area under the weighted receiver operating characteristic curve; PPV, positive predictive value;
VUTROC, volume under the time-ROC surface.
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studies presented in the biodefence informatics narrative
grew rapidly after the terrorist attacks in 2001.27

Reporting of influenza algorithm performance in this
narrative is characterised by presentation of statistical or
technical advancements, for example, making use of
increments instead of rates or introduction of methods
based on Markov models.18 As empirical data for logical
reasons are scarce in biodefence settings, limited atten-
tion is in this narrative paid to the learning period
dilemma. This dilemma represents a generic methodo-
logical challenge in algorithm development, that is, the
statistical associations between indicative observations
and the events to be predicted are determined in one
time interval (the learning period) and used to predict
the occurrence of corresponding events in a later inter-
val (the evaluation period).28 When trying to detect or
predict a novel infectious agent, the learning period
dilemma primarily shows unavailability of learning data
for calibration of model-based algorithms. For instance,
for prediction algorithms based on the reproductive
number,29 series of learning data of sufficient length for
empirical determination of the serial interval cannot be
made available during early outbreak stages, implying
that the method cannot be used as supposed.30

Moreover, the microbiological features of the pathogen
and the environmental conditions in effect during the
learning period can change after the algorithm has
been defined, requiring adjustments of algorithm com-
ponents and parameters to be made for preserving the
predictive performance. Algorithm performance can in

the biodefence informatics be narrative verified by com-
bining prospective evaluations with formal proofs and
analyses of simulated and retrospective data. Although it
is commonly emphasised that the evaluation results are
preliminary with regard to population outcomes,22 the
evaluation results are still included in the narrative.

The health policy research narrative
For evaluation study results to qualify as input to recom-
mendations regarding infectious disease control prac-
tice, they should conform to general criteria established
for health policy evidence. The analyses must be
unbiased and not open for manipulation, for example,
the data sources and analytic models should be
described and fixed before data are accessed for ana-
lyses.31 In the corresponding research paradigm, the use
of prospective study designs is regarded as the corner-
stone in the research process.32 Correspondingly, the
studies reported in the health policy research narrative
answer the validation question: ‘Have we built the right
system for detection and prediction of influenza seasons
and outbreaks?’ Although the studies reported in this
narrative mainly used data on clinical diagnoses and
from laboratory tests, the two most recent studies also
employed syndromic data: one study used data from tele-
nursing call centres20 and the other study used data
from an internet search engine.21 In the health policy
research narrative, the foundation in real-world valid-
ation of alerts and predictions was shown, for instance,
by pointing out that usually only a small number of

Figure 1 Flow chart of the

paper selection process.

Additional reasons for exclusion

(*) included that the case

definition did not comprise at

least a clinical diagnosis of

influenza or influenza-like illness.
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Table 2 Evaluation algorithms include in the metanarrative review and their absolute and relative performance

Study Algorithm Modification Temporal Absolute performance Relative performance

Outbreak detection

Closas et al17 Kolmogorov-Smirnov test Weekly Acceptable (sensitivity 1.00;

specificity 0.88)

No comparisons

Martínez-

Beneito et al18
Markov model (hidden) V.1 Weekly Outstanding (AUWROC 0.97–

0.98)

Markov model (switching)>Markov model

(hidden)>regression (Serfling)

>CUSUM>regression (simple)

Regression (Serfling) Outstanding (AUWROC 0.93) Markov model (switching)>Markov model

(hidden)>regression (Serfling)

>CUSUM>regression (simple)

Markov model (hidden) V.2 Outstanding (AUWROC 0.93–

0.95)

Markov model (switching)>Markov model

(hidden)>regression (Serfling)

>CUSUM>regression (simple)

Regression (simple) Poor (AUWROC 0.57) Markov model (switching)>Markov model

(hidden)>regression (Serfling)

>CUSUM>regression (simple)

SPC (CUSUM) Poor (AUWROC 0.65–0.70) Markov model (switching)>Markov model

(hidden)>regression (Serfling)

>CUSUM>regression (simple)

Cowling et al19 Time series, dynamic linear

model

Different parameter combinations

tested. W represents the assumed

smoothness of the underlying

system. Range: 0.025, 0.050, 0.075

or 0.100

Weekly Hong Kong: acceptable

(VUTROC 0.77, sensitivity 1.00,

timeliness 1.40 weeks), with

fixed specificity=0.95

USA: excellent (VUTROC 0.81,

sensitivity 1.00, timeliness

0.75 weeks), with fixed

specificity=0.95

Hong Kong data: time series (dynamic

linear model)>regression (simple)>CUSUM

US data: time series (dynamic linear model)

>CUSUM>regression (simple)

Regression (simple) Different parameter combinations

tested. m represents the number of

prior weeks used to calculate the

running mean and variance.

Range: 3, 5, 7 or 9

Hong Kong: acceptable

(VUTROC 0.75, sensitivity 1.00,

timeliness 1.72 weeks), with

fixed specificity=0.95

USA: excellent (VUTROC 0.81,

sensitivity 0.90, timeliness

1.45 weeks), with fixed

specificity=0.95

Hong Kong data: time series (dynamic

linear model)>regression (simple)

>CUSUMUS data: time series (dynamic

linear model)>CUSUM>regression (simple)

SPC (CUSUM) Different parameter combinations

tested. d represents the number of

weeks t separating the baseline

and the index day of the outbreak.

Range: 2 or 3. k represents the

minimum standardised difference.

Range: 1 or 2

Hong Kong: poor (VUTROC

0.56, sensitivity 0.86, timeliness

2.00 weeks), with fixed

specificity=0.95

USA: excellent (VUTROC 0.90,

sensitivity 0.82, timeliness

1.51 weeks), with fixed

specificity=0.95

Hong Kong data: time series (dynamic

linear model)>regression (simple)

>CUSUMUS data: time series (dynamic

linear model)>CUSUM>regression (simple)

Continued

Spreco
A,Tim

pka
T.BM

J
Open

2016;6:e010683.doi:10.1136/bm
jopen-2015-010683

5

O
p
e
n
A
c
c
e
s
s



Table 2 Continued

Study Algorithm Modification Temporal Absolute performance Relative performance

Outbreak prediction

Timpka et al20 Shewhart type Daily and

weekly

Pandemic outbreak: poor (AUC

0.84; PPV 0.58) on a daily

basis and poor (at most

acceptable) (AUC 0.78; PPV

0.79) on a weekly basis

Seasonal outbreaks:

outstanding (AUC 0.89; PPV

0.93) on a daily basis and

excellent (AUC 0.83; PPV 1.00)

on a weekly basis

No comparisons

Yuan et al21 Multiple linear regression Monthly NA. Limits not defined for the

adjusted metrics of residuals

used (APE)

No comparisons

Jiang et al22 Bayesian network Daily Outstanding (r=0.97, prediction

on day 13; r=0.94, prediction on

day 22)

No comparisons

Burkom et al23 Regression (log-linear,

non-adaptive)

Non-adaptive Daily NA. Limits not defined for the

adjusted metrics of residuals

used (MAD, MedAPE)

Ten series of case count data:

Holt-Winters>regression (log-linear,

adaptive)>regression (log-linear,

non-adaptive)

Regression (log-linear,

adaptive)

Adaptive Ten series of case count data:

Holt-Winters>regression (log-linear,

adaptive)>regression (log-linear,

non-adaptive)

Holt-Winters (generalised

exponential smoothing)

Ten series of case count data:

Holt-Winters>regression (log-linear,

adaptive)>regression (log-linear,

non-adaptive)

Viboud et al24 Method of analogues

(non-parametric time-series

forecasting method)

Weekly From poor (r=0.66, for

10-week-ahead prediction) to

excellent (r=0.81, for

1-week-ahead prediction)

Method of analogues>autoregressive model

(linear)>Stone’s naive method

Autoregressive model

(linear)

From poor (r=–0.07, for

10-week-ahead prediction) to

acceptable (r=0.73, for

1-week-ahead prediction)

Method of analogues>autoregressive model

(linear)>Stone’s naive method

The naive method Poor (r=–0.09, for

10-week-ahead prediction;

r=0.65, for 1-week-ahead

prediction)

Method of analogues>autoregressive model

(linear)>Stone’s naive method

APE, absolute percentage error; AUC, area under the curve; AUWROC, area under the weighted receiver operating characteristic curve; CUSUM, cumulative sum; MAD, median absolute
residual; MedAPE, median absolute percentage error; NA, not applicable; PPV, positive predictive value; SPC, statistical process control; VUTROC, volume under the time-ROC surface.
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annual infectious disease cycles of data are available for
evaluations of new algorithms, leading to a constant lack
of evidence-based information on which to base policy.19

It was also shown by that space was provided for discus-
sions regarding whether algorithms would yield worse
performances when outbreak conditions change, for
example, that pandemic incidences are higher than
those recorded during interpandemic periods.20 24

Moreover, evaluations presented in the health policy
research narrative highlight the quantitative strength of
the research evidence. For instance, in the study report-
ing excellent predictive performance of a non-
parametric time-series method,24 the evaluation period
lasted 938 weeks and covered an entire nation. In com-
parison, a prospective study reported in the biodefence
informatics narrative accounted for an evaluation of a
Bayesian network model22 that lasted 26 weeks and
covered one US county.

DISCUSSION
In a metanarrative review of studies evaluating the pro-
spective performance of influenza outbreak detection
and prediction algorithms, we found that methodo-
logical perspectives and experiences have, over time,
been reported in two narratives, representing biode-
fence informatics and health policy discourse, respect-
ively. Differences between the narratives are found in
elements ranging from the evaluation settings and end
point measures used to the structure of the argument.
The biodefence informatics narrative, having an
emphasis on verification of technically and mathematic-
ally sound algorithms, originates from the need to
rapidly respond to evolving outbreaks of influenza pan-
demics and agents disseminated in bioterror attacks.
Only more recently, studies presented in the biodefence
informatics narrative have been directed to common
public health problems, such as seasonal influenza and
air pollution.33 Although evidence-based practices have
been promoted by public health agencies during the
period the assessed studies were published,34 only four
prospective evaluations of influenza detection and pre-
diction algorithms were reported as a health policy
research narrative. However, despite being scarce for
influenza, algorithm evaluations emphasising real-world
validation of algorithm performance are relatively

common for several other infectious diseases, for
example, dengue fever.35 One reason for not choosing
to report evaluations of influenza detection and predic-
tion algorithms in the health policy narrative may be
that the urgent quest for knowledge in association with
atypical influenza outbreaks has led to an acceptance of
evaluation accounts with limited empirical grounding.
These accounts agree with mathematical and engineer-
ing research practices in biodefence informatics and are
thus accepted as scientific evidence within those
domains. This implies that awareness of the narrative
format in which evidence is reported is essential when
interpreting algorithm evaluations.
This study has methodological strengths and limita-

tions that need to be taken into account when interpret-
ing the results. A strength is that it was based on a
metanarrative review. This is a relatively new method of
systematic analyses of published literature, designed for
topics that have been conceptualised differently and
studied by different groups of researchers.36 We found
that in a historical perspective, researchers from differ-
ent paradigms have evaluated algorithms for influenza
outbreak detection and prediction with different means
and purposes. Some researchers have conceptualised
algorithm evaluations as an engineering discipline,
others as a subarea of epidemiology. The intention was
not to conclude recommendations for algorithm use.
Instead, the aim was to summarise different perspectives
on algorithm development and reporting in overarching
narratives, highlighting what different researchers might
learn from one another’s approaches. Regarding the
limitations of the review, it must be taken into consider-
ation that the ambition was to base the narrative analysis
on evaluations with relevance for operational readiness
and real-world application. There is a possibility that we
failed to identify some relevant evaluations due to the
absence of specific indexing terms for infection disease
detection and prediction methods and that we excluded
studies that were not indexed in research databases.
However, we believe that the probability that we missed
relevant evaluations for these reasons is low. We initially
identified 1084 studies out of which 116 had relevant
abstracts. Following examination of the corresponding
articles, the majority had to be excluded from the final
review because they did not fulfil the inclusion criteria
at the detailed level (figure 1). One overall

Table 3 Summary of narrative characteristics

Narrative Storyline

Intended

audience*

Learning

period

dilemma

Theoretical

proofs

Population

descriptions

End point

measures

Biodefence

informatics17 18 22 23
System

verification

Engineers and

modellers

Irregular

attention

Included in

argument

Summary Various

statistical

Health policy

research19–21 24
System

validation

Policymakers Binding

attention

Excluded Extensive Standard

epidemiological

*In addition to researchers.
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interpretation of this finding is that more research activ-
ity had been associated with developing detection and
prediction algorithms than evaluating them and care-
fully reporting the results. For instance, a large number
of interesting studies had to be excluded because non-
prospective data were used for the evaluations, for
example, the models were developed from learning data
and evaluated against out-of-sample verification data
from the same set using a leave-one-season-out
approach.37 38 Regarding prediction algorithms,
numerous potentially interesting studies were excluded
because they did not report standard evaluation metrics.
One example is a prospective Japanese study of
predictions conducted during the pandemic outbreak
in 2009, which reported only descriptive results.39

We found no prospective algorithm evaluations that
applied an integrated outbreak detection and prediction.
An Australian study applied an algorithm including
detection and prediction functions,40 but this study used
simulated data for the evaluation. Nonetheless, the eligi-
bility criteria applied in this review accepted syndromic
definitions of influenza as the gold standard, that is, spe-
cified sets of symptoms not requiring laboratory confirm-
ation for diagnosis.41 If laboratory-confirmed diagnosis of
influenza would have been included in the criteria,
almost no studies would have qualified for inclusion in
the review.
In summary, two narratives for reporting influenza

detection and prediction algorithm evaluations have
been identified. In the biodefence informatics narrative,
technical and mathematical verification of algorithms is
described, while the health policy narrative is employed
to allow conclusions to be drawn about public health
policy. A main dissimilarity between the narratives is the
attention paid to the learning period dilemma. This
dilemma represents a generic methodological challenge
in the development of biosurveillance algorithms; the
statistical models used to detect or predict an
influenza-related event must be determined in a preced-
ing time interval (the learning period). This means that
there is always a shortage of time when algorithms for
novel infectious diseases are to be validated in real-world
settings. We offer two suggestions for future research
and development based on these results. First, a
sequence of evaluation research phases interconnected
by a translation process should be defined, starting from
theoretical research on construction of new algorithms
in the biodefence informatics setting and proceeding
stepwise to prospective field trials performed as health
policy research. In the latter setting, the evaluation study
design should be registered in an international trial
database, such as ClinicalTrials.gov, before the start of
prospective data collection. Second, standardised and
transparent reporting criteria should be formulated for
all types of algorithm evaluation research. The recent
development of consensus statements for evaluations of
prognostic models in clinical epidemiology42 can here
be used as a reference.
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