
ll
OPEN ACCESS
Protocol
A beginner’s guide to assembling a draft
genome and analyzing structural variants with
long-read sequencing technologies
Jun Kim, Chuna Kim

dauer@snu.ac.kr (J.K.)

kimchuna@kribb.re.kr

(C.K.)

Highlights

Hands-on protocol

for users who are new

to long-read genome

assembly

A guide to long-read

genome assembly,

structural variant

calling, and gene

annotation

Covers three widely

used long-read data

types of PacBio and

ONT

Analysis and

visualization using

publicly available

Drosophila

melanogaster data
Advances in long-read DNA sequencing technologies have enabled researchers to obtain high-

quality genomes and finely resolve structural variants (SVs) in many species, even from small

laboratories. The hands-on protocol presented here will guide you through the process of

analyzing three different types of publicly available Drosophila melanogaster datasets obtained

using current long-read sequencing technologies. We hope that this protocol will help in guiding

researchers who are new to the process of long-read sequencing analysis.

Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional

guidelines for laboratory safety and ethics.

Kim & Kim, STAR Protocols 3,

101506

September 16, 2022 ª 2022

The Author(s).

https://doi.org/10.1016/

j.xpro.2022.101506

mailto:dauer@snu.ac.kr
mailto:kimchuna@kribb.re.kr
https://doi.org/10.1016/j.xpro.2022.101506
https://doi.org/10.1016/j.xpro.2022.101506
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xpro.2022.101506&domain=pdf

Protocol

A beginner’s guide to assembling a draft genome and
analyzing structural variants with long-read sequencing
technologies

Jun Kim1,3,* and Chuna Kim2,4,*

1Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Korea

2Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea

3Technical contact

4Lead contact

*Correspondence: dauer@snu.ac.kr (J.K.), kimchuna@kribb.re.kr (C.K.)
https://doi.org/10.1016/j.xpro.2022.101506

SUMMARY

Advances in long-read DNA sequencing technologies have enabled researchers
to obtain high-quality genomes and finely resolve structural variants (SVs) in
many species, even from small laboratories. The hands-on protocol presented
here will guide you through the process of analyzing three different types of pub-
licly available Drosophila melanogaster datasets obtained using current long-
read sequencing technologies. We hope that this protocol will help in guiding re-
searchers who are new to the process of long-read sequencing analysis.

BEFORE YOU BEGIN

One of the biggest goals in the genomics field is to obtain the complete genomes and genetic var-

iants of all living organisms. Next-generation sequencing (NGS) technology has made an enormous

contribution to our understanding of the relationship between single-nucleotide polymorphisms

(SNPs) and various biological phenomena, including cancer, other disease, and evolution. However,

variant calling is highly dependent on the quality of the reference genome as it begins with the map-

ping of NGS reads onto the reference. Furthermore, because of NGS technology’s short read

lengths (�200 bp), it is difficult to precisely analyze large structural variants (SVs) and genetic variants

in repetitive genomic regions, and it remains a challenge to assemble high-quality de novo assem-

bled genomes using NGS alone.

Advances in long-read sequencing technology have solved these problems by providing highly ac-

curate (>Q20) or ultra-long (�1Mb) reads at reasonable costs (Jain et al., 2018; Wenger et al., 2019).

Now, using long-read sequencing technology, any genome of any species can be easily assembled,

and their SVs can be easily detected. Thus, several consortia, including the Earth BioGenome Proj-

ect, Darwin Tree of Life Project, and Telomere-to-Telomere (T2T) consortium, have taken this as an

opportunity to provide all eukaryotic genomes on Earth or complete the human genome (The Dar-

win Tree of Life Project Consortium, 2022; Lewin et al., 2018; Nurk et al., 2022). Furthermore,

because costs have been dramatically reduced, it is now possible to obtain high-quality de novo

genome assemblies and SV information even in any laboratories.

Here, we present a step-by-step analysis of long-read DNA sequencing, which includes the software

installation, genome assembly, quality assessment, SV calling, and gene annotation (Figure 1). We

covered all widely used long-read platforms (Pacific Biosciences continuous long-read and high-fi-

delity long-read sequencing as well as Oxford Nanopore Technologies long-read sequencing). This

hands-on protocol covers the entire process, from public data acquisition to output interpretation;

STAR Protocols 3, 101506, September 16, 2022 ª 2022 The Author(s).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

ll
OPEN ACCESS

mailto:dauer@snu.ac.kr
mailto:kimchuna@kribb.re.kr
https://doi.org/10.1016/j.xpro.2022.101506
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xpro.2022.101506&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

thus, even novice researchers will be able to understand the methodology. We also provided a brief

explanation for each step to ensure that as many researchers as possible will be able to understand

and apply the steps.

Before you begin, the following are the general conventions used for code chunks: # denotes a non-

executable comment; the shebang (#!) specifies whether the script is a bash script or an R script. Both

types of script can be saved as a file by copying and pasting them in a text editor, such as vim or

nano, and the file can then be run in your terminal with the following command: bash filename or

Rscript filename. If the first line of the code chunk does not contain a shebang and begins with >,

the code chunk can be executed directly from your terminal. You should copy and paste the code

chunk without the > symbol. The timing presented in this protocol is the time spent using the Linux

workstation described in the key resources table. The analysis time may vary depending on the com-

puter environment used and its specifications.

Preparing a conda environment

Timing: 10 min

1. Conda is an open-source environment management system. Miniconda is a minimal installer for

Conda. It can run on Windows Subsystem for Linux (WSL), macOS, and Linux.

a. To download and install Miniconda, go to https://docs.conda.io/en/latest/miniconda.

html#latest-miniconda-installer-links. The current pipeline was executed on a high-perfor-

mance workstation running the Ubuntu operating system (key resources table).

2. In your terminal window, run the following commands sequentially:

Figure 1. Workflows for analyzing long-read DNA sequencing data

Download lastest Miniconda3

> wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

> chmod +x Miniconda3-latest-Linux-x86_64.sh

> bash Miniconda3-latest-Linux-x86_64.sh

ll
OPEN ACCESS

2 STAR Protocols 3, 101506, September 16, 2022

Protocol

https://docs.conda.io/en/latest/miniconda.html
https://docs.conda.io/en/latest/miniconda.html
https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

Install the required packages in the conda environment

Timing: 10 min

3. Users should install the required packages in the assembly environment (listed in the key re-

sources table). They can be downloaded through Bioconda (https://anaconda.org/bioconda).

conda install is the command required to install packages.

a. Install the packages needed for the analysis:

Press ENTER to read its license, and then enter yes to agree with it

Specify the path to install your conda

We used the latest miniconda; python 3.9.5, conda version 4.11.0

Add the conda to your PATH environment variable

> </path_to_your_conda>/bin/conda init

> source �/.bashrc

You can see that your command line has been changed to display ‘‘(base)’’

e.g.,(base) username@hostname:�$

if (base) doesn’t appear even after running ‘‘source�/.bashrc’’, then restart your terminal

prompt

> conda update -n base -c defaults conda

> conda config –add channels conda-forge

> conda config –add channels bioconda

> conda create -n assembly

> conda activate assembly

The ‘‘(base)’’ should be changed to ‘‘(assembly)’’

e.g.,(assembly) username@hostname:�$

You can deactivate your conda environment using

> conda deactivate

We recommend that you create a conda environment using the specified versions of the following

packages to avoid package dependency issues

> conda install -c bioconda kat=2.4.1

> conda install -c bioconda trinity=2.13.2

> conda install -c bioconda assembly-stats bioawk shasta canu hifiasm

> conda install -c bioconda hisat2

> conda install -c conda-forge -c bioconda busco=5.2.2

> conda install -c bioconda ragtag

> conda install -c bioconda svim svim-asm

ll
OPEN ACCESS

STAR Protocols 3, 101506, September 16, 2022 3

Protocol

https://anaconda.org/bioconda

Download the required public datasets

Timing: 1 h

4. When using datasets from public repositories, such as the Sequence Read Archive (SRA) and Eu-

ropean Nucleotide Archive (ENA), the download bash scripts can be easily created from SRA ex-

plorer (https://sra-explorer.info/) using the accession number of SRA and ENA.

a. Using the accession number listed in the key resources table, create bash scripts to download

the sequence files from the SRA explorer website.

b. Download the public datasets required for this pipeline using the below Bash scripts:

KEY RESOURCES TABLE

#!/usr/bin/env bash

curl -L ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR130/025/SRR13070625/SRR13070625_1.fastq.gz -o SRR13070625_Nanopore_

sequencing_of_Drosophila_melanogaster_whole_adult_flies_pooled_male_and_female_1.fastq.gz

curl -L ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR124/080/SRR12473480/SRR12473480_subreads.fastq.gz -o SRR12473480_

Drosophila_PacBio_HiFi_UltraLow_subreads.fastq.gz

curl -L ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR120/022/SRR12099722/SRR12099722_1.fastq.gz -o SRR12099722_WGS_

Drosophila_melanogaster_adult_ISCs_1.fastq.gz

curl -L ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR120/022/SRR12099722/SRR12099722_2.fastq.gz -o SRR12099722_WGS_

Drosophila_melanogaster_adult_ISCs_2.fastq.gz

curl -L ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR119/025/SRR11906525/SRR11906525_subreads.fastq.gz -o SRR11906525_

WGS_of_drosophila_melanogaster_female_adult_subreads.fastq.gz

curl -L ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR151/042/SRR15130842/SRR15130842_1.fastq.gz -o SRR15130842_

GSM5452672_Control_CM2_Drosophila_melanogaster_RNA-Seq_1.fastq.gz

curl -L ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR151/042/SRR15130842/SRR15130842_2.fastq.gz -o SRR15130842_

GSM5452672_Control_CM2_Drosophila_melanogaster_RNA-Seq_2.fastq.gz

curl -L ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR151/041/SRR15130841/SRR15130841_1.fastq.gz -o SRR15130841_

GSM5452671_Control_CM1_Drosophila_melanogaster_RNA-Seq_1.fastq.gz

curl -L ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR151/041/SRR15130841/SRR15130841_2.fastq.gz -o SRR15130841_

GSM5452671_Control_CM1_Drosophila_melanogaster_RNA-Seq_2.fastq.gz

Download Drosophila melanogaster genome version r6.44 (released Jan 2022)

> wget http://ftp.flybase.net/genomes/Drosophila_melanogaster/dmel_r6.44_FB2022_01/fasta/dmel-all-chromosome-r6.

44.fasta.gz

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Drosophila melanogaster reference genome FlyBase Genome version: r6.44 (http://ftp.flybase.net/genomes/
Drosophila_melanogaster/dmel_r6.44_FB2022_01/fasta/
dmel-all-chromosome-r6.44.fasta.gz)

Drosophila melanogaster; Short-read RNA-Seq NCBI Gene Expression
Omnibus

Accession number: GSM5452671 (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSM5452671)
Accession number: GSM5452672 (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSM5452672)

Drosophila melanogaster adult ISCs; Short-read
whole-genome sequencing

Sequence Read Archive Accession number: SRX8624462 (https://www.ncbi.nlm.nih.
gov/sra/?term=SRX8624462)

(Continued on next page)

ll
OPEN ACCESS

4 STAR Protocols 3, 101506, September 16, 2022

Protocol

https://sra-explorer.info/
http://ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR130/025/SRR13070625/SRR13070625_1.fastq.gz%20-o%20SRR13070625_Nanopore_sequencing_of_Drosophila_melanogaster_whole_adult_flies_pooled_male_and_female_1.fastq.gz
http://ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR130/025/SRR13070625/SRR13070625_1.fastq.gz%20-o%20SRR13070625_Nanopore_sequencing_of_Drosophila_melanogaster_whole_adult_flies_pooled_male_and_female_1.fastq.gz
http://ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR124/080/SRR12473480/SRR12473480_subreads.fastq.gz%20-o%20SRR12473480_Drosophila_PacBio_HiFi_UltraLow_subreads.fastq.gz
http://ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR124/080/SRR12473480/SRR12473480_subreads.fastq.gz%20-o%20SRR12473480_Drosophila_PacBio_HiFi_UltraLow_subreads.fastq.gz
http://ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR120/022/SRR12099722/SRR12099722_1.fastq.gz%20-o%20SRR12099722_WGS_Drosophila_melanogaster_adult_ISCs_1.fastq.gz
http://ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR120/022/SRR12099722/SRR12099722_1.fastq.gz%20-o%20SRR12099722_WGS_Drosophila_melanogaster_adult_ISCs_1.fastq.gz
http://ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR120/022/SRR12099722/SRR12099722_2.fastq.gz%20-o%20SRR12099722_WGS_Drosophila_melanogaster_adult_ISCs_2.fastq.gz
http://ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR120/022/SRR12099722/SRR12099722_2.fastq.gz%20-o%20SRR12099722_WGS_Drosophila_melanogaster_adult_ISCs_2.fastq.gz
http://ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR119/025/SRR11906525/SRR11906525_subreads.fastq.gz%20-o%20SRR11906525_WGS_of_drosophila_melanogaster_female_adult_subreads.fastq.gz
http://ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR119/025/SRR11906525/SRR11906525_subreads.fastq.gz%20-o%20SRR11906525_WGS_of_drosophila_melanogaster_female_adult_subreads.fastq.gz
http://ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR151/042/SRR15130842/SRR15130842_1.fastq.gz%20-o%20SRR15130842_GSM5452672_Control_CM2_Drosophila_melanogaster_RNA-Seq_1.fastq.gz
http://ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR151/042/SRR15130842/SRR15130842_1.fastq.gz%20-o%20SRR15130842_GSM5452672_Control_CM2_Drosophila_melanogaster_RNA-Seq_1.fastq.gz
http://ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR151/042/SRR15130842/SRR15130842_2.fastq.gz%20-o%20SRR15130842_GSM5452672_Control_CM2_Drosophila_melanogaster_RNA-Seq_2.fastq.gz
http://ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR151/042/SRR15130842/SRR15130842_2.fastq.gz%20-o%20SRR15130842_GSM5452672_Control_CM2_Drosophila_melanogaster_RNA-Seq_2.fastq.gz
http://ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR151/041/SRR15130841/SRR15130841_1.fastq.gz%20-o%20SRR15130841_GSM5452671_Control_CM1_Drosophila_melanogaster_RNA-Seq_1.fastq.gz
http://ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR151/041/SRR15130841/SRR15130841_1.fastq.gz%20-o%20SRR15130841_GSM5452671_Control_CM1_Drosophila_melanogaster_RNA-Seq_1.fastq.gz
http://ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR151/041/SRR15130841/SRR15130841_2.fastq.gz%20-o%20SRR15130841_GSM5452671_Control_CM1_Drosophila_melanogaster_RNA-Seq_2.fastq.gz
http://ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR151/041/SRR15130841/SRR15130841_2.fastq.gz%20-o%20SRR15130841_GSM5452671_Control_CM1_Drosophila_melanogaster_RNA-Seq_2.fastq.gz
http://ftp.flybase.net/genomes/Drosophila_melanogaster/dmel_r6.44_FB2022_01/fasta/dmel-all-chromosome-r6.44.fasta.gz
http://ftp.flybase.net/genomes/Drosophila_melanogaster/dmel_r6.44_FB2022_01/fasta/dmel-all-chromosome-r6.44.fasta.gz
http://ftp.flybase.net/genomes/Drosophila_melanogaster/dmel_r6.44_FB2022_01/fasta/dmel-all-chromosome-r6.44.fasta.gz
http://ftp.flybase.net/genomes/Drosophila_melanogaster/dmel_r6.44_FB2022_01/fasta/dmel-all-chromosome-r6.44.fasta.gz
http://ftp.flybase.net/genomes/Drosophila_melanogaster/dmel_r6.44_FB2022_01/fasta/dmel-all-chromosome-r6.44.fasta.gz
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM5452671
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM5452671
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM5452672
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM5452672
https://www.ncbi.nlm.nih.gov/sra/?term=SRX8624462
https://www.ncbi.nlm.nih.gov/sra/?term=SRX8624462

STEP-BY-STEP METHOD DETAILS

Visualizing read-length distribution

Timing: 1 h

The continuous long-read (CLR) mode of Pacific Biosciences (PacBio) or Oxford Nanopore Technol-

ogies (ONT) will generate reads of varying sizes, thus necessitating the use of statistics to determine

whether or not the sequencing was successful. It is important to visualize read-length distributions

and ensure that your reads were properly generated. N50, a read- or contig-length distribution sta-

tistic, can be used for assessing the read-length quality. N50 is the shortest read or contig length

obtained when the cumulative length of the longest read or contig length equals 50% of the total

read or assembly length. We present scripts to visualize the read-length distributions of the three

long-read datasets.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Drosophila melanogaster: female adult; PacBio CLR Sequence Read Archive Accession number: SRX8453114 (https://www.ncbi.nlm.nih.
gov/sra/?term=SRX8453114)

Drosophila melanogaster F1 females from A4 X
ISO1 cross; PacBio HiFi UltraLow

Sequence Read Archive Accession number: SRX8967562 (https://www.ncbi.nlm.nih.
gov/sra/?term=SRX8967562)

Drosophila melanogaster: whole adult flies, pooled
male and female; ONT SQK-LSK109+R9.4.1

Sequence Read Archive Accession number: SRX9518233 (https://www.ncbi.nlm.nih.
gov/sra/?term=SRX9518233)

Software and algorithms

Bioawk v1.0 (Li, 2017) https://github.com/lh3/bioawk

Assembly-stats v1.0.1 (Wellcome Sanger Institute
Pathogen Informatics, 2020)

https://doi.org/10.5281/zenodo.322347

KAT v2.4.1 (Mapleson et al., 2017) https://github.com/TGAC/KAT

Trinitiy v2.13.2 (Grabherr et al., 2011) https://github.com/trinityrnaseq/trinityrnaseq

HISAT2 v2.2.1 (Kim et al., 2019b) https://daehwankimlab.github.io/hisat2/

SAMtools v1.12 (Li et al., 2009) http://www.htslib.org/

Shasta v0.8.0 (Shafin et al., 2020) https://github.com/chanzuckerberg/shasta

Canu v2.2 (Koren et al., 2017) https://github.com/marbl/canu

Hifiasm v0.16.1 (Cheng et al., 2021) https://github.com/chhylp123/hifiasm

BUSCO v5.2.2 (Manni et al., 2021) https://busco.ezlab.org/

RagTag v2.1.0 (Alonge et al., 2021) https://github.com/malonge/RagTag

Minimap2 v2.23 (Li, 2021) https://github.com/lh3/minimap2

SyRi v1.4 (Goel et al., 2019) https://schneebergerlab.github.io/syri/

SVIM v1.4.2 (Heller and Vingron, 2019) https://github.com/eldariont/svim

SVIM-asm v1.0.2 (Heller and Vingron, 2020) https://github.com/eldariont/svim-asm

RepeatMasker 4.1.0 (Smit et al., 2013–2015) https://www.repeatmasker.org/

RepeatModeler 2.0.1 (Smit and Hubley, 2008–
2015)

https://www.repeatmasker.org/

BRAKER version 2.1.5 (Hoff et al., 2016) https://github.com/Gaius-Augustus/BRAKER

R software v4.0.5 (R Core Team, 2013) https://www.r-project.org/

RStudio v1.4.1106 (RStudio Team, 2020) https://rstudio.com/

ggplot2 package v3.3.5 (Wickham et al., 2016) https://ggplot2.tidyverse.org/

Tidyverse package v1.3.1 (Wickham et al., 2019) https://www.tidyverse.org/

Reshape2 package v1.4.4 (Wickham, 2007) https://cran.r-project.org/web/packages/reshape2/
index.html

Dplyr package v1.0.7 (Wickham et al., 2021) https://dplyr.tidyverse.org/

Cowplot package v1.1.1 (Wilke, 2019) https://cran.r-project.org/web/packages/cowplot/
vignettes/introduction.html

Other

Hardware: Intel Xeon Gold 6226 processor (12
core), 384-GB RAM, and Ubuntu version 18.04.5

N/A N/A

ll
OPEN ACCESS

STAR Protocols 3, 101506, September 16, 2022 5

Protocol

https://www.ncbi.nlm.nih.gov/sra/?term=SRX8453114
https://www.ncbi.nlm.nih.gov/sra/?term=SRX8453114
https://www.ncbi.nlm.nih.gov/sra/?term=SRX8967562
https://www.ncbi.nlm.nih.gov/sra/?term=SRX8967562
https://www.ncbi.nlm.nih.gov/sra/?term=SRX9518233
https://www.ncbi.nlm.nih.gov/sra/?term=SRX9518233
https://github.com/lh3/bioawk
https://doi.org/10.5281/zenodo.322347
https://github.com/TGAC/KAT
https://github.com/trinityrnaseq/trinityrnaseq
https://daehwankimlab.github.io/hisat2/
http://www.htslib.org/
https://github.com/chanzuckerberg/shasta
https://github.com/marbl/canu
https://github.com/chhylp123/hifiasm
https://busco.ezlab.org/
https://github.com/malonge/RagTag
https://github.com/lh3/minimap2
https://schneebergerlab.github.io/syri/
https://github.com/eldariont/svim
https://github.com/eldariont/svim-asm
https://www.repeatmasker.org/
https://www.repeatmasker.org/
https://github.com/Gaius-Augustus/BRAKER
https://www.r-project.org/
https://rstudio.com/
https://ggplot2.tidyverse.org/
https://www.tidyverse.org/
https://cran.r-project.org/web/packages/reshape2/index.html
https://cran.r-project.org/web/packages/reshape2/index.html
https://dplyr.tidyverse.org/
https://cran.r-project.org/web/packages/cowplot/vignettes/introduction.html
https://cran.r-project.org/web/packages/cowplot/vignettes/introduction.html

Note: The following scripts contain seven symbols, such as ‘, ’, ", ‘, ’, ‘‘, and ’’. These seven

symbols appear similar to each other; however, they serve distinct functions in a script. To

accurately use the scripts, please do not copy and paste them in MS Word; otherwise,

Word may automatically transform one symbol into another, and the script may not function

at all.

1. Run the following scripts in your terminal to create a read-length table:

2. Visualize the read-length distribution data using R ggplot2. Save this script as a new file and run it,

or type the following script directly into R or Rstudio. The output will be similar to that presented

in Figure 2A:

#!/usr/bin/env bash

Create a new file and generate a header line

echo "platform,length" > length.csv

Add each read length into the length.csv file.

bioawk -c fastx ’{print "PacBio_CLR," length($seq)}’ SRR11906525_WGS_of_drosophila_mela-

nogaster_female_adult_subreads.fastq.gz >> length.csv

bioawk -c fastx ’{print "PacBio_HiFi," length($seq)}’ SRR12473480_Drosophila_PacBio_Hi-

Fi_UltraLow_subreads.fastq.gz >> length.csv

bioawk -c fastx ’{print "ONT," length($seq)}’ SRR13070625_1.fastq.gz >> length.csv

Figure 2. De novo genome assembly read-length distribution and quality assessment

(A) Read-length distributions of the three publicly available datasets used in this study. Each vertical dotted line represents the mean value of each

dataset.

(B) Cumulative coverage plot for the contig/scaffold length.

(C) BUSCO analysis used to determine the number of single-copy orthologs known in a lineage.

ll
OPEN ACCESS

6 STAR Protocols 3, 101506, September 16, 2022

Protocol

#!/usr/bin/env Rscript

Please specify your working directory using setwd

setwd("/path/to/Input_CSV_file")

library(ggplot2)

library(dplyr)

library(cowplot)

Import the read-length distribution table

read_length_df <- read.csv("length.csv")

Organize the imported read-length table

You can replace the level arguments for your platform, species, or strains

read_length_df$platform <- as.factor(read_length_df$platform)

read_length_df$platform <- factor(read_length_df$platform,level = c("PacBio_CLR",

"PacBio_HiFi","ONT"))

Calculate the average read-lengths for each platform

summary_df <- ddply(read_length_df, "platform", summarise, grp.mean=mean(length))

Draw a read-length distribution plot for all reads

total.length.plot <- ggplot(read_length_df, aes(x=length, fill=platform, color=plat

form)) +

geom_histogram(binwidth=100, alpha=0.5, position="dodge") +

geom_vline(data=summary_df, aes(xintercept=grp.mean, color=platform), linetype="-

dashed", size =0.2) +

scale_x_continuous(labels = comma) +

scale_y_continuous(labels = comma) +

labs(x = "Read length (bp)", y = "Count") +

theme_bw()

Draw a read-length distribution plot for reads % 20 kb in length

20 kb.length.plot <- ggplot(read_length_df, aes(x=length, fill=platform, color=platform)) +

geom_histogram(binwidth=50, alpha=0.5, position="dodge") +

geom_vline(data=summary_df, aes(xintercept=grp.mean, color=platform), linetype=

"dashed", size=0.2) +

scale_x_continuous(labels = comma, limit = c(0,20000)) +

scale_y_continuous(labels = comma) +

labs(x = "Read length (bp)", y = "Count") +

theme_bw()

Merge both the read-length distribution plots

plot <- plot_grid(total.length.plot, 20 kb.length.plot, ncol = 1)

Save the figure using the file name, ‘‘read.length.pdf’’

pdf("read.length.pdf",width=6,height=8,paper=’special’)

print(plot)

dev.off()

ll
OPEN ACCESS

STAR Protocols 3, 101506, September 16, 2022 7

Protocol

3. Calculate N50 statistics using assembly-stats. You can save or type this script in your terminal to

run it:

#!/usr/bin/env bash

Unzipped FASTA/Q files are required for assembly-stats

You can unzip your fastq.gz files using the command ‘‘gzip -d file_name.fastq.gz’’

For general usage, specify the read or contig file names after ‘‘assembly-stats’’

Calculate summary stats and save the output as an ‘‘N50_stat’’ file

assembly-stats SRR11906525_WGS_of_drosophila_melanogaster_female_adult_subreads.fastq

>> N50_stat

assembly-stats SRR12473480_Drosophila_PacBio_HiFi_UltraLow_subreads.fastq >> N50_stat

assembly-stats SRR13070625_1.fastq >> N50_stat

You can see the output of assembly-stats by typing ‘‘cat N50_stat’’ in your terminal

> cat N50_stat

The following is the output of ‘‘cat N50_stat’’ command (result of assembly-stats)

stats for SRR11906525_WGS_of_drosophila_melanogaster_female_adult_subreads.fastq

sum = 12016661679, n = 1437524, ave = 8359.28, largest = 99345

N50 = 13094, n = 321336

N60 = 11342, n = 419876

N70 = 9489, n = 535376

N80 = 7388, n = 678061

N90 = 4902, n = 874814

N100 = 50, n = 1437524

N_count = 0

Gaps = 0

stats for SRR12473480_Drosophila_PacBio_HiFi_UltraLow_subreads.fastq

sum = 25600110705, n = 2301518, ave = 11123.14, largest = 26462

N50 = 11151, n = 976954

N60 = 10586, n = 1212627

N70 = 10055, n = 1460775

N80 = 9530, n = 1722273

N90 = 8996, n = 1998694

N100 = 369, n = 2301518

N_count = 0

Gaps = 0

stats for SRR13070625_1.fastq

ll
OPEN ACCESS

8 STAR Protocols 3, 101506, September 16, 2022

Protocol

Note: For the PacBio CLR mode and ONT, high-quality DNA would have >10-kb N50 read

lengths, and a high-quality genome assembly would have >1-Mb N50 contig lengths (Kim

et al., 2019a, 2020, 2021).

Approximate genome-size estimation

Timing: 5 h

This part of the protocol is required when generating data for a novel species. After estimating the

genome size, you can determine the required sequencing throughput for your species. A high-qual-

ity genome assembly necessitates more than 203 sequencing coverage. We propose three meth-

odologies that can be employed depending on the situation. You can skip this step if you are

analyzing public datasets.

4. The estimated genome size of your species can be found in public databases:

a. Animal: Animal Genome Size Database (http://www.genomesize.com/index.php)

b. Plant: Plant DNA C-values Database (https://cvalues.science.kew.org/

5. If you have short-read DNA sequencing data, the k-mer-based genome size estimation can be

applied:

sum = 7133020037, n = 640215, ave = 11141.60, largest = 417450

N50 = 21491, n = 83878

N60 = 16642, n = 121685

N70 = 12824, n = 170598

N80 = 9526, n = 235039

N90 = 6112, n = 327186

N100 = 1, n = 640215

N_count = 0

Gaps = 0

#!/usr/bin/env bash

KAT is a toolkit for addressing assembly completeness through k-mer counts (Mapleson et al.,

2017)

More information about KAT in: https://github.com/TGAC/KAT

You can use the short-read DNA sequencing data provided in the Key Resource Table (Accession

number: SRX8624462) to run the following script

You need to provide the file path to the sequencing data or run this script in the same folder

where the sequencing data is saved

kat hist -o prefix -t 10 SRR12099722* 1> kat.output.txt

echo dme_size >> genome_size.txt

grep -i "Estimated" kat.output.txt >> genome_size.txt

hist: a kat module for drawing histograms and estimating genome size

-o: output prefix; you can specify ‘‘prefix’’ for your species or strain names

ll
OPEN ACCESS

STAR Protocols 3, 101506, September 16, 2022 9

Protocol

http://www.genomesize.com/index.php
https://cvalues.science.kew.org/
https://github.com/TGAC/KAT

6. Calculate the transcript-based coverage using short-read DNA/RNA sequencing data.

CRITICAL: For an accurate estimation, high-quality transcriptome assembly is required.

a. Conduct de novo transcriptome assembly using Trinity (Grabherr et al., 2011):

You can check the kat output by typing ‘‘cat genome_size.txt’’ in your terminal

> cat genome_size.txt

Genome size can be estimated using the short-read DNA sequencing data

dme_size

Estimated genome size: 166.18 Mbp

Estimated heterozygous rate: 0.41%

-t: the number of threads that will be used to run the kat program

You can replace SRR12099722* with your short-read DNA sequencing data# You can replace dme_-

size with the name of your species

#!/usr/bin/env bash

Trinitiy is a package for conducting de novo transcriptome assembly from RNA-seq data

For more information: https://github.com/trinityrnaseq/trinityrnaseq/wiki

You can use the short-read RNA sequencing data provided in the Key Resource Table (Accession

number: GSM5452671, GSM5452672) to run the following script

You need to provide the file path to the sequencing data or run this script in the same folder

where the sequencing data are saved

Trinity –seqType fq –max_memory 120G –left /home/assembly/analysis/00_STARprotocol/

SRR15130841_GSM5452671_Control_CM1_Drosophila_melanogaster_RNA-Seq_1.fastq.gz,/home/

assembly/analysis/00_STARprotocol/SRR15130842_GSM5452672_Control_CM2_Drosophila_

melanogaster_RNA-Seq_1.fastq.gz –right /home/assembly/analysis/00_STARprotocol/

SRR15130841_GSM5452671_Control_CM1_Drosophila_melanogaster_RNA-Seq_2.fastq.gz,/home/

assembly/analysis/00_STARprotocol/SRR15130842_GSM5452672_Control_CM2_Drosophila_mela-

nogaster_RNA-Seq_2.fastq.gz –CPU 8 –output Dmel.trinity

–seqType: sequence type; as short-read sequencing data are typically present in the FASTQ

format, you can specify this as ‘‘fq’’

–max_memory: maximum memory required to run the Trinity. ‘‘120G’’ indicates 120 GB

–left and –right: input files required for trinity analysis. Currently, short-read

sequencing is mainly performed in a ‘‘paired-end’’ mode. Each DNA molecule is sequenced at

both the ends, producing two paired files. You should specify one as ‘‘–left’’ and the other as

‘‘—right’’

–CPU: the number of threads required for Trinity analysis

–output: output prefix

Trinity output should be in the ‘‘Dmel.trinity’’ (or ‘‘your_species_trinity’’) folder

Assembled transcript FASTA file will be ‘‘Dmel.trinity.Trinity.fasta’’ (or

‘‘your_species_trinity.Trinity.fasta’’)

ll
OPEN ACCESS

10 STAR Protocols 3, 101506, September 16, 2022

Protocol

https://github.com/trinityrnaseq/trinityrnaseq/wiki

b. Map the short DNA reads to the transcriptome using HISAT2:

You can assess the assembled quality of transcriptomes using assembly-stat

> assembly-stats Dmel.trinity.Trinity.fasta

The following is the output of the ‘‘assembly-stats Dmel.trinity.Trinity.fasta’’ command

(result of assembly-stats)

stats for Dmel.trinity.Trinity.fasta

sum = 72662995, n = 67038, ave = 1083.91, largest = 27780

N50 = 2454, n = 8357

N60 = 1816, n = 11781

N70 = 1180, n = 16695

N80 = 653, n = 25022

N90 = 364, n = 40185

N100 = 201, n = 67038

N_count = 0

Gaps = 0

#!/usr/bin/env bash

HISAT2 was used to map DNA sequencing reads to the assembled transcripts, and SAMtools was

used to process the alignment data

For more information about HISAT2: http://daehwankimlab.github.io/hisat2/

HISAT2 ref: https://www.nature.com/articles/s41587-019-0201-4

For more information about SAMtools: http://www.htslib.org/

SAMtools ref: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2723002/

Index your assembled transcript FASTA file using the prefix ‘‘Dmel’’

hisat2-build Dmel.trinity.fa Dmel

Map your short-read DNA sequences to the assembled transcript using the index

You can use the short-read DNA sequencing data provided in the Key Resource Table (Accession

number: SRX8624462) to run the following script

You need to provide the file path to the sequencing data or run this script in the same folder

where the sequencing data are saved

hisat2 -x Dmel -p 10 -1 SRR12099722*_1* -2 SRR12099722*_2* –very-sensitive | samtools sort -@

10 -o Dmel.very_sensitive.bam

For HISAT2, the parameters are as follows:

-x: index prefix

-p: the number of threads required by HISAT2

-1 and -2: paired-end files; you can change the name of your sequencing data

–very-sensitive: sensitivity option

For SAMtools, the parameters are as follows:

ll
OPEN ACCESS

STAR Protocols 3, 101506, September 16, 2022 11

Protocol

http://daehwankimlab.github.io/hisat2/
https://www.nature.com/articles/s41587-019-0201-4
http://www.htslib.org/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2723002/

c. Estimate the genome size:

Long-read sequencing-based genome assembly

Timing: 1 day for step 7

Timing: 1.5 day for step 8

Timing: 30 min for step 9

Long-read sequencing data are now typically produced using PacBio or the ONT sequencing tech-

nology. Here, we summarize the assembly method when using PacBio’s two data types, i.e., CLR and

high-fidelity (HiFi) modes, as well as ONT’s Long data type. You can select one of the 7–9 scripts ac-

cording to your data type:

7. PacBio CLR data type:

After running the preceding script, the following result will be displayed in your terminal

Estimated genome size = 185.04 Mb

sort: SAMtools module to sort the mapped read information

-@: the number of threads required by SAMtools

-o: output file name

Index your read mapping file

samtools index Dmel.very_sensitive.bam

#!/usr/bin/env bash

Calculate average coverage of each transcript

samtools coverage Dmel.very_sensitive.bam | awk ’{print $7}’ | tail -n +2 | grep -vw "0" | awk

’{sum+=$1}END{print sum/NR}’ > average.coverage.txt

coverage: SAMtools module to calculate the coverage of each transcript (or contig, scaffold,

etc.)

awk ’{print $7}’: select the coverage column in the output of SAMtools coverage

tail -n +2: remove the header line

grep -vw "0": remove ‘‘0’’ coverage rows

awk ’{sum+=$1}END{print sum/NR}’: calculate the average coverage with non-zero values

Calculate the total read length of the DNA sequencing file

bioawk -c fastx ’{sum+=length($seq)}END{print sum}’ SRR12099722_WGS_Drosophila_

melanogaster_adult_ISCs_1.fastq.gz > total.read.length.txt

Estimate the genome size

paste average.coverage.txt total.read.length.txt | awk ’{print "Estimated genome size = "

$2*2/$1/1000000 " Mb"}’

ll
OPEN ACCESS

12 STAR Protocols 3, 101506, September 16, 2022

Protocol

8. PacBio HiFi data type:

a. Construct a genome using the hifiasm assembler (Cheng et al., 2021), which is dedicated to

the HiFi data type:

b. Convert the GFA file to a typical FASTA file:

Typically, canu assembler (Koren et al., 2017) will use as much as CPU and memory resources in your

computer

You can use the PacBio CLR data provided in the Key Resource Table (Accession number:

SRX8453114) to run the following command

> canu -p Dmel -d Dmel genomeSize=170 m -pacbio SRR11906525_WGS_of_drosophila_

melanogaster_female_adult_subreads.fastq.gz

-p: output prefix

-d: directory where Canu will run

genomeSize=: estimated genome size of your species

-pacbio: name of your platform

For more information about Canu: https://github.com/marbl/canu

You can check the assembly statistics of the canu assembler using assembly-stats

> assembly-stats Dmel.contigs.fasta

After running the preceding command, the assembly statistics of the Canu assembler will be

displayed on your terminal

stats for Dmel.contigs.fasta

sum = 141740149, n = 452, ave = 313584.40, largest = 23607911

N50 = 9177974, n = 5

N60 = 5147831, n = 7

N70 = 4576628, n = 9

N80 = 2051575, n = 15

N90 = 187381, n = 39

N100 = 1381, n = 452

N_count = 0

Gaps = 0

You can use the PacBio HiFi data provided in Key Resource Table (Accession number:

SRX8967562) to run the following command

> hifiasm -o Dmel -t 20 ../SRR12473480_Drosophila_PacBio_HiFi_UltraLow_subreads.fastq.gz

-o: output prefix

-t: the number of threads

For more information about hifiasm: https://github.com/chhylp123/hifiasm

ll
OPEN ACCESS

STAR Protocols 3, 101506, September 16, 2022 13

Protocol

https://github.com/marbl/canu
https://github.com/chhylp123/hifiasm

Note: The HiFi sequencing data used in this guide were generated using ultra-low input DNA;

thus, these data significantly differ from typical HiFi data with sufficient input DNA. PacBio HiFi

data are typically generated through a strict size selection, with an average quality > Q30. The

HiFi read-length distribution will be 15–20 kb, and HiFi data for diploid genome assembly are

typically superior to CLR data in terms of phasing, contiguity, and computation time. Because

of the high accuracy of the process, diploid variants can be resolved and phased more easily,

and the correction step required for CLR data can be omitted for HiFi data.

9. ONT Long data type:

You can check assembly statistics of the hifiasm assembler using assembly-stats

> assembly-stats Dmel.bp.hap1.p_ctg.fa

After running the preceding command, the assembly statistics of the hifiasm assembler will be

displayed on your terminal

stats for Dmel.bp.hap1.p_ctg.fa

sum = 168692738, n = 654, ave = 257939.97, largest = 24502687

N50 = 4127200, n = 10

N60 = 2167675, n = 15

N70 = 1125434, n = 26

N80 = 496545, n = 50

N90 = 79880, n = 130

N100 = 9867, n = 654

N_count = 0

Gaps = 0

Shasta (Shafin et al., 2020) is a long-read sequencing assembler which works efficiently on ONT

data. Raw-read FASTQ files should be unzipped for Shasta assembler

You can use the ONT Long data provided in Key Resource Table (Accession number: SRX9518233) to

run the following command

Unzip your ONT raw-read FASTQ file

> gzip -d SRR13070625_1.fastq.gz

Run shasta to assemble the reads into contigs

> shasta –config Nanopore-Oct2021 –threads 8 –input SRR13070625_1.fastq

–config: configuration options

–threads: the number of threads required by Shasta

–input: input file name; the file should be unzipped

For more information about Shasta: https://github.com/chanzuckerberg/shasta

You can check assembly statistics of the shasta assembler using assembly-stats

> assembly-stats Assembly.fasta

After running the preceding command, assembly statistics of the shasta assembler will be dis-

played on your terminalstats for Assembly.fasta

sum = 133002022, n = 208, ave = 639432.80, largest = 27938801

ll
OPEN ACCESS

14 STAR Protocols 3, 101506, September 16, 2022

Protocol

https://github.com/chanzuckerberg/shasta

Quality assessment

Timing: 10 min for step 10

Timing: 20 min/sample for step 11

Timing: 10 min/sample for step 12

The quality of a de novo assembled genome can be determined according to the contiguity of its

contigs, which can be determined by the length of contigs and identification of universal single-

copy ortholog genes. Furthermore, if a high-quality reference genome exists for the species you

have assembled, the quality can be evaluated using a comparison to your own genome.

10. Produce a coverage plot.

This cumulative coverage plot depicts contig-length distributions. Contig lengths are sorted in

descending order, and the proportion of each contig length to its total genome assembly length is

calculated. Their cumulative sum is shown on the x-axis, and the length of the corresponding contig

is presented on the y-axis. Based on the definition of N50, each horizontal line that crosses the vertical

line in each assembly can be interpreted as N50, which allows different assemblies to be visually

compared.

a. Conduct preprocessing:

N50 = 18567724, n = 3

N60 = 15335596, n = 4

N70 = 6235146, n = 6

N80 = 5092624, n = 8

N90 = 917306, n = 13

N100 = 21, n = 208

N_count = 0

Gaps = 0

#!/usr/bin/env bash

This script will create the coverage table required to obtain the cumulative graph

STRAIN1=Hifi_Dmel # Specify your species or strain name

REF1=/path/to/Hifi_Dmel.bp.hap1.p_ctg.fa # should be changed for your genome file path

TYPE1=contig # Specify your genome assembly type, such as contig, scaffold, chromosome, etc.

LEN1=‘bioawk -c fastx ’{sum+=length($seq)}END{print sum}’ $REF1‘ # Size of assembled genome

Create the output file having a header line

echo "line,length,type,coverage" > length.csv

Calculate cumulative sum and write result to the output file (HiFi data)

cat $REF1 | bioawk -c fastx -v line="$STRAIN1" ’{print line","length($seq)","length($seq)}’

| sort -k3rV -t "," | awk -F "," -v len="$LEN1" -v type="$TYPE1" ’OFS=","{ print $1,$2,

type,(sum+0)/len; sum+=$3 }’ >> length.csv

ll
OPEN ACCESS

STAR Protocols 3, 101506, September 16, 2022 15

Protocol

b. Make a cumulative graph. Save this script as a new file and run it, or type the

following script directly into R or RStudio. The output will be similar to that presented in

Figure 2B:

Calculate cumulative sum and write result to the output file (CLR data)

STRAIN2=CLR_Dmel

REF2=/path/to/CLR_Dmel.contigs.fasta # should be changed your genome name

TYPE2=contig

LEN2=‘bioawk -c fastx ’{sum+=length($seq)}END{print sum}’ $REF2‘

cat $REF2 | bioawk -c fastx -v line="$STRAIN2" ’{print line","length($seq)","length($seq)}’

| sort -k3rV -t "," | awk -F "," -v len="$LEN2" -v type="$TYPE2" ’OFS=","{ print

$1,$2,type,(sum+0)/len; sum+=$3 }’ >> length.csv

Calculate cumulative sum and write result to the output file (ONT data)

STRAIN3=ONT_Dmel

REF3=/path/to/ONT_Assembly.fasta # should be changed your genome name

TYPE3=contig

LEN3=‘bioawk -c fastx ’{sum+=length($seq)}END{print sum}’ $REF3‘

cat $REF3 | bioawk -c fastx -v line="$STRAIN3" ’{print line","length($seq)","length($seq)}’

| sort -k3rV -t "," | awk -F "," -v len="$LEN3" -v type="$TYPE3" ’OFS=","{ print

$1,$2,type,(sum+0)/len; sum+=$3 }’ >> length.csv

#!/usr/bin/env Rscript

setwd("/path/to/Input_CSV_file")

library(ggplot2)

Import the cumulative sum table

contig_cumulative_sum_df <- read.csv("length.csv", header = TRUE)

Organize the table

contig_cumulative_sum_df$type <- factor(contig_cumulative_sum_df$type, levels=c("scaf-

fold", "contig")) # or any other assembly types

Create a plot for cumulative sum

plot <- ggplot(data=contig_cumulative_sum_df, aes(x=coverage, y=length/1000000,

color=line)) +

geom_vline(xintercept = 0.5, linetype="dotted", size=0.5) +

xlim(0, 1) +

geom_step(aes(linetype=type)) +

labs(x = "Cumulative coverage", y = "Length (Mb)")

Save the plot as a ‘‘coverage.pdf’’ file

pdf("coverage.pdf",width=4,height=3,paper=’special’)

print(plot)

dev.off()

ll
OPEN ACCESS

16 STAR Protocols 3, 101506, September 16, 2022

Protocol

11. Perform Benchmarking Universal Single-Copy Orthologs (BUSCO) analysis (Manni et al., 2021).

BUSCO analysis determines whether well-known single-copy orthologs in specific lineages are

correctly assembled or fragmented in contigs of a genome assembly. In a more contiguous genome

assembly, complete BUSCO values would be higher.

a. Select the specific lineage of your species among the following datasets:

b. Run the BUSCO analysis:

c. Parse the BUSCO output results:

> busco –list-datasets

For more information about BUSCO: https://busco.ezlab.org/

#!/usr/bin/env bash

for assembly in ‘ls ../*fasta*‘;do

name=$(basename -s .fasta $assembly)

busco -i $assembly -c 10 -o $name -m genome -l diptera_odb10

done

-c 10: number of threads to run BUSCO

-m genome: mode of BUSCO

-l diptera_odb10: lineage-specific dataset name selected in the list generated by the ‘‘busco

–list-datasets’’ command

For general usage, use this script:

> busco -i assembly.fasta -o species_name -m genome -l your_lineage

#!/usr/bin/env bash

BUSCO will measure the quality of single copy orthologs in four different categories: ‘‘com-

plete and single-copy,’’ ‘‘complete and duplicated,’’ ‘‘fragmented,’’ and ‘‘missing.’’ This

script will parse the number of data points in each of the categories to create a boxplot

Create the BUSCO output file having a header line

echo "Strain,Complete_single_copy,Complete_duplicated,Fragmented,Missing" > busco.csv

Extract the count for each BUSCO category (CLR data)

PREFIX1=CLR_Dmel.contigs

(S) represents ‘‘complete and single-copy’’

cat $PREFIX1/short*.txt | grep "(S)" | awk -v strain="$PREFIX1" ’{print strain",

"$1}’ > complete_single.txt

(D) represents complete and duplicated

cat $PREFIX1/short*.txt | grep "(D)" | awk ’{print $1}’ > complete_duplicated.txt

(F) represents ‘‘fragmented’’

cat $PREFIX1/short*.txt | grep "(F)" | awk ’{print $1}’ > fragmented.txt

(M) represents ‘‘missing’’

cat $PREFIX1/short*.txt | grep "(M)" | awk ’{print $1}’ > missing.txt

ll
OPEN ACCESS

STAR Protocols 3, 101506, September 16, 2022 17

Protocol

https://busco.ezlab.org/

d. Visualize the results using the following R script:

paste -d "," complete_single.txt complete_duplicated.txt fragmented.txt missing.txt >>

busco.csv

Extract the count for each BUSCO category (HiFi data)

PREFIX2=Hifi_Dmel.bp.hap1.p_ctg

cat $PREFIX2/short*.txt | grep "(S)" | awk -v strain="$PREFIX2" ’{print strain",

"$1}’ > complete_single.txt

cat $PREFIX2/short*.txt | grep "(D)" | awk ’{print $1}’ > complete_duplicated.txt

cat $PREFIX2/short*.txt | grep "(F)" | awk ’{print $1}’ > fragmented.txt

cat $PREFIX2/short*.txt | grep "(M)" | awk ’{print $1}’ > missing.txt

paste -d "," complete_single.txt complete_duplicated.txt fragmented.txt missing.txt >>

busco.csv

Extract the count for each BUSCO category (ONT data)

PREFIX3=ONT_Assembly

cat $PREFIX3/short*.txt | grep "(S)" | awk -v strain="$PREFIX3" ’{print strain",

"$1}’ > complete_single.txt

cat $PREFIX3/short*.txt | grep "(D)" | awk ’{print $1}’ > complete_duplicated.txt

cat $PREFIX3/short*.txt | grep "(F)" | awk ’{print $1}’ > fragmented.txt

cat $PREFIX3/short*.txt | grep "(M)" | awk ’{print $1}’ > missing.txt

paste -d "," complete_single.txt complete_duplicated.txt fragmented.txt missing.txt >>

busco.csv

Delete temporary files

rm complete_single.txt complete_duplicated.txt fragmented.txt missing.txt

You can check the table summarizing BUSCO output in your terminal

> cat busco.csv

After running the preceding command, BUSCO result will be displayed in your terminal

Strain,Complete_single_copy,Complete_duplicated,Fragmented,Missing # Header

CLR_Dmel.contigs,3228,13,18,26

Hifi_Dmel.bp.hap1.p_ctg,3140,81,16,48

ONT_Assembly,2989,7,153,136

#!/usr/bin/env Rscript

setwd("/path/to/Input_CSV_file")

library(ggplot2)

library(reshape2)

library(tidyverse)

Import the BUSCO table

busco_df <- read.csv("busco.csv", header = TRUE)

ll
OPEN ACCESS

18 STAR Protocols 3, 101506, September 16, 2022

Protocol

12. Compare your genome with the reference genome. This step is highly recommended if a chro-

mosome-level reference genome is available.

If a chromosome-level genome assembly is already available, you can connect your contigs into

larger chunks using homology between your contigs and the chromosomes. Such larger chunks

with unidentified gaps are referred to as ‘‘scaffolds.’’

a. Make the scaffolds using RagTag (Alonge et al., 2021):

b. Prepare genomic FASTA files, which have common chromosomes, to compare synteny be-

tween a chromosome-level reference genome (reference genome) and your scaffolds

(RagTag output):

Organize and rearrange the imported table

busco_df$Strain <- as.factor(busco_df$Strain)

busco_df.melted <- melt(busco_df, id.vars = "Strain")

busco_df.melted$variable <-relevel(busco_df.melted$variable, "Missing")

Create a stacked bar plot for the BUSCO outputs

busco_plot <- ggplot(busco_df.melted, aes(x=Strain, fill=fct_rev(variable), y=value)) +

geom_bar(position= "stack", width = 0.7, stat="identity") +

labs(x = "Strain", y = "BUSCO", fill = "Type") +

scale_y_continuous(labels=comma) +

theme_bw() +

theme(axis.text.x = element_text(angle=45, hjust=1, size = 12), axis.text.y = element_-

text(size = 12), axis.title=element_text(size=12))

Save the plot as ‘‘busco.pdf’’

pdf("busco.pdf",width=8,height=5,paper=’special’)

print(busco_plot)

dev.off()

#!/usr/bin/env bash

for assembly in ‘ls ../*fasta*‘;do

ref=/path/to/reference/dmel-all-chromosome-r6.44.fasta

name=$(basename -s .fasta $assembly)

ragtag.py scaffold -t 10 -u -o $name $ref $assembly

done

-t: the number of threads required by RagTag

-u: add a suffix to all unscaffolded contigs

-o: output folder name

Final output scaffolds should be saved in ‘‘$name/ragtag.scaffold.fasta’’

For general usage, you can use this script:

> ragtag.py scaffold -u -o output_folder_name reference.fasta your_assembly.fasta

For more information about RagTag: https://github.com/malonge/RagTag

ll
OPEN ACCESS

STAR Protocols 3, 101506, September 16, 2022 19

Protocol

https://github.com/malonge/RagTag

c. Perform whole-genome alignment using minimap2 (Li, 2021):

d. Make a conda environment for synteny analysis using SyRi (Goel et al., 2019):

#!/usr/bin/env bash

#1. Remove RagTag identifier from the header of scaffold

for scaffold in ‘ls ../ragtag.*‘;do

name=$(basename -s .scaffold.fasta $scaffold)

sed ’s/_RagTag//’ $scaffold > ${name}_rename.scaffold.fasta

done

#2. Only chromosomes with the same name should be left in both genomic FASTA files

chromosome.name.list.txt: The names of the chromosomes to be compared are contained in this

file

for i in ‘cat chromosome.name.list.txt‘; do

cat chromosome-level_genome_assembly.fa | bioawk -c fastx -v chr="$i" ’$name==chr{print

">chr"$name; print $seq}’ >> reference_chromosome.fa

cat ragtag.scaffold.fasta | bioawk -c fastx -v chr="$i" ’$name==chr{print ">chr"$name;

print $seq}’ >> your_scaffold.fa

done

To run the preceding script, the chromosome.name.list.txt file should be provided

Example of chromosome name list file contain main chromosomes of Drosophila melanogaster

> cat chromosome.name.list.txt’’

Standard output of ‘‘cat chromosome.name.list.txt’’

By copying and pasting the result below, you can create chromosome.name.list.txt file

2L

2R

3L

3R

4

X

Y

> minimap2 -a -x asm5 –eqx reference_chromosome.fa your_scaffold.fa > syri.sam

-a: output will be saved as the SAM format

-x asm5: preset for aligning two assemblies with �0.1% sequence divergence

–eqx: contain =/X CIGAR strings

For more information about minimap2: https://github.com/lh3/minimap2

ll
OPEN ACCESS

20 STAR Protocols 3, 101506, September 16, 2022

Protocol

https://github.com/lh3/minimap2

Note: Currently, SyRi only works with Python 3.5 version.

e. Run SyRi to visualize the synteny information:

Discovery of structural variation

Timing: 10 min/sample

Structural variations (SVs) are genetic variants that differ in size by R50 bp from the reference

genome. Long-read sequencing technologies out-perform short-read sequencing ones in terms

of SV accuracy and specificity owing to their larger read size.

At the time of writing, SyRi only functions in Python 3.5, so you should specify the Python

version that conda will employ

> conda create -n syri python=3.5

Activate the environment for SyRi

> conda activate syri

Install dependencies for SyRi

> conda install cython numpy scipy pandas=0.23.4 biopython psutil matplotlib=3.0.0

> conda install -c conda-forge python-igraph

> conda install -c bioconda pysam

Then download SyRi version 1.4 and unzip the downloaded file

> wget https://github.com/schneebergerlab/syri/archive/refs/tags/v1.4.tar.gz

> tar -xzf v1.4.tar.gz

> cd syri-1.4

Install SyRi

> python setup.py install

Let the SyRi command executable

> chmod +x syri/bin/syri

For more information about SyRi: https://schneebergerlab.github.io/syri/

#!/usr/bin/env bash

#1. Run SyRi

python /path/to/syri-1.4/syri/bin/syri -c syri.sam -r chromosome-level_genome_assem-

bly.fa -q your_scaffold.fa -k -F S

-k: keep intermediate files; you can turn off this option

-F S: input file is in the SAM (S) format

#2. Visualizing genomic alignments predicted by SyRi

python /path/to/syri-1.4/syri/bin/plotsr syri.out chromosome-level_genome_assembly.fa

your_scaffold.fa -H 8

-H: Specify the height of the plot

ll
OPEN ACCESS

STAR Protocols 3, 101506, September 16, 2022 21

Protocol

https://github.com/schneebergerlab/syri/archive/refs/tags/v1.4.tar.gz
https://schneebergerlab.github.io/syri/

Twomethods are available for calling SVs: read-based SV calling and assembly-based SV calling. For

read-based SV calling, you should map your long reads to a reference genome before calling SVs

using the mapping information. For assembly-based SV calling, you should align your genome as-

sembly to a reference genome before calling SVs. Assembly-based SV calling is typically more ac-

curate than read-based SV calling because most of the read errors are corrected during genome as-

sembly; however, it requires significantly greater sequencing read depth because de novo genome

assembly requires �203 coverage.

SVIM (Heller and Vingron, 2019) and SVIM-asm (Heller and Vingron, 2020) are sister SV callers devel-

oped for read- and assembly-based SV calling, respectively. Both SV callers are simple to install and

easy to run. If you have low-depth read data, use SVIM; if you have high-depth read data and the

corresponding genome assembly, use SVIM-asm. Smaller variants can be determined by both

SVIM and SVIM-asm using the ‘‘–min sv size’’ option; for example, ‘‘–min sv size 5’’ to call R5-bp

variants.

13. Modify the SVIM and SVIM-asm figure output options:

14. Conduct read-based SV calling using SVIM:

First, you should find your path to SVIM_plot.py for SVIM

> whereis svim | sed ’s\/bin/svim\/lib/python3.*/site-packages/svim/SVIM_plot.py\;

s\svim: \\’

Example result of the above code: /home/assembly/miniconda3/envs/assembly/lib/python3.*/

site-packages/svim/SVIM_plot.py

for SVIM-asm

> whereis svim-asm | sed ’s\/bin/svim-asm\/lib/python3.*/site-packages/svim_asm/

SVIM_plot.py\; s\svim-asm: \\’

Example result of the above code: /home/assembly/miniconda3/envs/assembly/lib/python3.*/

site-packages/svim_asm/SVIM_plot.py

check the printed path and replace "png" to "pdf"

> sed -i ’s/png/pdf/’ /path/to/envs/env_name/lib/python3.*/site-packages/svim/SVIM_

plot.py # for SVIM

> sed -i ’s/png/pdf/’ /path/to/envs/env_name/lib/python3.*/site-packages/svim_asm/SVIM_

plot.py # for SVIM-asm

Then run your SVIM or SVIM-asm

> svim reads –cores 10 –aligner minimap2 output_folder_name your_read.fq.gz

your_genome_assembly.fa

reads: SVIM module for detecting SVs using raw reads rather than SAM/BAM alignment files

–cores 10: number of threads

–aligner: You can use other long-read aligners by changing ‘‘minimap2’’ to your desired

aligner

your_read.fq.gz: should be long-read sequencing data

For more information about SVIM: https://github.com/eldariont/svim

ll
OPEN ACCESS

22 STAR Protocols 3, 101506, September 16, 2022

Protocol

https://github.com/eldariont/svim

15. Conduct assembly-based SV calling.

a. Align two genomes using minimap2:

b. Perform SV calling using SVIM-asm:

Gene annotation

Timing: 8 h/sample

To annotate genes for your genome, you should (1) mask your genome assembly, (2) map your RNA-

seq reads to the masked genome assembly, and (3) predict gene structures based on this RNA-seq

evidence. The BRAKER gene annotation pipeline, which will be used by us, prefers repeat-masked

genome assemblies to unmasked ones to accurately determine the gene structure (Hoff et al., 2016).

The repeat-masking process can be performed using RepeatMasker (Smit et al., 2013–2015) and

RepeatModeler (Smit and Hubley, 2008–2015). Additionally, as coding and non-coding genes are

transcribed to produce RNA molecules, RNA-seq data provide important evidence for gene

structure.

16. Make a conda environment for repeat masking:

Align your genome assembly to the reference genome and sort the alignment information

> minimap2 -a -x asm5 –cs -r2k -t 10 genome1.fa genome2.fa | samtools sort -m4G -@ 10 -O BAM -o

genome2_to_genome1.bam # genome1=reference, genome2=query

For minimap2, the parameters are as follows:

-a: output will be printed as the SAM format

-x asm5: preset for aligning two assemblies with �0.1% sequence divergence

–cs: the output file will contain cs tags

-r: chaining bandwidth

-t: number of threads

For SAMtools, the parameters are as follows:

sort: SAMtools module to sort read mapping information

-m: maximum memory for each thread

-@: number of threads

-O BAM: output as a BAM format

Index your assembly-assembly alignment file

> samtools index genome2_to_genome1.bam

Call SVs between the reference genome and yours

> svim-asm haploid output_folder_name genome2_to_genome1.bam genome1.fa

haploid: SVIM-asm module for calling SVs between two haploid genomes

For more information about SVIM-asm: https://github.com/eldariont/svim-asm

ll
OPEN ACCESS

STAR Protocols 3, 101506, September 16, 2022 23

Protocol

https://github.com/eldariont/svim-asm

17. Repeat masking using known metazoan repeats with RepeatMasker:

18. Identify previously unknown repeats in your genome assembly using RepeatModeler:

Type the following script directly in your terminal

Create the conda environment for RepeatModeler and RepeatMasker

The RepeatModeler package contains the RepeatMasker package

> conda create -c bioconda -n repeatmodeler repeatmodeler

Activate the environment for RepeatModeler

> conda activate repeatmodeler

Install the dependencies for RepeatModeler

> conda update -c conda-forge perl-file-which

Download the NINJA package for large-scale neighbor-joining phylogeny inference and

clustering

> mkdir bin

> cd bin

> wget https://github.com/TravisWheelerLab/NINJA/archive/refs/tags/0.95-cluster_only.

tar.gz

> tar -zxvf 0.95-cluster_only.tar.gz

> cd NINJA-0.95-cluster_only/NINJA/

> make # Create the ‘‘Ninja’’ executable file

> pwd

The pwd Linux command prints the current working directory path

The standard output of the "pwd" command will be used as a parameter of RepeatModeler

#!/usr/bin/env bash

You should use scaffold files as the input in RepeatMasker

for sample in ‘ls *fa‘;do

RepeatMasker -species metazoa -s -parallel 10 -xsmall -alignments $sample

done

-s: sensitive

-parallel 10: number of threads

-xsmall: softmasking, that is, change the repeat regions into lowercase, rather than N

Output of RepeatMasker

your_genome_assembly.fa.masked # masked FASTA file

your_genome_assembly.fa.tbl # repeat summary

ll
OPEN ACCESS

24 STAR Protocols 3, 101506, September 16, 2022

Protocol

https://github.com/TravisWheelerLab/NINJA/archive/refs/tags/0.95-cluster_only.tar.gz
https://github.com/TravisWheelerLab/NINJA/archive/refs/tags/0.95-cluster_only.tar.gz

19. Repeat masking with RepeatMasker using species-specific repeats that were found by Repeat-

Modeler:

#!/usr/bin/env bash

#1. Create a Database for RepeatModeler

BuildDatabase -name CLR CLR_scaffold.fa

BuildDatabase -name ONT ONT_scaffold.fa

BuildDatabase -name Hifi Hifi_scaffold.fa

-name: The name of the database to create

#2. Run RepeatModeler

RepeatModeler -database CLR -pa 10 -LTRStruct -ninja_dir /home/assembly/bin/NINJA-0.95-

cluster_only/NINJA

RepeatModeler -database ONT -pa 10 -LTRStruct -ninja_dir /home/assembly/bin/NINJA-0.95-

cluster_only/NINJA

RepeatModeler -database Hifi -pa 10 -LTRStruct -ninja_dir /home/assembly/bin/NINJA-0.95-

cluster_only/NINJA

-database: prefix name of the database that is used in the BuildDatabase function

-pa: number of threads

-LTRStruct: runs the LTR structural discovery pipeline for discovering LTR retrotransposons

-ninja_dir: specify the NINJA folder

Output of RepeatModeler

PREFIX-families.fa

#!/usr/bin/env bash

RepeatMasker -lib CLR-families.fa -s -parallel 10 -xsmall -alignments CLR_scaffold.

fa.masked

RepeatMasker -lib ONT-families.fa -s -parallel 10 -xsmall -alignments ONT_scaffold.fa.

masked

RepeatMasker -lib Hifi-families.fa -s -parallel 10 -xsmall -alignments Hifi_scaffold.fa.

masked

-lib: specify your species-specific repeat FASTA file produced by RepeatModeler

-s: sensitive

-xsmall: softmasking, that is, change the repeat regions into lowercase, rather than N

Output of RepeatMasker

your_genome_assembly.fa.masked.masked # masked FASTA file

your_genome_assembly.fa.masked.tbl # repeat summary

ll
OPEN ACCESS

STAR Protocols 3, 101506, September 16, 2022 25

Protocol

20. Conduct gene annotation.

a. Map RNA sequencing reads to the masked genome:

b. Make a conda environment for gene annotation:

#!/usr/bin/env bash

#1. Create the masked genome index

#Usage: hisat2-build repeat_masked_genome_assembly.fa PREFIX

hisat2-build CLR_scaffold.fa.masked.masked CLR

hisat2-build ONT_scaffold.fa.masked.masked ONT

hisat2-build Hifi_scaffold.fa.masked.masked Hifi

#2. Mapping RNA sequencing reads to the masked genome

hisat2 -x CLR -p 10 -1 /home/assembly/analysis/00_STARprotocol/SRR15130841_GSM5452671_

Control_CM1_Drosophila_melanogaster_RNA-Seq_1.fastq.gz -2 /home/assembly/analysis/00_

STARprotocol/SRR15130841_GSM5452671_Control_CM1_Drosophila_melanogaster_RNA-Seq_2.

fastq.gz | samtools sort -@ 10 -O BAM -o CLR.bam

hisat2 -x ONT -p 10 -1 /home/assembly/analysis/00_STARprotocol/SRR15130841_GSM5452671_

Control_CM1_Drosophila_melanogaster_RNA-Seq_1.fastq.gz -2 /home/assembly/analysis/00_

STARprotocol/SRR15130841_GSM5452671_Control_CM1_Drosophila_melanogaster_RNA-Seq_2.

fastq.gz | samtools sort -@ 10 -O BAM -o ONT.bam

hisat2 -x Hifi -p 10 -1 /home/assembly/analysis/00_STARprotocol/SRR15130841_GSM5452671_

Control_CM1_Drosophila_melanogaster_RNA-Seq_1.fastq.gz -2 /home/assembly/analysis/00_

STARprotocol/SRR15130841_GSM5452671_Control_CM1_Drosophila_melanogaster_RNA-Seq_2.

fastq.gz | samtools sort -@ 10 -O BAM -o Hifi.bam

For HISAT2, the parameters are as follows:

-x: index prefix

-p: the number of threads HISAT2 will use

-1 and -2: paired-end files. You can change the name of your sequencing data

For SAMtools, the parameters are as follows:

sort: SAMtools module to sort the mapped read information

-@: the number of threads SAMtools will use

-o: output file name

-O BAM: output as a BAM format

Type the following script directly in your terminal

Create the conda environment for braker2

> conda create -n braker -c bioconda braker2

Activate the environment for braker2

> conda activate braker

Download GeneMark-EX program(gmes_linux_64.tar) and GeneMark key(gm_key_64) from http://

exon.gatech.edu/GeneMark/license_download.cgi (the GeneMark-ES/ET/EP) option

Due to license and distribution restrictions, GeneMark and ProtHint should be separately

installed for BRAKER2 to become fully functional

ll
OPEN ACCESS

26 STAR Protocols 3, 101506, September 16, 2022

Protocol

http://exon.gatech.edu/GeneMark/license_download.cgi
http://exon.gatech.edu/GeneMark/license_download.cgi

c. Predict gene models using BRAKER:

#1. GeneMark-EX program

> tar -xvf gmes_linux_64.tar

> cd gmes_linux_64

> perl change_path_in_perl_scripts.pl "/usr/bin/env perl"

This is required for BRAKER to accurately find the ".gm_key". See the "2. GeneMark key" section

> pwd

The pwd Linux command prints the current working directory path

Standard output of ‘‘pwd’’ command will be used parameter of braker

#2. GeneMark key

GeneMark-EX will only run if a valid key file resides in your home directory

The key file will expire after 200 days, which means that you have to download a new GeneMark-EX

release and a new key file after 200 days.

> cd # change to your home directory

> mv gm_key_64 .gm_key

#!/usr/bin/env bash

Making working directory before the execution of braker program

mkdir CLR

braker.pl –genome=CLR_scaffold.fa.masked.masked –bam=CLR.bam –softmasking –cores 10

–workingdir=./CLR –GENEMARK_PATH=/home/assembly/bin/gmes_linux_64

mkdir ONT

braker.pl –genome=ONT_scaffold.fa.masked.masked –bam=ONT.bam –softmasking –cores 10

–workingdir=./ONT –GENEMARK_PATH=/home/assembly/bin/gmes_linux_64

mkdir Hifi

braker.pl –genome=Hifi_scaffold.fa.masked.masked –bam=Hifi.bam –softmasking –cores 10

–workingdir=./Hifi –GENEMARK_PATH=/home/assembly/bin/gmes_linux_64

–cores 10: number of threads

–bam: input BAM file which created by Hisat2

–softmasking: repetitive sequences of the input genome is soft-masked

–GENEMARK_PATH: specify the Genemark-EX program folder

For more information about BRAKER: https://github.com/Gaius-Augustus/BRAKER

Outputs of BRAKER

augustus.hints.aa # Amino acid FASTA sequences for your coding genes

augustus.hints.codingseq # Nucleotide FASTA sequences for your coding genes

augustus.hints.gtf # GTF file for your coding genes, which include their positions, orienta-

tion, and ID, etc.

ll
OPEN ACCESS

STAR Protocols 3, 101506, September 16, 2022 27

Protocol

https://github.com/Gaius-Augustus/BRAKER

EXPECTED OUTCOMES

Following this protocol, most draft genomes of multicellular organisms can be easily assembled. The

contig N50 length and BUSCOmetrics can be used to evaluate the quality of the de novo assembled

genomes. In this guide, we outlined three assemblies using three different long-read sequencing

platforms, namely, PacBio CLR, PacBio HiFi, and ONT (Figures 2B and 2C).

We conducted an analysis using publicly available Drosophila melanogaster data, which yielded a

sufficiently large amount of data for assembly (Table 1). Cumulative contig length ratios were plotted

in different line graphs, which showed that the N50 lengths differed (Figure 2B, solid black vertical

line); in this case, ONT assembly was the best choice, followed by PacBio CLR and PacBio HiFi as-

semblies. BUSCO values were also compared in the three assemblies, indicating that assembly con-

tiguity in terms of the number of complete single-copy orthologs was mostly contiguous in the

PacBio CLR assembly, whereas the PacBio HiFi assembly exhibited some duplicated genes, and

the ONT assembly exhibited more fragmented and missing genes than the other assemblies

(Figure 2C).

Notably, the sequencing platform you choose for your genome assembly will depend on your sam-

ple and its genomic architecture, such as its genome size, heterozygosity, composition, and the

number of repetitive elements. It is possible to visualize alignments between your assembly and

the chromosome-level reference genome (Figure 3). The gray regions indicate that your scaffolds

are well aligned to the reference, whereas the white regions indicate missing alignments and the yel-

low regions inverted alignments. Although HiFi assembly exhibited many gaps in the current case,

its raw reads were generated from a heterozygous sample with an extremely low amount of input

DNA (�10 ng).

SVs, which are difficult to be precisely detected using short-read sequencing technologies, can be

detectedmore precisely using long-read sequencing technologies. In reality, by comparing our con-

tigs to the reference genome, it is possible to detect SVs by category, e.g., by insertion, deletion,

and inversion. When read- and assembly-based SV calling data are compared (Figures 4A and 4B,

respectively), insertions are calledmore often in the assembly-based SVmethod because assembled

genomes can cover much larger regions than each raw read. Finally, after the genome has been fully

assembled, gene models can be annotated using the RNA-seq data. Our protocol is expected to aid

research on intraspecies genome evolution as it will facilitate genome alignments and the detection

of SVs.

Table 1. Output summary statistics for three different long-read sequencing platforms used in this paper

PacBio CLR
PacBio
HiFi ONT

Number of reads 1,437,524 2,301,518 640,215

Read max (bp) 99,345 26,462 417,450

Read N50 (bp) 13,094 11,151 21,491

Read min (bp) 50 369 1

Total read length (bp) 12,016,661,679 25,600,110,705 7,133,020,037

Number of contigs 452 654 208

Contig max (bp) 23,607,911 24,502,687 27,938,801

Contig N50 (bp) 9,177,974 4,127,200 18,567,724

Contig min (bp) 1,381 9,867 21

Total contig length (bp) 141,740,149 168,692,738 133,002,022

Number of placed contigs 169 175 99

Length of placed contigs (bp) 134,417,363 142,931,941 130,673,188

Number of unplaced contigs 283 479 109

Length of unplaced contigs (bp) 7,322,786 25,760,797 2,328,834

ll
OPEN ACCESS

28 STAR Protocols 3, 101506, September 16, 2022

Protocol

LIMITATIONS

In this guide, we did not cover SNP calling, isoform detection, and scaffolding without a chromo-

some-level reference genome. The procedure for calling SNPs has been thoroughly described

elsewhere (Bellinger, 2020; Koboldt, 2020). Scaffolding is the process by which contigs are joined

together to construct pseudo-chromosome-level genome assemblies. To complete scaffolding,

you will need additional datasets, such as physical (e.g., Hi-C), optical (Bionano), and genetic

mapping data. Notably, you may lose many isoforms when using our protocol as short-read

RNA sequencing data are too short to identify full-length isoforms. Furthermore, our protocol

may not completely address isoform information. It would be preferable to annotate isoform

information using full-length transcript sequencing data based on long-read RNA sequencing

data rather than short-read RNA sequencing data. Finally, assembling the polyploidy genome

with the current technology is challenging; thus, our protocol does not cover the polyploidy

genome.

TROUBLESHOOTING

Problem 1

The code block cannot be executed even though the program required for the protocol is

installed.

Figure 3. Visualization of synteny between your genome assembly (Query) and a reference genome (Reference)

(A) Scaffold derived from PacBio CLR data.

(B) Scaffold derived from PacBio HiFi data.

(C) Scaffold derived from ONT data.

ll
OPEN ACCESS

STAR Protocols 3, 101506, September 16, 2022 29

Protocol

Potential solution

First, look carefully at the error messages in the console. In many cases, the problem arises because

the conda environment has not been activated or the location of the input required for execution has

not been correctly specified.We recommend that you create a separate analysis folder for each anal-

ysis and bring the input file required for analysis as a symbolic link (ln -s command in Linux). When

running R scripts, you must designate the working directory (setwd command in R) or run R script

in the folder where the input file is located. Second, check your code for typos. There are often typos

in quotes, commas, and input names.

Problem 2

The installation of conda is taking a long time.

Potential solution

Conda can run into endless loops when it cannot solve the dependencies with the packages that

have been previously installed. If you encounter this problem, we recommend creating another

separate conda environment or considering mamba as a replacement for conda (https://github.

com/mamba-org/mamba). Mamba is a reimplementation of the conda package manager in C++,

and the commands of mamba are nearly identical to those of conda, except conda should be re-

placed with mamba in the commands. When installing programs with several dependencies, such

as RepeatModeler or BRAKER, we strongly recommend using mamba. If it does not solve the prob-

lem, it is possible that many packages are already installed in your base environment. We recom-

mend either deleting the package in the base environment or asking the server administrator for

a new ID.

Figure 4. SV calling output summary

(A) Read-based SV calling with SVIM.

(B) Assembly-based SV calling with SVIM-asm.

ll
OPEN ACCESS

30 STAR Protocols 3, 101506, September 16, 2022

Protocol

https://github.com/mamba-org/mamba
https://github.com/mamba-org/mamba

Problem 3

My species is too small to obtain a sufficient amount of DNA.

Potential solution

Currently, ONT and PacBio require >1 and >3 mg of DNA, respectively. Such amounts may not be

fulfilled when using very small animals, including nematodes. For nematodes, we typically culture

the animals into inbred or sibling-bred lines; however, many other animals cannot be cultured.

For small species, you can consider the low (400 ng) or ultra-low (5 ng) DNA input sequencing pro-

tocols available in PacBio HiFi sequencing if your species has a genome size of <1 Gb or <500 Mb,

respectively (https://www.pacb.com/wp-content/uploads/Application-Note-Considerations-for-

Using-the-Low-and-Ultra-Low-DNA-Input-Workflows-for-Whole-Genome-Sequencing.pdf). For

example, Kingan et al., 2019 demonstrated that a high-quality genome can be assembled using a

single mosquito (Kingan et al., 2019). However, standard high-input DNA sequencing would likely

be a better choice than these low-input protocols if sufficient DNA is available.

Problem 4

The contig N50 length is too short.

Potential solution

It would be preferable to check your species’ ploidy level, estimate the genome size with indepen-

dent experiments, and generate additional high-quality long-read sequencing data. Using long-

read sequencing technologies, it remains difficult to resolve extremely long segmental duplication

blocks and highly clustered repetitive sequences that can span hundreds of kilobases. Given that

even diploid genomes can become problematic, haploid or inbreeding lines would be the best

choice for de novo genome assembly, and polyploidy genomes should be avoided. The first

gap-free complete human genome, for example, was assembled using a human haploid cell

line derived from a complete hydatidiform mole (Nurk et al., 2022). To resolve interspersed re-

peats or segmental duplication blocks in PacBio CLR and ONT data, the read N50 length should

be >10 kb. Furthermore, the genome size can be estimated using sequencing data independently

via flow cytometry or real-time PCR (Hare and Johnston, 2012; Wilhelm et al., 2003). Your genome

assembly could be too fragmented for unknown reasons; additional sequencing may be beneficial

but not always.

Problem 5

Synteny analysis does not work.

Potential solution

To run SyRi, a synteny analysis tool, the two genomes must have the same number of chromo-

somes and the same name. Aside from the chromosomal name, the reference genome down-

loaded from a specific database may contain additional information attached to the FASTA head-

er. In this case, the $name variable built into the bioawk application can be used to simply

reformat the FASTA file.

Example of mamba usage

Install mamba into the base environment

> conda install mamba -n base -c conda-forge

Create the conda environment for braker2 using mamba command

> mamba create -n braker -c bioconda braker2

ll
OPEN ACCESS

STAR Protocols 3, 101506, September 16, 2022 31

Protocol

https://www.pacb.com/wp-content/uploads/Application-Note-Considerations-for-Using-the-Low-and-Ultra-Low-DNA-Input-Workflows-for-Whole-Genome-Sequencing.pdf
https://www.pacb.com/wp-content/uploads/Application-Note-Considerations-for-Using-the-Low-and-Ultra-Low-DNA-Input-Workflows-for-Whole-Genome-Sequencing.pdf

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the lead contact, Chuna Kim (kimchuna@kribb.re.kr).

Materials availability

This study did not generate new unique reagents.

Data and code availability

This protocol did not generate any new datasets. The key resources table contains all the accession

numbers for the sample data analyzed in this protocol. All codes used for data analysis are included

in this manuscript.

ACKNOWLEDGMENTS

This work was supported by the National Research Foundation of Korea (NRF-

2020R1C1C101220611, NRF-2019R1A6A1A10073437) and National Research Council of Science

& Technology (NST) Aging Convergence Research Center (CRC22011-300).

AUTHOR CONTRIBUTIONS

Conceptualization, J.K. and C.K.; methodology and formal analysis, J.K. and C.K.; data curation,

J.K.; writing, J.K. and C.K.; all authors have read and agreed to the published version of the

manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

REFERENCES

Alonge, M., Lebeigle, L., Kirsche, M., Aganezov, S.,
Wang, X., Lippman, Z., Schatz, M., and Soyk, S.
(2021). Automated assembly scaffolding elevates a
new tomato system for high-throughput genome
editing. Preprint at BioRxiv. https://doi.org/10.
1101/2021.11.18.469135.

Bellinger, M.R. (2020). SNP Calling and VCF
Filtering Pipeline. protocols.io. https://doi.org/10.
17504/protocols.io.84fhytn.

Cheng, H., Concepcion, G.T., Feng, X., Zhang, H.,
and Li, H. (2021). Haplotype-resolved de novo
assembly using phased assembly graphs with
hifiasm. Nat. Methods 18, 170–175. https://doi.org/
10.1038/s41592-020-01056-5.

The Darwin Tree of Life Project Consortium (2022).
Sequence locally, think globally: the Darwin tree of
life Project. Proc. Natl. Acad. Sci. U S A 119.
e2115642118. https://doi.org/10.1073/pnas.
2115642118.

Goel, M., Sun, H., Jiao, W.-B., and Schneeberger,
K. (2019). SyRI: finding genomic rearrangements
and local sequence differences from whole-
genome assemblies. Genome Biol. 20, 277. https://
doi.org/10.1186/s13059-019-1911-0.

Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z.,
Thompson, D.A., Amit, I., Adiconis, X., Fan, L.,
Raychowdhury, R., Zeng, Q., et al. (2011). Trinity:
reconstructing a full-length transcriptome without
a genome from RNA-Seq data. Nat. Biotechnol. 29,
644–652. https://doi.org/10.1038/nbt.1883.

Hare, E.E., and Johnston, J.S. (2012). Genome size
determination using flow cytometry of propidium

iodide-stained nuclei. In Molecular methods for
evolutionary genetics (Springer), pp. 3–12.

Heller, D., and Vingron, M. (2019). SVIM: structural
variant identification using mapped long reads.
Bioinformatics 35, 2907–2915. https://doi.org/10.
1093/bioinformatics/btz041.

Heller, D., and Vingron, M. (2020). SVIM-asm:
structural variant detection from haploid and
diploid genome assemblies. Bioinformatics 36,
5519–5521. https://doi.org/10.1093/
bioinformatics/btaa1034.

Hoff, K.J., Lange, S., Lomsadze, A., Borodovsky, M.,
and Stanke, M. (2016). BRAKER1: unsupervised
RNA-seq-based genome annotation with
GeneMark-ET and AUGUSTUS: table 1.
Bioinformatics 32, 767–769. https://doi.org/10.
1093/bioinformatics/btv661.

Jain, M., Koren, S., Miga, K.H., Quick, J., Rand,
A.C., Sasani, T.A., Tyson, J.R., Beggs, A.D., Dilthey,
A.T., Fiddes, I.T., et al. (2018). Nanopore
sequencing and assembly of a human genome with
ultra-long reads. Nat. Biotechnol. 36, 338–345.
https://doi.org/10.1038/nbt.4060.

Kim, C., Kim, J., Kim, S., Cook, D.E., Evans, K.S.,
Andersen, E.C., and Lee, J. (2019). Long-read
sequencing reveals intra-species tolerance of
substantial structural variations and new
subtelomere formation in C. elegans. Genome
research 29, 1023–1035.

Kim, E., Kim, J., Kim, C., and Lee, J. (2021). Long-
read sequencing and de novo genome assemblies
reveal complex chromosome end structures

caused by telomere dysfunction at the single
nucleotide level. Nucleic acids research 49, 3338–
3353.

Kim, D., Paggi, J.M., Park, C., Bennett, C., and
Salzberg, S.L. (2019). Graph-based genome
alignment and genotyping with HISAT2 and
HISAT-genotype. Nat. Biotechnol. 37, 907–915.
https://doi.org/10.1038/s41587-019-0201-4.

Kim, C., Sung, S., Kim, J., and Lee, J. (2020). Repair
and reconstruction of telomeric and subtelomeric
regions and genesis of new telomeres: implications
for chromosome evolution. Bioessays 42, 1900177.

Kingan, S.B., Heaton, H., Cudini, J., Lambert, C.C.,
Baybayan, P., Galvin, B.D., Durbin, R., Korlach, J.,
and Lawniczak, M.K. (2019). A high-quality de novo
genome assembly from a single mosquito using
PacBio sequencing. Genes 10, 62.

Koboldt, D.C. (2020). Best practices for variant
calling in clinical sequencing. Genome Medicine
12, 1–13.

Koren, S., Walenz, B.P., Berlin, K., Miller, J.R.,
Bergman, N.H., and Phillippy, A.M. (2017). Canu:
scalable and accurate long-read assembly via
adaptive k-mer weighting and repeat separation.
Genome Res. 27, 722–736. https://doi.org/10.
1101/gr.215087.116.

Lewin, H.A., Robinson, G.E., Kress, W.J., Baker,
W.J., Coddington, J., Crandall, K.A., Durbin, R.,
Edwards, S.V., Forest, F., Gilbert, M.T.P., et al.
(2018). Earth BioGenome Project: sequencing life
for the future of life. Proc. Natl. Acad. Sci. U S A 115,

ll
OPEN ACCESS

32 STAR Protocols 3, 101506, September 16, 2022

Protocol

mailto:kimchuna@kribb.re.kr
https://doi.org/10.1101/2021.11.18.469135
https://doi.org/10.1101/2021.11.18.469135
https://doi.org/10.17504/protocols.io.84fhytn
https://doi.org/10.17504/protocols.io.84fhytn
https://doi.org/10.1038/s41592-020-01056-5
https://doi.org/10.1038/s41592-020-01056-5
https://doi.org/10.1073/pnas.2115642118
https://doi.org/10.1073/pnas.2115642118
https://doi.org/10.1186/s13059-019-1911-0
https://doi.org/10.1186/s13059-019-1911-0
https://doi.org/10.1038/nbt.1883
http://refhub.elsevier.com/S2666-1667(22)00386-0/opt8XiqeIHEXz
http://refhub.elsevier.com/S2666-1667(22)00386-0/opt8XiqeIHEXz
http://refhub.elsevier.com/S2666-1667(22)00386-0/opt8XiqeIHEXz
http://refhub.elsevier.com/S2666-1667(22)00386-0/opt8XiqeIHEXz
https://doi.org/10.1093/bioinformatics/btz041
https://doi.org/10.1093/bioinformatics/btz041
https://doi.org/10.1093/bioinformatics/btaa1034
https://doi.org/10.1093/bioinformatics/btaa1034
https://doi.org/10.1093/bioinformatics/btv661
https://doi.org/10.1093/bioinformatics/btv661
https://doi.org/10.1038/nbt.4060
http://refhub.elsevier.com/S2666-1667(22)00386-0/optXqkcLLw4Nu
http://refhub.elsevier.com/S2666-1667(22)00386-0/optXqkcLLw4Nu
http://refhub.elsevier.com/S2666-1667(22)00386-0/optXqkcLLw4Nu
http://refhub.elsevier.com/S2666-1667(22)00386-0/optXqkcLLw4Nu
http://refhub.elsevier.com/S2666-1667(22)00386-0/optXqkcLLw4Nu
http://refhub.elsevier.com/S2666-1667(22)00386-0/optXqkcLLw4Nu
http://refhub.elsevier.com/S2666-1667(22)00386-0/optxdgDxegCdQ
http://refhub.elsevier.com/S2666-1667(22)00386-0/optxdgDxegCdQ
http://refhub.elsevier.com/S2666-1667(22)00386-0/optxdgDxegCdQ
http://refhub.elsevier.com/S2666-1667(22)00386-0/optxdgDxegCdQ
http://refhub.elsevier.com/S2666-1667(22)00386-0/optxdgDxegCdQ
http://refhub.elsevier.com/S2666-1667(22)00386-0/optxdgDxegCdQ
https://doi.org/10.1038/s41587-019-0201-4
http://refhub.elsevier.com/S2666-1667(22)00386-0/optqPLkydAd7n
http://refhub.elsevier.com/S2666-1667(22)00386-0/optqPLkydAd7n
http://refhub.elsevier.com/S2666-1667(22)00386-0/optqPLkydAd7n
http://refhub.elsevier.com/S2666-1667(22)00386-0/optqPLkydAd7n
http://refhub.elsevier.com/S2666-1667(22)00386-0/opt8MDytyPrfK
http://refhub.elsevier.com/S2666-1667(22)00386-0/opt8MDytyPrfK
http://refhub.elsevier.com/S2666-1667(22)00386-0/opt8MDytyPrfK
http://refhub.elsevier.com/S2666-1667(22)00386-0/opt8MDytyPrfK
http://refhub.elsevier.com/S2666-1667(22)00386-0/opt8MDytyPrfK
http://refhub.elsevier.com/S2666-1667(22)00386-0/optWRiH7Bvs8a
http://refhub.elsevier.com/S2666-1667(22)00386-0/optWRiH7Bvs8a
http://refhub.elsevier.com/S2666-1667(22)00386-0/optWRiH7Bvs8a
https://doi.org/10.1101/gr.215087.116
https://doi.org/10.1101/gr.215087.116

4325–4333. https://doi.org/10.1073/pnas.
1720115115.

Li, H. (2017). BWK AwkModified for Biological Data
(GitHub). https://github.com/lh3/bioawk.

Li, H. (2021). New strategies to improve minimap2
alignment accuracy. Bioinformatics 37, 4572–4574.
https://doi.org/10.1093/bioinformatics/btab705.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan,
J., Homer, N., Marth, G., Abecasis, G., and Durbin,
R. (2009). The sequence alignment/map format and
SAMtools. Bioinformatics 25, 2078–2079. https://
doi.org/10.1093/bioinformatics/btp352.

Manni, M., Berkeley, M.R., Seppey, M., Simão, F.A.,
and Zdobnov, E.M. (2021). BUSCO update: novel
and streamlined workflows along with broader and
deeper phylogenetic coverage for scoring of
eukaryotic, prokaryotic, and viral genomes. Mol.
Biol. Evol. 38, 4647–4654. https://doi.org/10.1093/
molbev/msab199.

Mapleson, D., Garcia Accinelli, G., Kettleborough,
G., Wright, J., and Clavijo, B.J. (2017). KAT: a K-mer
analysis toolkit to quality control NGS datasets and
genome assemblies. Bioinformatics 33, 574–576.
https://doi.org/10.1093/bioinformatics/btw663.

Nurk, S., Koren, S., Rhie, A., Rautiainen, M.,
Bzikadze, A.V., Mikheenko, A., Vollger, M.R.,
Altemose, N., Uralsky, L., Gershman, A., et al.

(2022). The complete sequence of a human
genome. Science 376, 44–53. https://doi.org/10.
1126/science.abj6987.

R Core Team. (2013). R: A language and
environment for statistical computing.

Shafin, K., Pesout, T., Lorig-Roach, R., Haukness,
M., Olsen, H.E., Bosworth, C., Armstrong, J.,
Tigyi, K., Maurer, N., Koren, S., et al. (2020).
Nanopore sequencing and the Shasta
toolkit enable efficient de novo assembly of
eleven human genomes. Nat. Biotechnol. 38,
1044–1053. https://doi.org/10.1038/s41587-020-
0503-6.

Smit, A., Hubley, R., and Green, P. (2013–2015).
RepeatMasker open-4.0. http://www.
repeatmasker.org.

Smit, A., and Hubley, R. (2008–2015).
RepeatModeler open-1.0. http://www.
repeatmasker.org.

Wellcome Sanger Institute Pathogen Informatics.
(2020) (Wellcome Sanger Institute Pathogen
Informatics). https://github.com/
sanger-pathogens/assembly-stats.

Wenger, A.M., Peluso, P., Rowell, W.J., Chang,
P.-C., Hall, R.J., Concepcion, G.T., Ebler, J.,
Fungtammasan, A., Kolesnikov, A., Olson, N.D.,
et al. (2019). Accurate circular consensus long-read

sequencing improves variant detection and
assembly of a human genome. Nat. Biotechnol. 37,
1155–1162. https://doi.org/10.1038/s41587-019-
0217-9.

Wickham, H. (2007). Reshaping data with the
reshape package. J. Stat. Softw. 21, 1–20. https://
doi.org/10.18637/jss.v021.i12.

Wickham, H., Averick, M., Bryan, J., Chang, W.,
McGowan, L.D.A., François, R., François, R.,
Grolemund, G., Hayes, A., Henry, L., et al. (2019).
Welcome to the tidyverse. J. Open Source
Softw. 4, 1686. https://doi.org/10.21105/joss.
01686.

Wickham, H., Chang, W., and Wickham, M.H.
(2016). Package ‘ggplot2’. Create Elegant Data
Visualisations Using the Grammar of Graphics
Version 2, pp. 1–189.

Wickham, H., François, R., and Henry, L. (2021).
Müller K. Dplyr: A Grammar of Data Manipulation.
R package version 08 4.

Wilhelm, J., Pingoud, A., and Hahn, M. (2003).
Real-time PCR-based method for the estimation of
genome sizes. Nucleic Acids Research 31, e56.

Wilke, C.O. (2019). Cowplot: Streamlined Plot
Theme and Plot Annotations for ‘‘Ggplot2. R
package version 1.

ll
OPEN ACCESS

STAR Protocols 3, 101506, September 16, 2022 33

Protocol

https://doi.org/10.1073/pnas.1720115115
https://doi.org/10.1073/pnas.1720115115
https://github.com/lh3/bioawk
https://doi.org/10.1093/bioinformatics/btab705
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/molbev/msab199
https://doi.org/10.1093/molbev/msab199
https://doi.org/10.1093/bioinformatics/btw663
https://doi.org/10.1126/science.abj6987
https://doi.org/10.1126/science.abj6987
https://doi.org/10.1038/s41587-020-0503-6
https://doi.org/10.1038/s41587-020-0503-6
http://www.repeatmasker.org
http://www.repeatmasker.org
http://www.repeatmasker.org
http://www.repeatmasker.org
https://github.com/sanger-pathogens/assembly-stats
https://github.com/sanger-pathogens/assembly-stats
https://doi.org/10.1038/s41587-019-0217-9
https://doi.org/10.1038/s41587-019-0217-9
https://doi.org/10.18637/jss.v021.i12
https://doi.org/10.18637/jss.v021.i12
https://doi.org/10.21105/joss.01686
https://doi.org/10.21105/joss.01686
http://refhub.elsevier.com/S2666-1667(22)00386-0/sref26
http://refhub.elsevier.com/S2666-1667(22)00386-0/sref26
http://refhub.elsevier.com/S2666-1667(22)00386-0/sref26
http://refhub.elsevier.com/S2666-1667(22)00386-0/sref26
http://refhub.elsevier.com/S2666-1667(22)00386-0/sref27
http://refhub.elsevier.com/S2666-1667(22)00386-0/sref27
http://refhub.elsevier.com/S2666-1667(22)00386-0/sref27
http://refhub.elsevier.com/S2666-1667(22)00386-0/optqLVUj1pNcs
http://refhub.elsevier.com/S2666-1667(22)00386-0/optqLVUj1pNcs
http://refhub.elsevier.com/S2666-1667(22)00386-0/optqLVUj1pNcs
http://refhub.elsevier.com/S2666-1667(22)00386-0/optqLVUj1pNcs
http://refhub.elsevier.com/S2666-1667(22)00386-0/optqLVUj1pNcs
http://refhub.elsevier.com/S2666-1667(22)00386-0/sref28
http://refhub.elsevier.com/S2666-1667(22)00386-0/sref28
http://refhub.elsevier.com/S2666-1667(22)00386-0/sref28
http://refhub.elsevier.com/S2666-1667(22)00386-0/sref28

	XPRO101506_proof_v3i3.pdf
	A beginner’s guide to assembling a draft genome and analyzing structural variants with long-read sequencing technologies
	Before you begin
	Preparing a conda environment
	Install the required packages in the conda environment
	Download the required public datasets

	Key resources table
	Step-by-step method details
	Visualizing read-length distribution
	Approximate genome-size estimation
	Long-read sequencing-based genome assembly
	Quality assessment
	Discovery of structural variation
	Gene annotation

	Expected outcomes
	Limitations
	Troubleshooting
	Problem 1
	Potential solution
	Problem 2
	Potential solution
	Problem 3
	Potential solution
	Problem 4
	Potential solution
	Problem 5
	Potential solution

	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Acknowledgments
	Author contributions
	Declaration of interests
	References

