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Background. Alternative splicing (AS) plays a crucial role in regulating the progression of colorectal cancer (CRC), but its
distribution remains to be explored. Here, we aim to investigate the genes edited by AS which show differential expression
in patients with mismatch repair deficiency (dMMR)/microsatellite instability (MSI). Materials and Methods. We applied
long-read nanopore sequencing to determine the mRNA profiles and screen AS genes using Oxford Nanopore
Technologies (ONT) method in ten paired CRC tissues. CRC tissue and plasma samples were used to validate the
differential genes with AS using real-time fluorescent quantitative PCR, immunohistochemistry, and enzyme-linked
immunosorbent assay. Results. ONT sequencing identified 404 genes were downregulated, and 348 genes were upregulated
in MSI cancer tissues compared with microsatellite stability (MSS) cancer tissues. In total, 6,200 AS events were identified
in 2,728 mRNA transcripts. WGCNA revealed dMMR/MSI-correlated gene modules, including INHBA and RPL22L1,
which were upregulated; conversely, HMGCS2 was downregulated in MSI cancer. Overexpression of RPL22L1, INHBA,
and CAPZA1 was further confirmed in CRC tissues. INHBA was found to be associated with tumor lymphatic metastasis.
Importantly, the levels of INHBA in CRC plasma were significantly increased compared with those in noncancer plasma.
INHBA showed a higher level in dMMR/MSI CRC than in MSS CRC, indicating that INHBA is a useful biomarker.
Conclusion. Our results showed that ONT-identified genes provide a pool to explore AS-associated markers for dMMR/
MSI CRC. We demonstrated INHBA as a promising signature for clinical application in predicting tumor lymphatic
metastasis and screening dMMR/MSI candidates.

1. Introduction

Colorectal cancer (CRC) is one of the most important malig-
nant gastrointestinal tumors and has demonstrated high rates
of mortality and morbidity [1]. CRC is classified as mismatch
repair deficient (dMMR) or microsatellite instability (MSI) by
the absence of at least one of four mismatch repair proteins
(MLH1, MSH2, MSH6, or PMS2) [2]. The characteristics of
MSI CRC include a high tumor mutational burden, generating

hyperneoantigens that are responsible for favorable clinical
responses to immune checkpoint blockade (ICB) [3]. How-
ever, approximately 10~15% of CRC cases display dMMR/
MSI [4].

Currently, dMMR/MSI screening is helpful to select the
most appropriate ICB for CRC and is also used as a biomarker
to predict the therapeutic response to chemotherapy [5].
Patients with metastatic CRC (mCRC) that are high in
dMMR/MSI are less responsive to conventional chemotherapy

Hindawi
Disease Markers
Volume 2022, Article ID 4433270, 16 pages
https://doi.org/10.1155/2022/4433270

https://orcid.org/0000-0001-6885-9354
https://orcid.org/0000-0002-8369-4161
https://orcid.org/0000-0001-7015-3166
https://orcid.org/0000-0003-3718-2138
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4433270


with or without drugs targeting VEGF or EGFR [6]. The
KEYNOTE-177 study showed that pembrolizumab (anti-
PD1) monotherapy provides a clinically meaningful improve-
ment in progression-free survival (PFS) compared with che-
motherapy for dMMR/MSI mCRC (median PFS: 16.5
months vs. 8.2 months) [7]. Additionally, mCRC patients with
dMMR/MSI treated with first-line pembrolizumab showed
better health-related quality of life than those treated with che-
motherapy [2].

Cancer-associated mutations in genes encoding RNA
alternative splicing (AS), such as MLH1, commonly occur in
CRC [8]. AS is a rich source of tumor-specific neoantigen tar-
gets for ICB [9]. To some extent,MSI patients can benefit from
ICB depending on large numbers of immunogenic neoanti-
gens that can be recognized by immune cells [10]. Mutations
in MMR proteins confer an increased lifetime risk of cancer
development in affected individuals, while neoantigens result
from the hypermutable nature of dMMR [11]. AS is partly
responsible for transcript variation and proteome diversity
[2]. MLH1 deficiency triggers chromosomal abnormalities
and the release of nuclear DNA into the cytoplasm, resulting
in the activation of the cyclic GMP-AMP synthase- (cGAS-)
STING pathway, whose key molecules undergo AS [12]. cGAS
acts as a specific pattern recognition receptor and is activated
by type I interferons (IFNs), which mediate the Janus kinase-
(JAK-) signal transducer and activator of transcription
(STAT) pathway [13]. Through AS, STAT3 is translated into
two distinct isoforms, STAT3α and STAT3β [14]. Therefore,
identification dMMR-related AS genes would be helpful on
either illustrating novel mechanism for ICB or screening bio-
marker for predicting therapeutic effect.

Comparing with microsatellite stability (MSS) CRCs,
dMMR CRCs exhibited distinct immunological feature. Acti-
vation of cGAS-STING and type I IFN signaling promotes
the overexpression of CCL5 and CXCL10 and recruitment
CD8+ T cells into dMMR CRC TME [15]. CXCL10 is upregu-
lated in homologous recombination-deficient tumors and
binds to CXCR3 [16]. CXCR3 is primarily expressed on acti-
vated CD8+ T cells and is suppressed by transforming growth
factor beta (TGFβ) [17]. TGFβ signaling is the major pathway
that excludes immune cells from tumors. MSI CRC is unre-
sponsive to TGFβ because of TGFBR2 mutations [18]. Thus,
different molecular patterns exist between MSI and MSS
patients, but their identities remain elusive.

High-throughput sequencing technology has become
increasingly available to identify differential mRNA profiles
or genomic variations. Nanopore sequencing technology with
highly accurate quantification of transcripts is a third-
generation sequencingmethod recently developed to sequence
full-length RNA transcripts as well as distinct AS transcripts
[19]. In the present study, we performed transcriptome
sequencing to survey the full-length CRC transcriptome land-
scape offered by Oxford Nanopore Technologies (ONT). We
further compared the differential profiles between MSI and
MSS tumors. Our data provide the first full-length MSI and
MSS CRC transcriptome databases, allowing us to identify
INHBA as biomarkers to discern among MSI CRC patients
using blood plasma.

2. Materials and Methods

2.1. Patient Selection. For ONT RNA sequencing, 20 fresh sam-
ples were collected from 10 CRC patients from 2020 to 2021 at
Beijing Chao-Yang Hospital. These CRC patients enrolled five
dMMR/MSI patients. dMMR/MSI was defined when any of
these MMR proteins were completely absent in the cancer tis-
sue but presented in adjacent benign tissue. Microsatellite sta-
bility (MSS) patients were defined when all of MMR (MLH1,
MSH2, MSH6, and PMS2) were positive expression in both
tumor and adjacent benign tissue. Immunohistochemistry
(IHC) was assayed to detect MLH1, MSH2, MSH6, and
PMS2 separately. Patients who showed dMMR were defined
as MSI. For validation, 23 paired tumor samples and tumor-
adjacent normal fresh tissues were collected and stored at
-80°C until to use. Forty-six normal intestinal tissues and 49
cancer samples were formalin-fixed and formalin-embedded
and reassessed by two pathologists. Sixty-six peripheral plasma
samples from CRC patients and 20 plasma samples from non-
tumor donors were separated and stored at -80°C until use.
This study was approved by the Institutional Review Board at
Beijing Chao-Yang Hospital. All the enrolled subjects signed
written informed consent forms.

2.2. ONT Sequencing. One microgram of total RNA was pre-
pared for cDNA libraries using a cDNA-PCR Sequencing Kit
(SQK-PCS109; ONT). The products were then subjected to
ONT adaptor ligation using T4 DNA ligase (NEB). The final
cDNA libraries were added to FLO-MIN109 flow cells and
run on the PromethION platform at Biomarker Technology
Company (Beijing, China). Raw reads were first filtered (mini-
mum average read quality score=7 minimum read
length=500bp). Ribosomal RNAs were discarded after map-
ping to the rRNA database. Clusters of full-length, nonchimeric
(FLNC) transcripts and consensus isoforms were obtained after
mapping to the reference genome (GRCh38_release95) with
minimap2 (version 2.7-r654) in spliced alignment mode after
polishing within each cluster using pinfish [20]. Mapped reads
were further collapsed by the cDNA_Cup cake package with
min‐coverage = 85%and min‐identity = 90%. The criteria for
fusion candidates are that a single transcript must map to ≥2
loci (minimum coverage 5%, ≥1bp; total coverage ≥ 95%, at
least 10kb). The transcripts were validated against known refer-
ence transcript annotations (hg38) with Gffcompare (version
0.1.26) [21]. Alternative splicing (AS) events, including IR (intro
retention), ES (exon skipping), AA (Alternative acceptor), and
MEE (mutually exclusive exon), were identified using the ASta-
lavista tool (version 3.0) [22]. Simple Sequence Repeat (SSR) of
the transcriptome were identified using MIcroSAtellite identifi-
cation tool (version 2.1) [23]. Alternative polyadenylation
(APA) analysis was conducted with TAPIS (Transcriptome
Analysis Pipeline for Isoform Sequencing, version 1.2.1) [24].
Coding Sequence (CDS) were predicted by TransDecoder (ver-
sion 5.5.0) [25]. The data were submitted to the NCBI SRA
database and are accessible through the citation accession num-
ber PRJNA758110. For quantification, the expression levels
were estimated by reads per gene/transcript per 10,000 reads
mapped. Differential expression analysis was performed using
the DESeq2 R package (version 1.6.3). These bioinformatic
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analyses were performed by Biomarker Technology Company.
Genes with an adjusted P value < 0.01 and fold change ðFCÞ
≤ −1:5 or ≥1.5 found by DESeq2 were assigned as differentially
expressed. Gene Ontology (GO) enrichment analysis of the dif-
ferentially expressed genes (DEGs) was implemented using the
DAVID Bioinformatics Resources (version 6.8) tool [26] and
plotted using GOplot R packages (version 1.0.2) [27]. GO terms
included biological process (BP), cellular component (CC), and
molecular function (MF). The top eight terms of biological pro-
cess (BP) were statistically analyzed according to P value
(<0.05) and FC ≤ −1:5 or ≥1.5.

2.3. TCGA Dataset Validation. COAD (enrolled 41 normal
tissue samples and 457 cancer tissue samples) and READ
(enrolled 10 normal tissue samples and 166 cancer tissue
samples) datasets were downloaded from The Cancer
Genome Atlas (TCGA) data portal (http://www.cbioportal
.org/). The R package “limma” [28] was used to screen for
the differentially expressed genes between cancer and nor-
mal samples according to the criteria of an adjusted P value
< 0.01 and fold change ðFCÞ ≥ ≤ − 1:5 or ≥1.5.

2.4. Estimating the Proportion of Immune and Cancer (EPIC)
and CIBERSORT Analysis. EPIC and CIBERSORT were used
to estimate the fraction of immune cells of sequenced samples.
EPIC was performed using an online tool (http://epic
.gfellerlab.org/). The R package “CIBERSORT” (R script ver-
sion 1.03) was applied to assess the fractions of the 22 types
of tumor-infiltrating immune cells [29]. Outputs were consid-
ered to be accurate after screening to meet P value < 0.05.

2.5. Reverse Transcription Quantitative Real-Time PCR (RT-
qPCR). Total RNA was purified from 46 samples using TRIzol
Reagent (Invitrogen, CA, USA). A QuantiTect Reverse Tran-
scription kit (Qiagen, Germany) was used for reverse transcrip-
tion. An ABI7500 Real-Time PCR System (Applied Biosystems,
USA) was used to detect the expression of candidate genes. The
primers verified in this study are shown as follows:

(1) INHBA: forward—5′-CAGTGCCAATACCATG
AAGAGGA-3′; reverse—5′-ATGCAAAACTAGGG
AAGAGAACCC-3′

(2) RPL22L1: forward—5′-AAAGACAGGAAGCCCA
AGAGG-3′; reverse—5′-AGGGCATCCTGGCAGC
AAAA-3′

(3) CAPZA1: forward—5′-CGAATGAAGCCCAAAC
TGCC-3′; reverse—5′-TTTGGTGCGGGTAACT
GGAA-3′

(4) HMGCS2: forward—5′-AGTGGTAATGCTCGTC
CCAC-3′; reverse—5′-ATATGGGTTCCCCTCA
GCCC-3′

(5) 18S (reference gene): forward—5′-AAACGGCTA
CCACATCCA-3′; reverse—5′-CACCAGACTTG
CCCTCCA-3′

2.6. IHC Assays. The primary antibodies used in IHC for tis-
sue slides were as follows: anti-INHBA (Proteintech;
#10651-1-AP; 1 : 50 dilution), anti-RPL22L1 (Cusabio;
#CSB-PA740724A01HU; 1 : 50 dilution), and anti-CAPZA1
(CSB-PA004510LA01HU; 1 : 50 dilution). The slice was
deparaffinized and rehydrated, pretreated with citric acid
antigen retrieval solution (pH = 6:8), and rinsed in PBS.
The sections were then blocked in 2% goat serum and incu-
bated with the primary antibody overnight at 4°C. The
streptavidin-peroxidase method (ZSGG-BIO, China;
#PV9001) was used to show the levels of stained proteins.
The percentage of positive cells was scored as follows: 1
(0–25%), 2 (26–50%), 3 (51–75%), and 4 (>75%). The inten-
sity of positive staining was classified into 4 scales as follows:
0 (negative), 1 (weak), 2 (moderate), and 3 (strong). The
levels were semiquantitatively determined as percentages
multiplied by intensity.

2.7. Enzyme-Linked Immunosorbent Assay (ELISA). The
amount of INHBA in blood plasma was quantified using
the Human INHBA ELISA Kit (#ml022686; mlbio, China)
according to the manufacturer’s instructions. Briefly, 50μl
of plasma was added to 96-well anti-INHBA-coated plates
and incubated at 4°C overnight. After that, the samples were
removed and washed with washing buffer, and then horse-
radish peroxidase-labeled antibodies were added and incu-
bated at 37°C for 1 hour. Finally, substrate solution was
added and terminated by adding stop solution. Each well
was measured at an Optical Density (O.D.) of 450nm using
a microtiter plate reader within 15 minutes. The INHBA
concentrations were calculated using a standard curve.

2.8. Statistical Analysis. We used unpaired Student’s t-test
and the Mann–Whitney test as indicated, and binary out-
comes were compared. A P value less than 0.05 was consid-
ered statistically significant. Analysis was performed using
GraphPad Prism software (version 8.0.1).

3. Results

3.1. Long Read RNA Sequencing Establishes CRC-Related
Differential Profiles. To investigate the differential mRNA pro-
files of CRC, we used full-length RNA sequencing by ONT,
which is a third-generation RNA-seq technique, and con-
structed transcriptome landscapes in 20 CRC samples, which
were paired normal and cancer tissues (Figure S1, Figure S2,
Supplementary Table S1). ONT sequencing identified 8,566
transcripts with fold changes ≤ −1:5 or ≥1.5 and a P value <
0.01, encoding 4,179 genes (Figure 1(a)). The downregulated
genes numbered 2,632, and the upregulated genes numbered
1,547 in cancer tissues. Gene set enrichment analysis (GSEA)
indicated that these genes are involved in the primary
immunodeficiency, regulation of actin cytoskeleton, cellular
response to stimulus, and focal adhesion (Figure 1(b)).
Additionally, pathway enrichment analysis demonstrated that
these genes were significantly enriched in DNA replication
and cell cycle pathways (Figure 1(c)). To explore the
biological function, Gene Ontology (GO) enrichment analysis
was performed, and the eight top GO terms associated with
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immune response and DNA replication were enriched
(Figures 1(d) and 1(e)). Several chemokines enriched in
chemotaxis terms, including CXCL8/11/1/10/5, were
significantly increased in cancer tissues (Figure 1(e)). Our GO
analyses enriched many genes associated with sister chromatid
cohesion and condensed chromosome kinetochores, which are
involved in DNA replication, one of the most important
preconditions for the cell cycle (Figure 1(e)).

To validate our findings, we identified differential mRNAs
in TCGA colorectal cancer datasets (COAD and READ)
(Figure S3A). In total, 5,121 and 4,924 differentially expressed
genes were identified in both datasets. Additionally, 1,417
overlapping genes showed differential expression by either
ONT sequencing or TCGA analysis (Figure S3B). GO analysis

was also used to enrich the biological processes for COAD
differential genes, indicating that these genes were involved in
GO terms concerning the chemokine-mediated signaling
pathway, cellular response to tumor necrosis factor, and
cellular response to interleukin-1 (Figure S3C). For READ
differential genes, GO terms concerning the chemokine-
mediated signaling pathway, cell chemotaxis, and chemotaxis
were enriched as the most important biological processes for
these genes involved (Figure S3C). The above results showed
that chemokines play a key role in regulating CRC progression.

3.2. dMMR/MSI Related Genes.We further addressed the dif-
ferentially expressed genes between MSI and MSS to screen
the biomarkers associated with dMMR. ONT sequencing
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analyzed fiveMSIs and fiveMSSs. In cancer tissues, 752 differ-
entially expressed genes were identified; 404 genes were down-
regulated, and 348 genes were upregulated in MSI cancer
tissues compared with MSS cancer tissues (Figure 2(a)). In
normal tissues, 249 differential genes were identified in MSI,
comprising 126 upregulated genes and 123 downregulated
genes (Figure 2(a)). The MLH1 gene is a hallmark of dMMR
and was significantly decreased in MSI cancer tissues in our
ONT analysis (Figure 2(b)). Two hundred thirty-six overlap-
ping genes with differential expression were identified when
comparing cancer-MSI versus (vs.) cancer-MSS or cancer vs.
cancer tissue (Figure 2(c)). Additionally, 107 overlapping
genes were detected when comparing normal-MSI vs.
normal-MSS or cancer vs. normal tissues (Figure 2(c)).

To assess the biological features of these differentially
expressed genes, we employed GO analysis to feature the terms
for MSI-related genes. In cancer tissues, the most significant
GO terms forMSI-specific genes includedGO:0006695 (choles-
terol biosynthetic), GO:0008299 (isoprenoid biosynthetic), and
GO:0098609 (cell-cell adhesion), which referred to biological
process, molecular functions, and cellular component, respec-
tively (Figure 2(d)). In normal tissues, the most significant
GO terms were GO:0005886 (plasma membrane) and
GO:0045892 (negative regulation of transcription, DNA–tem-
plated), which were classified as cellular component and biolog-
ical process, respectively (Figure 2(f)). Additionally, both cancer

and normal tissues MSI-related differential genes showed simi-
lar GO terms, and most of these genes were involved in
metabolic-related processes, such as cholesterol biosynthetic
and peptide catabolic process (Figures 2(e) and 2(g)).

3.3. Exploration of MSI-Related Alternative Splice (AS) Events.
To identify AS landscape, these transcripts determined using
ONT sequencing were aligned to against known reference tran-
script annotations (hg38, UCSC) [30]. This analysis allows
identification of the following 7 types of alternative splice
events: (1) alternative 3′ splice site, (2) alternative 5′ splice site,
(3) exon skipping, (4) exon skipping/mutually exclusive exon,
(5) intron retention, (6) mutually exclusive exon, and (7)mutu-
ally exclusive exon/exon skipping. In total, ONT sequencing
detected 6,200 AS events in 20 samples, which were found in
2,728 genes. The frequencies of AS were significantly higher
in cancer tissues than in normal tissues, indicating that AS-
related variations play critical roles in regulating tumor pro-
gression (Figure 3(a)). Additionally, AS frequencies were signif-
icantly increased inMSI compared with MSS and revealed that
AS might be the signature for dMMR (Figure 3(a)). Exon skip-
ping was the most important AS event, accounting for nearly
60% of the total AS, and was significantly increased in cancer
tissues (Figure 3(b)). However, alternative 5′ splice sites were
significantly decreased in cancer tissues (Figure 3(b)). In total,
932 genes with AS events were significantly differentially
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Figure 2: Identification of dMMR/MSI-related genes between cancer and normal CRC tissues. (a) Heatmap illustrating the differentially
expressed genes in dMMR/MSI and MSS CRC. The dysregulated genes are clustered in cancer (left) and normal (right) tissues. (b)
MLH1 is the marker for dMMR, and its levels were compared between MSS (n = 5) and MSI (n = 5) tissues using ONT sequencing data.
(c) Venn diagram analysis of the significant overlap of upregulated or downregulated genes between dMMR/MSI and MSS and
comparing these genes with those showing differential levels in cancer (Ca) or normal (N) CRC tissues. (d) GO analysis enriches
dMMR/MSI-related genes in cancer tissues. (e) Circos plot displaying the GO BP terms and dMMR/MSS-related genes. (f) GO
enrichment shows the genes identified in dMRR/MSI normal tissues. (g) Circos plot delineates the GO BP terms and their enriched genes.
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Figure 3: Continued.
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expressed in cancer tissues (Figure 3(c)). To screen AS events
specifically expressed in MSI, we selected AS events that
occurred in three or more of these 20 samples, as a result,
170 MSI-related AS transcripts were produced which were
transcribed by 144 genes (Figure 3(d)). Among 144 genes, 68
genes were differentially expressed when comparing their levels
between cancer and normal tissues (Figure 3(e)). Eleven AS-
edited genes had differential levels when compared their
expression in MSI with their levels in MSS (Figures 3(e) and
3(f)). PPP1R14D, NOX1, and HMGCS2 were downregulated,
while POSTN and TIMP1 were upregulated in MSI tissues
(Figure 3(f)). According to UCSC analysis [31], both POSTN
and TIMP1 had six transcripts and were transcribed through
exon skipping, and NOX1 was encoded by four transcripts
while transcribed by exon skipping. HMGCS2 and PPP1R14D
were edited by exon skipping to transcribe two types of tran-
scripts (Figure 3(g)).

3.4. Infiltrated Immune Cells in Tumor Microenvironment
Were Identified by EPIC and CIBERSORT Analysis. Estimat-
ing the proportion of immune and cancer (EPIC) and
CIBERSORT are designed to identify infiltrated immune
cells and cancer cells from bulk RNA sequencing. Both tools
are used to assess the proportion of immune cells and cancer
cells in ONT sequencing data. EPIC identified 8 types of cells
in 20 samples (Figure S4A), and immune cells, including
CD8 T cells, NK cells, and B cells, were higher in normal
tissues than in cancer tissues (Figure S4B). By contrast,
endothelial cells and macrophages were decreased in
cancer tissues (Figure S4B). Cancer-associated fibroblasts
(CAFs) and NK cells were significantly increased in MSI
(Figure S4C). CIBERSORT recognized 22 cell types, which
included several subtypes of immune cells. Plasma cells
accounted for the highest proportion in our ONT data
(Figure S4D), and these cells were decreased in cancer
tissues (Figure S4E). Additionally, activated mast cells,
activated/resting dendritic cells, activated NK cells, and
naïve B cells were increased, while M2 macrophages and
resting CD4 memory cells were decreased in cancer tissues
(Figure S4E). In CIBERSORT analysis, activated mast cells
were abundant in MSI cancer (Figure S4F). EPIC and

CIBERSORT analysis indicated significantly differential
immune cell patterns between cancer and normal tissues.

3.5. WGCNA Identifies MSI-Specific Clusters. Weighted gene
coexpression network analysis (WGCNA) was performed
across all the sequencing samples to address the specific
clusters associated with MSI. In total, these genes can be
divided into 17 clusters, which are indicated with different
colors in Figure 4(a). Three clusters showed differential
expression in MSI that might represent signatures. Cluster
1 included 246 genes; among them, 20 overlapped genes
were simultaneously shown to be differentially expressed in
MSI and cancer vs. normal tissues (Figure 4(b)). INHBA,
MMP1, and SERPINE1 comprised a protein-protein inter-
acting (PPI) network according to STRING network analy-
sis, and these genes were significantly increased in cancer
tissues or MSI cancer tissues (Figure 4(b)). In cluster 2,
HMGCS2, FABP1, and SELENBP1 were significantly
decreased in MSI according ONT sequencing result, consis-
tent with an interacting network (Figure 4(c)). Cluster 3
included several upregulated genes in MSI and failed to
enrich any PPI network (Figure 4(d)). We further addressed
the overall survival (OS) relevant to the TCGA dataset using
the GEPIA tool. The results demonstrated that the overex-
pression of INHBA, TNFAIP6, and TIMP1 was associated
with a lower OS rate (Figure 4(e)). By contrast, increases in
HMGCS2 and SELENBP1 were associated with a higher
OS rate (Figure 4(e)).

3.6. Validation of MSI-Associated Genes.Our ONT sequencing
combined tremendous information in CRC, particularly for
MSI, allows identification of biomarkers to screen CRC or
MSI candidates. As mentioned above, the third-generation
sequencing technique allowed us to perform integrative analy-
sis of AS and gene levels at the RNA level. Our GO enrichment
revealed that RPL22L1, INHBA, and CAPZA1 had a signifi-
cantly higher expression levels in MSI than in MSS, and these
genes were also upregulated in CRC cancer tissues compared
with their levels in matched normal tissues. RPL22L1 tran-
scripts were edited by alternative 3′ splicing and were identified
in all 20 samples. HMGCS2 was downregulated in CRC cancer

POSTN

TIMP1

NOX1
HMGCS2

PPP1R14D

Exon skipping

Exon skipping

Exon skipping

Exon skipping
Exon skipping

(g)

Figure 3: Alternative splicing (AS) is significantly associated with dMMR CRC. (a) The number (no.) of AS-related events was compared in
cancer vs. normal controls. Normal tissue, MSI N vs. MSS N, and MSI Ca. vs. MSS Ca. (b) The percentages of seven AS type forms were
compared between cancer and normal tissues. (c) Venn diagrams representing the overlapping genes that were differentially expressed
and edited by AS. (d) Screening of AS-edited genes specifically associated with dMMR/MSI. Rows represent alternative splicing
transcripts. E. Venn diagrams of dMMR/MSI-specifically related AS- (dAS-) edited genes as well as differentially expressed genes
between cancer and normal tissues (left) and genes differentially upregulated or downregulated in MSI (right). (f) Eleven AS edited genes
are listed with fold changes. (g) Graphical depiction of ENSEMBL transcripts from POSTN, TIMP1, NOX1, HMGCS2, and PPP1R14D.
P values were obtained by nonparametric Mann–Whitney test (a, b) data are depicted by bar chart with error ± standard deviation of
mean (SEM). ∗P < 0:05.

9Disease Markers



tissue and showed lower levels in MSI than in MSS. Addition-
ally, HMGCS2 is an AS transcript that is not expressed in MSI
and serves as a signature for MSI. Importantly, RPL22L1,
INHBA, and HMGCS2 were involved in the I-SMAD binding
biological process (Figure 2(e)). Therefore, we selected these
four genes to further explore their differential expression using
RT-qPCR in 23 paired cancer and normal tissues. As expected,
the mRNA levels of RPL22L1, INHBA, and CAPZA1 were

significantly higher in cancer than in normal tissues; con-
versely, HMGCS2 was significantly downregulated in cancer
(Figure 5(a)). Next, we questioned whether these genes could
be signatures for MSI. We compared their fold changes
between MSI and MSS, and INHBA showed significantly
increased levels in MSI (Figure 5(b)). In cancer tissues,
RPL22L1 and INHBA were significantly upregulated in CRC
with positive lymph nodes. In normal tissues, RPL22L1,

(a)

120
75

20
31 199

502

3885

N v.s. CaCluster 1
(magenta)

Ca MSI v.s. MSS

(b)

78
201

11
10 208

523

3759

N v.s. CaCluster 2
(cyan)

Ca MSI v.s. MSS

(c)

59
67

6
6 213

527

3893

N v.s. CaCluster 3
(pink)

Ca MSI v.s. MSS

TNFSF9

RPL22L1
HS3ST1

PLOD1

MTAPSPP1

(d)

1.0
Overall survival

Pe
rc

en
t s

ur
vi

va
l

0.8

0.6

0.4

0.2

0.0

Months
0 50 100 150

Low INHBA TPM
High INHBA TPM

Logrank p = 0.045
HR(high) = 1.6
p(HR) = 0.047
n(high) = 135
n(low) = 135

1.0
Overall survival

Pe
rc

en
t s

ur
vi

va
l

0.8

0.6

0.4

0.2

0.0

Months
0 50 100 150

Low TNFAIP6 TPM
High TNFAIP6 TPM

Logrank p = 0.032
HR(high) = 1.7
p(HR) = 0.034
n(high) = 135
n(low) = 135

1.0
Overall survival

Pe
rc

en
t s

ur
vi

va
l

0.8

0.6

0.4

0.2

0.0

Months
0 50 100 150

Low TIMP1 TPM
High TIMP1 TPM

Logrank p = 0.034
HR(high) = 1.7
p(HR) = 0.036
n(high) = 135
n(low) = 135

1.0
Overall survival

Pe
rc

en
t s

ur
vi

va
l

0.8

0.6

0.4

0.2

0.0

Months
0 50 100 150

Low HMGCS2 TPM
High HMGCS2 TPM

Logrank p = 0.016
HR(high) = 0.55

p(HR) = 0.018
n(high) = 135
n(low) = 135

1.0
Overall survival

Pe
rc

en
t s

ur
vi

va
l

0.8

0.6

0.4

0.2

0.0

Months
0 50 100 150

Low SELENBP1 TPM
High SELENBP1 TPM

Logrank p = 0.018
HR(high) = 0.56

p(HR) = 0.019
n(high) = 135
n(low) = 134

(e)

Figure 4: dMMR/MSS-related gene modules mined through weighted gene coexpression network analysis (WGCNA). (a) WGCNA
analyzes ONT sequencing data. Gene clustering tree (dendrogram), module colors (main modules and submodules), and labels. (b)
WGCNA identifies cluster 1, which contained 20 genes with differential levels either comparing cancer and normal samples or
comparing dMMR/MSS and MSS samples (left). The protein-protein networks (PPIs) were investigated using the STRING tool (https://
www.string-db.org/) (right). (c) Cluster 2 contained 11 genes (left) used to construct the PPI (right). (d) Cluster 3 included 6 genes (left)
that showed no interactive relationship (right). (e). The clustered genes were associated with overall survival (OS) rates using TCGA
COAD datasets according to GEPIA (http://gepia.cancer-pku.cn/).
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INHBA, and CAPZA1 were found to be significantly increased
in CRC patients for whom experienced tumor lymphatic
metastasis (Figure 5(c)).

Next, we applied IHC to determine the protein levels of
INHBA, RPL22L1, and CAPZA1. Forty-nine cancer tissues
and 47 normal tissues were enrolled for IHC analysis. Their
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Figure 5: RT-qPCR assays validate the differential expression of selected genes. (a) RPL22L1, INHBA, and CAPZA1 are increased in cancer
tissues; conversely, HMGCS2 is decreased. (b) The fold changes of INHBA are significantly upregulated in MSI compared with those in
MSS. (c) RPL22L1 and INHBA expression are associated with tumor lymphatic metastasis. P values were obtained by paired
Student’s t-test (a) and nonparametric Mann–Whitney test (b, c); data are depicted by scatter plots (a, c) with mean ± SEM or bar
chart and scatter plots (b) with error ± SEM.
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Figure 6: Immunohistochemistry (IHC) assays determine the overexpression of screened genes. (a) Representative IHC pictures show the
expression of INHBA, RPL22L1, and CAPZA1 in tissue splices obtained from the same sample. (b) Comparison of the levels of INHBA
validates its overexpression in cancer tissues. (c) RPL22L1 levels were compared in cancer and normal tissues. (d) CAPZA1 shows higher
levels in cancer than in normal tissues. (e) The levels of INHBA, RPL22L1, and CAPZA1 were determined in lymph node-positive
metastatic tumors and lymph node-negative metastatic tumors (two patients missing information). (f) INHBA expression was
significantly increased in dMMR/MSI cancer. P values were obtained by nonparametric Mann–Whitney test (b–f), data are depicted by
bar chart and scatter plots (b–f) with error ± SEM. ∗P < 0:05, ∗∗P < 0:01, and∗∗∗P < 0:001; ns: not significant.
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levels were scored using semiquantitative analysis, demon-
strating that these three genes were significantly overex-
pressed in cancer tissues (Figures 6(a)–6(d)). IHC assays
were consistent with our RT-qPCR analyses. We also
addressed clinicopathological relevance and found that
INHBA was significantly increased in patients diagnosed
with lymph node metastasis tumors (Figure 6(e)). INHBA
shown higher levels in male CRC patients than their levels
in female (Table S2). Other clinicopathological factors
included tumor size, differentiation, TNM stage, and
vascular and nerve invasion; INHBA levels did not shown
statistic differences (Tables S2). We inferred based on both
mRNA and protein that INHBA expression can be used as
a biomarker to predict tumor lymphatic metastasis. Seven
patients who were enrolled in the IHC analysis were
diagnosed with MSI. We compared the expression of

INHBA in these patients and found significantly higher
levels in patients with MSI than in MSS patients
(Figure 6(f)).

3.7. INHBA Is a Signature for MSI Diagnosis in Blood Plasma.
Because INHBA is a protein secreted into the extracellular
space by tumor cells, we applied ELISA to determine its plasma
levels. Our analysis enrolled 20 plasma samples from patients
diagnosed with nontumor benign disease and 66 plasma
samples from CRC patients. As expected, the CRC plasma
levels of INHBA were significantly increased compared with
those of samples from nontumor benign disease patients
(Figure 7(a)). Receiver operating characteristic (ROC) curve
analysis was performed to examine the diagnostic efficiency
when INHBA was recognized as a biomarker. Area under the
curve (AUC) analysis indicated that secreted INHBA was a
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Figure 7: The detection of INHBA in blood plasma identifies a biomarker for CRC. (a) In plasma, the levels of INHBA were significantly
increased in patients with CRC. (b) Receiver operating characteristic (ROC) curve analysis of the diagnostic efficacy. (c) INHBA levels in
dMMR/MSI patients were higher than those in MSS patients. (d) INHBA is a biomarker for diagnosing dMMR/MSI candidates. P values
were obtained by nonparametric Mann–Whitney test (a, c); ROC curves were plotted using GraphPad Prism software to calculate P and
area under the curve (AUC) (b, d). Data are depicted by scatter plots (a, c) with mean value ± SEM.
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promising biomarker that could be used in clinical practice
(AUC = 0:650 ; P = 0:0430) (Figure 7(b)). We further exam-
ined whether secreted INHBA served as a marker to discern
dMMR/MSI CRCs. As expected, the levels of INHBA in
dMMR/MSI patients were significantly higher than those in
patients with MSS (Figure 7(c)). ROC curve analysis proved
that INHBA could diagnose dMMR/MSI CRCs
(AUC = 0:7835 ; P = 0:0032) (Figure 7(d)).

4. Discussion

In the present study, we constructed CRC mRNA profiles
using ONT long read sequencing, which has a unique
advantage in identifying the AS of mRNA transcripts.
dMMR/MSI tumors exhibit a high frequency of AS, which
is associated with a large burden of destabilizing mutations
[32]. Utilizing integrative bioinformatic analysis, we demon-
strated that immune chemotactic genes are the most differ-
entially expressed in cancer tissues and mediate the
recruitment of immune cells [33]. Both B and T cells are
the major class of immune cells in the adaptive immune sys-
tem and have multiple functions in facilitating the coevolu-
tion of cancer and its microenvironment [34]. Our ONT
data consistently indicated that these cells are decreased in
cancer tissues. Innate immune cells, including NK cells,
macrophages, and mast cells, were dysregulated and showed
differential levels in MSI-related CRC. These findings are
associated with the characteristics of innate cells, which infil-
trate the microenvironment and display tumor phagocytosis
or promote tumor growth [35].

Despite extensive investigation of genomic mutations
and many genetic drivers, few studies have focused on AS
in dMMR/MSI [36]. Here, despite using a small cohort,
our ONT sequencing determined thousands of differentially
expressed genes and AS events, which showed a higher effi-
cacy than next-generation sequencing. Tumor mutational
burdens predict the response efficiency to ICB treatment in
dMMR/MSI tumors [37]. In our study, AS of mRNA tran-
scripts was significantly correlated with dMMR/MSI and
we screened several potential biomarkers to validate in
CRC tissues or plasma. INHBA, RPL22L1, CAPZA1, and
HMGCS2 showed significant differential levels in dMMR/
MSI cancer tissues and were finally selected for further
detection. RPL22L1, a ribosomal protein, is overexpressed
in ovarian cancer and promotes cancer cell metastasis via
the epithelial-to-mesenchymal transition [38]. Consistently,
we validated its overexpression in CRC and found that it
was associated with dMMR/MSI or tumor lymphatic metas-
tasis. CAPZA1 regulates actin polymerization, which con-
trols cell motility by binding to the barbed ends of actin
filaments [39]. CAPZA1 is upregulated in hepatocellular car-
cinoma [40] and gastric cancer [39]. HMGCS2 is downregu-
lated in CRC, serving as a critical downstream target of
SLC38A4 to regulate tumor cell metabolism [41].

INHBA is a susceptibility gene for pancreatic cancer [42]
that is involved in the TGF-β signaling pathway and was
edited by AS in our ONT analysis. INHBA is associated with
the CRC OS rate and plays a role in promoting tumor cell

proliferation and migration [43]. We demonstrated that
INHBA is significantly increased in CRC cancer cells and,
more importantly, is a potential biomarker for discerning
dMMR/MSI candidates.

The most important concept conveyed in this study is a
comprehensive investigation of mRNA profiles using third-
generation sequencing, which allows us to explore AS events
related to CRC dMMR/MSI for the first time. These newly
constructed ONT data identified multiple genes that could
be applied as markers associated with CRC progression. We
surveyed their potential clinical applications in small sample
sizes, such as INHBA, a promising dMMR/MSI biomarker.
Two major limitations of our study are its retrospective nature
and single-center design. Further study is required to address
the clinical relevance of INHBA or other identified genes as
markers for MSI-H/dMMR solid tumors in a larger cohort.
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Supplementary Materials

Figure S1: a schematic diagram illustrates how samples were
selected 1 and ONT sequencing carried out. Figure S2:
hematoxylin-eosin staining shows normal tissue, MSS can-
cer tissue, and MSI cancer tissue. Figure S3: TCGA COAD
and READ analysis validate the identified differential genes
using ONT sequencing. A. Volcano plots showing the upreg-
ulated or downregulated genes in the COAD (left) and
READ (right) datasets. B. Venn diagram determines the
overlapping dysregulated genes using ONT sequencing
detection as well as validation in COAD and READ. C.
GO enrichment enriched BP terms for COAD (left) and
READ (right). Figure S4: cell types in the tumor microenvi-
ronment (TME) are analyzed using EPIC and CIBERSORT
tools. A. EPIC analysis shows the cell fractions. B. Compar-
ison of the distributions per cell type in cancer and normal
tissues was performed by EPIC. C. dMMR/MSI tumor has
higher CAF and NK cells. D. Cell compositions in the
TME were calculated using the CIBERSORT method. E. Cell
compositions analyzed by CIBERSORT were compared
between cancer and normal TMEs. F. The compositions of
activated mast cells are increased in MSI. P values were
obtained by nonparametric Mann–Whitney test (B, C, E);
data are depicted by box and scatter plots (B, C, E) with
whiskers (Min–Max). ∗P < 0:05, ∗∗P < 0:01,and∗∗∗P < 0:001
; ns: not significant. (Supplementary Materials)
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