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Abstract: Machine learning (ML) can be an appropriate approach to overcoming common problems
associated with sensors for low-cost, point-of-care diagnostics, such as non-linearity, multidimen-
sionality, sensor-to-sensor variations, presence of anomalies, and ambiguity in key features. This
study proposes a novel approach based on ML algorithms (neural nets, Gaussian Process Regres-
sion, among others) to model the electrochemiluminescence (ECL) quenching mechanism of the
[Ru(bpy)3]2+/TPrA system by phenolic compounds, thus allowing their detection and quantification.
The relationships between the concentration of phenolic compounds and their effect on the ECL
intensity and current data measured using a mobile phone-based ECL sensor is investigated. The ML
regression tasks with a tri-layer neural net using minimally processed time series data showed better
or comparable detection performance compared to the performance using extracted key features
without extra preprocessing. Combined multimodal characteristics produced an 80% more enhanced
performance with multilayer neural net algorithms than a single feature based-regression analysis.
The results demonstrated that the ML could provide a robust analysis framework for sensor data
with noises and variability. It demonstrates that ML strategies can play a crucial role in chemical or
biosensor data analysis, providing a robust model by maximizing all the obtained information and
integrating nonlinearity and sensor-to-sensor variations.

Keywords: ECL; low-cost sensor; mobile phone-based sensor

1. Introduction

Extensive progress has been made in chemical and biosensor technology to provide
reproducible and reliable data in a fast and low-cost setting. These efforts include develop-
ing enhanced transducers, finding/engineering better binding moieties, devising signal
amplification strategies, developing strict control of sensing conditions, and developing
improved sensing strategies [1–3]. In contrast to such rapid development in hardware and
sensing strategies, less attention has been paid to the data analysis of these sensors. It is
important to provide consistent sensing conditions for quality control, but it results in a cost
increase through rigorous hardware development, environment control, and automated
operation. Thus, there arises a strong need for transform data analytics to address some of
the challenges in low-cost sensor systems.

ML has emerged as a powerful tool for a wide range of sensor data analysis, including
analyte detection, protein-protein interaction, wearable sensors, environmental pollutant
monitoring, and sensor arrays [4–10]. ML can provide novel strategies for overcoming
challenges faced by common sensors and detecting species or concentrations of analytes
based on a trained algorithm. The advantages of using ML include the capability of
detecting anomalies, noise reduction, categorizing signals, and most importantly, it can find
unforeseen interrelations between signals and chemical- and/or bio-events in the sensor
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with advanced data-driven strategies [6]. Algorithms, such as support vector regression
(SVR), decision trees, neural networks (NN), and Gaussian Process Regression (GPR) have
been employed to sensor analysis in recent years [11]. ML applications for sensor data
is crucial as there is a strong need for evaluating multidimensional and nonlinearities of
the detected signals. Traditional data analysis for chemical and biosensors have relied
heavily on calibration curves with a predetermined feature. Even under stringent control,
it is hard to avoid sensor-to-sensor variations due to sensor unit replacements that would
require re-calibration. ML can provide methods to overcome these challenges faced by
those sensors and predict species or concentrations of analytes effectively [6,12].

The ECL sensing scheme has received significant attention as a platform of light-
emitting sensors and an analytical detection method. Because ECL does not require any
external excitation-light source, it has the advantage of having ultra-sensitivity, generating
an exceptionally low background signal. In addition, it allows minimal instrumentation
due to the simplicity of voltage application, rapid measurements (a few seconds), localized
light emission, and a cost-effective setup [13]. With the substitution of an expensive detector
(photon multiplier tube) and a control hardware/data collector with a cell phone camera
and processor, a mobile phone-based ECL sensor has been developed for its mobility,
portability, and affordability [14,15].

The ML modeling that explains the mechanism of chemical or biosensing events is
relatively new to the field. Nevertheless, ML might be an essential part of the modeling
arsenal with applications in the sensor technology field for detection purposes. Specifically
in the field of portable ECL sensors, to the best of the authors’ knowledge, ML has been
little explored with the exception of an uncommon study developed by our research
team [12]. In the previous study, ML was used to model the coreactant ECL mechanism of
the [Ru(bpy)3]2+/TPrA system to quantify concentrations of the luminophore [Ru(bpy)3]2+.
Our current study aims to model a different mechanism; the ECL quenching mechanism of
the [Ru(bpy)3]2+/TPrA system by phenolic compounds. This study proposes a strategic
ML approach for the detection and quantification of specific analytes, such as phenolic
compounds, to contest the inevitable challenges that a low-cost sensor would face from
on-site detection.

The ECL sensor can detect phenolic compounds through the direct application of the
compound in the [Ru(bpy)3]2+/TrPA system using the quenching property of phenols.
The target phenol species were Vanillic acids and p-Coumaric acids for this study. These
chemicals are effective ECL quenching agents of [Ru(bpy)3]2+, being that their monitoring is
critical for the biofuel industry [16]. Currently the gold standard for measuring Vanillic and
p-Coumaric acid is the chromatographic method, which is time consuming and expensive to
operate. There is a strong need for a portable and affordable sensor that can be implemented
in an industry setting.

The quenching mechanism by these phenolic compounds is complex in nature as it
involves the electrochemical reaction, mass and ion transport, as well as emission. The
applied potential triggers a series of reactions, including the ground state and intermediate
species in the system. The excited state of the luminophore [Ru(bpy)3]2+*, which is gener-
ated from a series of redox reactions, can decay to the ground state [Ru(bpy)3]2+ without
ECL emission in the presence of the oxidation products of the phenolic compounds, such
as o- or p-benzoquinone. Details of the quenching mechanism have been described else-
where [17]. The quantitative investigation of the ECL quenching mechanism to detect the
concentration of involved species naturally leads to the use of partial differential equations
that constitute complex mechanistic models. Alternatively, this study proposes a novel
modeling approach based on ML for detection purposes.

The ECL quenching in the [Ru(bpy)3]2+/TrPA system by phenolic compounds in a
mobile phone-based sensor has several common challenges that can be widely recognized
among similar sensors, including: (1) nonlinear dependencies; (2) multimodal data ac-
quisition; (3) sensor-to-sensor variations when the sensor unit is changed; (4) presence of
anomalies; (5) signal fluctuations due to operational/environmental variations; (6) signal
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degradation by repeated use of a sensor; (7) uncertainty in finding key characteristics of a
signal if newly developed; and (8) lack of available sensor data to drive generalization. In
this study, we investigated whether ML strategies could efficiently overcome the familiar
challenges presented by the ECL sensor, which could be applied to a variety of sensors.

This study introduces ML-based strategies to effectively analyze the nonlinear and
multidimensional sensor data and overcome other challenges on a mobile phone-based,
portable ECL sensor. We used various ML algorithms with complete time series data from
the ECL intensity and current measured (or a combination of both called multimodal data),
as well as key features extracted from the time series data. This approach can be applied to
similar chemical and biosensors that potentially could be developed for practical uses in a
low-cost setting. This approach can significantly advance the way data is analyzed in a
practical aspect of dealing with anomalies and variability.

2. Materials and Methods
2.1. Sensor Apparatus and Measurements

Simultaneous measurements of the ECL intensity and current were carried out using
a mobile phone-based ECL sensor apparatus. A consumer camera from a Samsung galaxy
S10 was used to record the ECL light intensity (30 frames per second) as a movie clip. A
chronoamperometry signal was recorded simultaneously (sample frequency at 1000 Hz)
through a custom-made compact potentiostat. Details of the apparatus design and the
potentiostat circuit operation have been described in [14,15].

Disposable screen-printed electrodes (DropSens, DRP-110) with a carbon working elec-
trode (4 mm diameter) and Ag/AgCl reference were used. For each electrode,
15–20 quenching experiments were conducted consecutively before replacing the elec-
trode. Due to the slight variability in electrodes, each data set was normalized based on the
control experiments.

For the control experiment with zero phenolic compounds, a mixture of 1 µM of
[Ru(bpy)3]2+ and 20 mM of coreactant tri-n-propylamine (TPrA) in 0.1 M of PBS was used.
Vanillic and p-Coumaric acids were first dissolved in ethanol to constitute a 180 mM stock
and subsequently diluted to desired concentrations of 0.1–50 µM with the solution used for
the control experiments. For each electrode, 50 µL of the constituted sample was applied
on the electrode. A DC voltage of −1.2 V was first applied for 1 s to establish stability and
+1.2 V followed for another second to elicit the ECL reaction. A custom-built mobile app
controlled the potentiostat and mobile phone camera shooting. The ECL intensity and
current data were simultaneously collected in the app during the voltage application.

2.2. Data Preprocessing

The mobile phone-based ECL sensor simultaneously produces two types of sequential
time series data (Figure 1): (1) The ECL light intensity was recorded as a movie file (mp4)
by the default camera app, followed by extracting them into image sequences. The average
light intensity within the region of interest (ROI) in each frame was calculated using the
NIH ImageJ software. The time series of the ECL intensity data contained a very low
amount of ambient light, so the baseline of each run was subtracted from the data set.
The average max intensity of the control experiments of each electrode was then used
to normalize the data set; (2) The electric current followed by the chronoamperometric
voltage application was also recorded by a compact potentiostat in the sensor apparatus.
The time series of the current data was also normalized with the average max value of
the controls. The baseline was not subtracted as there was minimal contamination. The
normalization preprocessing was performed because each electrode has fluctuations due
to manufacturing/environmental variability and the use of scaled values often improves
performance in ML training. During a 1 sec duration of applied voltage, the first 25 data
points of the ECL intensity and 200 data points of the current data were used, as they were
the most significant.
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Figure 1. Illustration of entire process of multimodal data collection and prediction process.

2.3. Testing Strategy

To evaluate the performance of the concentration prediction model, we used the
following ML algorithms: a single, bi-layer and tri-layer neural network, SVR, Boosted
Trees, and GPR. Just for comparison, a linear regression method was also used although it
would not be the best choice considering non-linear dependencies of the data.

The training and test data were split using a stratified shuffle split and a 5-fold cross
validation method was used to evaluate the performance more accurately. The whole data
was strategically divided into 5 folds, in which 4 folds (referred to as training data) were
used for training/validation of the prediction model, while 1 fold (referred to as test data)
was held back for testing. Specific prediction models were trained and validated with the
training data set, followed by testing with the test data for score comparison. This entire
process was repeated 5 times to generate statistical metrics. Figure 2 illustrates the cycle of
each process.
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Figure 2. Schematics of 5-fold cross validation where the whole data is split into 5 folds. After the
training/validation was completed with the training set (4 folds) in a prediction model, the test set is used
to determine the accuracy of the trained model. The entire process is repeated 5 times with each split.

To compare the traditional calibration approach, data were plotted for ECL intensity
vs. concentration in the range of 0–30 µM and the exponential decay fit from Excel software
(Microsoft) was used.

The prediction performance of the model was evaluated through statistical metrics: R
squared (R2), root mean squared error (RMSE), and mean absolute error (MAE). We trained
the ML models with the time series data of the ECL intensity/current directly and with
extracted features.

2.4. ML Prediction Models
2.4.1. Single or Multilayer Neural Net

Typically, a neural net (NN) structure includes an input, hidden, and output layers.
In this study, a single layer neural net refers to a neural net with one hidden layer, which
was useful in the early age of machine learning development. Multilayer neural networks
contain a series of fully connected hidden layers, which enable functioning with higher
complexity and capturing higher levels of patterns. The number of neurons of the hidden
layer are key parameters which affect the performance of the NN significantly [18].
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For all NNs, the input layer had 225 neurons for a multimodal time series and
14 neurons for multimodal features. The single layer NN had 25 neurons in the hidden
layer and the bi- and tri-layer NNs had 10 neurons in each hidden layer. For consistency
purposes, the same number of neurons in the hidden layers for each bi or tri-layered NN
test was used whether it was for time series data or features extracted from the time series.
The output layer had one neuron for all NNs.

A Rectified Linear Unit (ReLU) was used as an activation function for it improves the
training speed and performance with the computational simplicity and linear behavior. For
training we used the stochastic gradient descent method that estimates the error gradient for
the current state of the model using the training dataset, and then updates the model weights
using the back-propagation of errors algorithm. The max iteration was limited to 1000.

2.4.2. Support Vector Regression (SVR)

Support vector machines (SVMs) are designed to search for a hyperplane that maxi-
mizes the margin between the training patterns and the decision boundary. Due to their
impressive performance, SVMs are a popular approach for binary classification tasks [19].
Support vector regression (SVR) is an adaptation of the SVM to regression problems. SVR
uses a loss function that penalizes predicted values that fall outside an acceptable window
around the true values during training. As with the SVM, SVR employs kernel methods
that transform features and maps data into a higher dimensional space. The kernels allow
SVR to be more flexible and able to handle nonlinear problems. For this work, the quadratic
SVR method that employs 2nd order kernels was implemented.

2.4.3. Trees

A decision tree is built by splitting the source set, constituting the root node of the tree,
into subsets, which constitute the successor children. Trees often encounter the problem
of overfitting as the tree grows deeper; ensemble trees methods are widely used for their
excellent performance. As one of the ensemble methods, Boosted Trees was used. Boosting
is an iterative process where models are trained in a sequential order. Boosted Trees
operates by developing a number of trees to combine the output of many weak learners
with weighting and applying the learners repeatedly in a series. By providing the use
of simple tree learners, the Boosted Trees method is robust against overfitting problems,
works well with noisy signals, and vastly improves prediction accuracy [20].

2.4.4. Gaussian Process Regression (GPR)

GPR is a nonparametric, Bayesian approach to regression that works well with small
datasets and provides uncertainty measurements on their prediction [21]. GPR specifies a
priority on the function space, calculates a posterior using the training data, and computes
the predictive posterior distribution on the points of interest. The GPR prediction is
probabilistic (Gaussian) with empirical confidence intervals and provides versatility in
choosing kernels. For this work, we used a square exponential kernel in the GPR method.

3. Results and Discussion
3.1. Variability from the Mobile Phone-Based ECL Sensor

The low cost, mobile phone-based ECL sensor was operated in a custom-built enclo-
sure at room temperature [14]. The obtained sensor data may vary when the sensor units
are replaced (sensor-to-sensor variations), the measurements are repeated within the same
electrodes, the sensing environment fluctuates during various times of the day, and slight
changes happen with operators or sample preparation. As a result, the ECL intensity and
current data obtained from several electrodes showed variability even after normalization
(Figure 3). The ECL intensity data from Vanillic acid has several low signals that consis-
tently appear throughout the concentration range, while most other signals are within
the norm, shown in Figure 3a. Anomalies are also seen in the p-Coumaric acid current
data even though the ECL intensity appears more consistent among different electrodes
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(Figure 3b). Even after very obvious outliers or visible mistakes can be excluded in the data
preprocessing by the three sigma rules, some signals appear almost like anomalies due to
the imperfect sensing situations and were included in the database to reflect reality.
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Figure 3. Selected examples of time sereis of ECL intensity and current from seven to eight different electrodes: (a) Vanillic
acid (0.5, 1, and 5 µM) in blue; (b) p-Coumaric acid (1, 5, and 10 µM) in red. Horizontal axes represent measurement frame
and vertical axes represent the normalized signal (arbitrary unit). These time series data were used to train ML models for
Section 3.2. The data shows the variability of data that are fed into the ML algorithm. VA: Vanillic acid; pCA: p-Coumaric acid.

Overall, the signal variation for the same concentration in different electrodes can be
a significant amount of up to a 64% deviation. The low-cost, quantitative point-of-care
devices can have such variability and anomalies in the measurement. It is not feasible to
account for the large variability using a traditional calibration between sensor measurement
and concentration. The traditional calibration curve, that is, a regression equation, infers
the dependent variable (analyte concentration) if it is correlated with a key feature of
the system. Typically, the input features for the traditional regression are one or two at
most. To quantitatively compare the ML performance with the traditional calibration
approach, MAE from traditional calibration were calculated following the five-fold split
method. The data were split into five groups while an average of four groups (80%) were
used to generate a calibration curve and the one group (20%) was employed to report the
performance. We used ECL intensity for the calibration curve because all our previous
work used only ECL intensity as a sole feature for data regression [14,15,17]. For Vanillic
acid, the traditional nonlinear calibration curves using the peak intensity scored an MAE



Sensors 2021, 21, 6004 7 of 11

of 4.50 µM with a standard deviation of 1.1 µM in the concentration prediction. The ECL
intensity of the Vanillic acid contained signals that could be easily regarded as anomalies
and thus, the mathematical model-based calibration shows large errors. For p-Coumaric,
the traditional nonlinear calibration curves for a scored MAE of 2.19 µM with a standard
deviation of 0.667 µM in the prediction.

The results suggest that the traditional calibration curve is not practical when data
have a great deal of variability. The calibration curve can be considered an oversimplified
approach to explain the complex chemical-physical meaning of the quenching mechanism
of the [Ru(bpy)3]2+/TPrA system by phenolic compounds, and in this study required
the predetermination of a single key feature (peak intensity) that may not have sufficient
information on the system.

3.2. Prediction Performance of the ML Models Using Multimodal Time Series

We first investigated whether ML models could provide effective predictive perfor-
mance that leverage multimodal information and mitigate problems due to data vari-
abilities. Time series of ECL intensity and current data were used for the training, vali-
dation and testing of ML models following a five-fold cross validation, as shown in the
Figure 2 schematics.

The MAE values for the prediction of Vanillic and p-Coumaric acids using single, bi
and tri-layer neural nets, SVR, Boosted Trees, GPR, and linear regression methods were
summarized in Figure 4. First, it is noted that the linear regression method, equivalent to
a traditional calibration curve, performed significantly worse (higher MAE) than the ML
models for both Vanillic and p-Coumaric acid data, indicating the nonlinear dependencies
of both the intensity and current signals to the concentration of the phenolic compounds.
The ML models were effective for comprehending the nonlinearity of the sensor signals to
the concentration. Second, it is observed that ML using multimodal data (combined ECL
intensity and current data) was effective in achieving better prediction performances. For
instance, for Vanillic acid, a significantly reduced MAE was achieved using multimodal
data, indicating ML can identify relationships between the intensity and current in order to
infer the concentration of the phenolic compounds.
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for Linear Regression are not provided due to the poor performance.
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When comparing ML models, it was observed that the bi- or tri-layer neural nets using
multimodal data reduced the MAE by 40–67% from the prediction results of the neural
nets using a single data modality (either ECL intensity or current). This result indicated
that the multilayer neural networks were effective in perceiving higher order patterns
and relationships from information from two different modalities. The resulting MAE
for Vanillic acid with a tri-layer neural net was at 0.86 µM, which can be interpreted as
that the concentration could be approximately 0.86 µM away from the actual value if the
combined multimodal data are used. Considering the significant variability in the intensity
data for Vanillic acid and an MAE of 4.50 µM from a traditional calibration curve, it is an
approximately 80% improvement in the prediction accuracy. The result demonstrated that
the multilayer neural nets were able to account for the data variability and learn higher
relationships in the combined data set.

p-Coumaric acid had a more consistent ECL intensity data, but there was a great
disparity in the prediction of concentrations using exclusively current data (Figure 3b). All
ML models showed a lower MAE using only intensity data. Using only the current data, an
MAE greater than those shown by the Vanillic acid predictions was observed. Interestingly,
the combined intensity and current data to infer the concentration of p-Coumaric acid does
not show significant improvement, which could indicate a weaker relationship between
the intensity and current. However, it is notable that tri-layer neural nets and Boosted Trees
showed improvement in the MAE with the combined data. The resulting MAE for the
prediction of p-Coumaric acid was of 1.69 µM and 1.74 µM with the tri-layer neural net and
the Boosted Trees, respectively, using the multimodal data. Considering the test data were
sampled from all electrodes and the sensor-to-sensor variation was significant, this is an
excellent prediction performance. The “bigger” models, such as the tri-layer neural net and
Boosted Trees were beneficial for capturing the weaker connection between intensity and
current. Although bigger models are more susceptible to overfitting with small and simple
datasets, in this study, for instance, increasing the number of layers could have increased
the neural net’s ability to learn higher-level concepts.

The results demonstrated that ML models provide excellent prediction performance
for nonlinear sensor data and successfully mitigate the large variability issues caused by
sensor-to-sensor variations. In addition, ML can correlate multimodal data to provide
better prediction as it can provide more information than a single modality when multilayer
neural nets or Boosted Trees were used.

3.3. ML Regression Performance with Extracted Features

Feature extraction for chemical or biosensor often relies on researchers’ expertise, so
various features were experimented on to see how they affect the ML model performance
in predicting concentrations of analytes. The features for the ECL sensor time series
included max intensity, slope features (linear fit on the decay curve), area underneath
and polynomial features (coefficients from a quadratic fit). The model was tested with
a selected subset of features of ECL intensity or current, and all multimodal features (a
combination of intensity and current features) using several prediction models of single,
bi-, and tri-layer neural nets, Boosted Trees, SVR, GPR and linear regression. Figure 5
shows that the prediction performance for both Vanillic and p-Coumaric acid significantly
improved when all the features from the multimodal data were used compared to when
the subset of intensity or current was used. The tri-layer neural net scored an MAE of
0.86 µM and 1.36 µM for Vanillic and p-Coumaric acid respectively, proving that it was
able to find higher complex patterns when all the features were used.
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Tables 1 and 2 summarize the prediction performance of the ML models for multi-
modal time series and multimodal features for Vanillic and p-Coumaric acids. For Vanillic
acid (Table 1), the best prediction performance was observed to be an MAE of 0.805
(R2 = 0.863) for multimodal time series and an MAE of 0.861 (R2 = 0.875) for multimodal
extracted features. When multimodal data were used, the tri-layer neural network per-
formed excellent for both time series and extracted features. This result indicated that the
data processing with extracted features does not guarantee yielding improved results and
time series can perform equally well with multilayer neural nets. Considering the Vanillic
acid data had a great deal of variability, the multilayer neural net provided a noticeable
improvement by detecting meaningful patterns from just time series.

Table 1. ML prediction performance using multimodal time series and features for Vanillic acid.

Multimodal Time Series Multimodal Features

MAE RMSE R2 MAE RMSE R2

Tri-Layer Neural Network 0.860 1.528 0.847 0.861 1.492 0.875
Bi-Layer Neural Network 0.805 1.410 0.863 0.886 1.499 0.838

Single-Layer Neural Network 0.917 1.491 0.863 1.493 2.048 0.760
Quadratic SVR 1.946 2.724 0.688 3.287 4.805 −0.040
Boosted Trees 1.909 3.477 0.450 1.947 3.433 0.356

GPR 1.181 1.796 0.850 1.408 2.417 0.692
Linear Regression 9.503 13.601 −8.744 4.037 5.886 −0.488

It was interesting to see that the two compounds have distinctive characteristics in the
data relationships and ML performances. For p-Coumaric acid, the best performance was
obtained as an MAE of 1.686 (R2 = 0.763) for the tri-layer neural net using a multimodal
time series and with an MAE of 1.051 (R2 = 0.864) for the GPR using extracted features.
This result shows that multimodal features can improve the prediction performance while
the simple combination of two time series do not improve it significantly. In both cases, the
advantage of the multimodal data was clearly demonstrated.
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Table 2. ML prediction performance using multimodal time series and features for p-Coumaric acid.

Multimodal Time Series Multimodal Features

MAE RMSE R2 MAE RMSE R2

Tri-Layer Neural Network 1.686 2.567 0.763 1.360 2.359 0.737
Bi-Layer Neural Network 1.839 2.795 0.741 1.183 1.958 0.837

Single Layer Neural Network 2.094 3.183 0.621 1.501 2.309 0.724
Quadratic SVR 2.355 3.214 0.629 1.746 2.520 0.743
Boosted Trees 1.742 2.486 0.818 1.855 2.621 0.804

GPR 1.825 2.643 0.726 1.051 1.635 0.864
Linear Regression 5.552 7.082 −1.316 2.970 3.526 0.622

Two notable ML models are tri-layer neural net and GPR, which produced outstanding
results consistently. A common practice for providing input variables (predictors) is using
features extracted from sensorgrams. In this case, the number of predictors is seven for each
intensity and current signal, fourteen when combined. We have also used the preprocessed
time series data as predictors, which is close to the raw data directly from experiments. The
intensity had 25 and the current had 200 predictors (due to the different sampling rates). Using
time series values as predictors saves significant preprocessing and feature extraction efforts.
Feature engineering, developing informative features for ML algorithms, is often challenging.
In practice, seemingly reasonable extracted features may not sufficiently capture the critical
information needed for accurate predictions. By using the time series values from the sensor
as predictors, flexible ML approaches, such as multilayer neural nets, can potentially learn
their own, possibly more informative features from the signals. However, predictions based
on time series values can be more difficult if the ML model is not sufficiently complex and
the training set is too small. A single time series data (either from ECL intensity or current
data) contain less information for prediction than a well-designed, extracted feature. Some
of the time series values are simply baselines, noises are still there, and the onset could be
slightly off on top of the sensor variability we mentioned earlier. Based on our result, the
tri-layer neural nets and GPR were both successful at predicting concentration from time series
values. This approach is particularly useful when (a) reducing preprocessing time is beneficial;
(b) obvious features are not clear for a newly developed sensor; or (c) discovering unforeseen
potential relationships are desired.

The proposed ML models successfully predict concentration given data collected from
ECL sensors. Considering the complex nature of electrochemical reactions in the ECL
quenching mechanism by phenolic compounds, it is remarkable that the ML models can
achieve this from sensor time series values without extensive preprocessing and feature
extraction. Developing a mechanistic or first-principle model for prediction purposes
and which also explains electrochemical reactions and mass transport mechanisms on the
circular electrodes is complex and time consuming. Even with such a model, there may be
no guarantee of its effectiveness in a data analysis pipeline. This study demonstrates that
ML models provide accurate predictions of the concentration of phenolic compounds and
can account for sensor-to-sensor variations.

4. Conclusions

This study addresses practical challenges with the low-cost sensor devices for the
detection and quantification of phenolic compounds and how to overcome the challenges
with the use of powerful ML strategies. The low-cost, mobile phone-based ECL sensor
generated nonlinear, multimodal data with considerable variability due to sensor-to-sensor
variations and environmental fluctuations. In contrast to the traditional calibration ap-
proach, the ML models, such as tri-layer neural net or Boosted Trees, carried out effective
regression tasks for detection purposes by learning higher patterns from the multimodal
data. The results demonstrated that the ML models could provide a robust analysis frame-
work for sensor data with noises and variability without extensive preprocessing. The ML
analysis can compensate for the deficiencies of less stringent, simple, affordable device
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settings through powerful learning algorithms and thus, accelerate the implementation of
low-cost sensors in a wide range of practical situations, such as the detection of phenolic
compounds on-site and their monitoring in industrial environments.
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