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Published: 25 July 2016 Many microbes can acquire genetic material from their environment and incorporate it into their
genome, a process known as lateral genetic transfer (LGT). Computational approaches have been
developed to detect genomic regions of lateral origin, but typically lack sensitivity, ability to distinguish
donor from recipient, and scalability to very large datasets. To address these issues we have introduced
an alignment-free method based on ideas from document analysis, term frequency-inverse document
frequency (TF-IDF). Here we examine the performance of TF-IDF on three empirical datasets: 27
genomes of Escherichia coli and Shigella, 110 genomes of enteric bacteria, and 143 genomes across

12 bacterial and three archaeal phyla. We investigate the effect of k-mer size, gap size and delineation
of groups on the inference of genomic regions of lateral origin, finding an interplay among these
parameters and sequence divergence. Because TF-IDF identifies donor groups and delineates regions

of lateral origin within recipient genomes, aggregating these regions by gene enables us to explore,

for the first time, the mosaic nature of lateral genes including the multiplicity of biological sources,
ancestry of transfer and over-writing by subsequent transfers. We carry out Gene Ontology enrichment
tests to investigate which biological processes are potentially affected by LGT.

Many microbes can acquire DNA from an exogenous source (other microbes, or the environment) and maintain
it for transmission to subsequent generations, either incorporated into the new host genome or stabilised on a
plasmid or other extra-chromosomal element. This process, lateral genetic transfer (LGT; also known as horizon-
tal genetic transfer), generates size and gene-content diversity among microbial genomes, and is a major driver of
metabolic innovation'= including resistance to antibiotics**.

Computational approaches have been applied to detect regions of lateral origin in microbial genomes since the
1990s%7. In the accompanying article® and elsewhere® we review the main biological and computational factors
that make LGT detection so challenging. Briefly, there is great diversity (and little predictability) with regard to
the length, source or features of the introgressed DNA. LGT events can overwrite an existing sequence, including
other lateral regions, rendering the new host genome an evolutionary pastiche or mosaic. Over time, features (e.g.
G+C content or codon usage) indicative of lateral origin will be “ameliorated” to become indistinguishable from
those of the new host genome®~!1. For these reasons, accurately identifying regions of lateral origin can be very
challenging.

Next-generation sequencing technologies are increasingly making it possible for researchers to address
large-scale questions in the biological sciences, including open questions regarding the mechanisms and impact
of LGT?**!2, Several computational approaches are available to detect regions of probable exogenous origin in a
genome, among which tree-based methods are considered to be the gold standard'®. Taking genes (gene families)
as the units of analysis, these approaches delineate orthogroups, multiply align sets of sequences, infer gene trees
and compare their topologies against that of a reference “species” tree; well-supported instances of topological
incongruence are taken as prima facie instances of LGT*"'6. Such workflows are computationally demanding, yet
cannot identify recombination breakpoints in individual genomes, and often fail to resolve the direction of trans-
fer. They can be accelerated by use of approximate methods, better matching of computational tasks to hardware,
and parallelisation, but nonetheless remain slow with large datasets!’.
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For these reasons there is much interest in approaches that avoid altogether the potentially NP-hard steps of
multiple sequence alignment, tree inference and tree reconciliation, while keeping track of regions of each indi-
vidual genome in a manner that is agnostic to the number, size and nature of units of transfer. Alignment-free
approaches have much to offer in this context. Among the main families of alignment-free approaches, those
based on word counts or on substring match lengths have received the most attention'®". The former compute a
measure of similarity between two sequences based on the number or frequency distribution of matching “words”
of length k, whereas the latter assess the length of the longest word that occurs in two sequences, or the shortest
word unique to one of the sequences. In either case the match may be required to be perfect, or a defined number
of mismatches may be permitted. In the simplest case, each pairwise measure can be transformed into a dis-
tance, and a matrix of such distances used as input for computing a distance tree, e.g. by neighbour-joining?-22.
Evidence is accumulating that in phylogenetic inference per se, these alignment-free methods can offer acceptable
performance - in certain cases better than approaches based on multiple sequence alignment - at much greater
computational speed and scalability!. Other approaches to alignment-free sequence comparison, including
methods based on compressibility?>*!, nucleotide correlations*?, gene order or recombination breakpoints?,
have seen more-limited application. There has, however, been little exploration of how any of these alignment-free
methods might be extended to other steps in an LGT workflow.

In the accompanying article® we introduce TF-IDF as a scalable alignment-free approach to identify direc-
tional LGT in large molecular-sequence datasets. Variants of TF-IDF are widely used in text mining and informa-
tion retrieval, for example to find important words, group and classify documents by topic, or retrieve documents
that match a user query?”?%. Using synthetic nucleotide-sequence data, we showed that by using TF-IDF we can
detect LGT events with high precision and recall under a range of biologically realistic scenarios including differ-
ent rates of deletion and nucleotide substitution®. We reported that TF-IDF performs well with a small empirical
dataset (seven genomes of Staphylococcus aureus®) even though our target group consisted of a single sequence,
presumably reducing the influence of the IDF term. The regions identified by TF-IDF as lateral matched closely
with those inferred by a well-regarded method, ALFY®, while in addition we identified two regions not found
using ALFY that include genes encoding transporters and regulators of multidrug resistance and pathogenicity®.

Here we explore the strengths and limitations of TF-IDF as applied to the discovery of regions of lateral ori-
gin among different-sized sets of empirical microbial genome sequences. Specifically, we investigate the effects
of key parameter-value settings (k, and gap size G), and strategies for delineating, including or excluding, and
subdividing groups. We consider how to interpret multiple inferred transfers into the same genome sequence,
and look for evidence for overwriting. Furthermore, we determine the biological process annotations over- or
under-represented among the genes we infer to have been affected by LGT, and report new LGT networks. Three
empirical datasets (and variants) have been selected to illustrate a diversity of potential use cases, and address the
above issues.

Results

Parameter values for TF-IDF analysis. To investigate the performance of TF-IDF on empirical data, we
compare the number of regions identified as of potential lateral origin (Fig. la,c,e) and the total length of these
regions (Fig. 1b,d,f) as a function of k and G in our three datasets. We examine the results in more detail for each
dataset separately, and then discuss how to select suitable parameters in different situations.

Dataset 1 (E. coli and Shigella: ECS). Here we use the six groups suggested by Skippington and Ragan®!. TE-IDF
presents the 27 ECS genomes as having sustained very extensive LGT from within the ECS clade itself. Inferred
lateral segments hundreds of nucleotides in length are common (Supplementary Table S1), and the gaps between
these segments tend to be small.

We show the dependence of the total number of lateral regions detected and the total length of all detections
on kand G in Fig. 1a,b respectively. As gap size G increases, the total number of detections decreases sharply, indi-
cating that many potential LGT segments are being merged together. When k is large, we see a corresponding rise
in the total length. However, when k is small, the total length is relatively stable with respect to G, in part because
the gaps between segments contain k-mers that are also frequent in the recipient genome’s own group, causing
further proposed mergers to fail the TF hurdle. These k-mers can be false positives. With these considerations
in mind, we set G to 2k. At this value, we see that both number and length of detections are relatively stable with
respect to k. We choose the value k=40, which we have shown to work well in simulations®.

Dataset 2 (enteric bacteria: EB). 'The EB clade is biologically more ancient than ECS, and accordingly their
genomes show smaller similarity values (Table 1). Delineating groups within the EB dataset by genus, we find
fewer and shorter LGT detections than in the ECS dataset (Supplementary Table S1). As before, we see a dra-
matic decrease in total number of detections as G increases (Fig. 1¢); however, the total detection length (Fig. 1d)
remains relatively stable with respect to G at all values of k. This again indicates that a large number of false
positive segments are being merged with increasing G, and thus we again set G = 2k. Here there is a substantial
decrease in the total number of detections as k increases from 20 to 25, suggesting that there are too many com-
mon k-mers at this value. We again choose a large value of k =40 to avoid this problem.

Dataset 3 (bacteria and archaea: BA). 'The 143 BA genomes are much less closely related among themselves, with
their common biological ancestor dating nearly to origin of cellular life. These genomes share many fewer iden-
tical k-mers than do ECS or EB (Table 1), and k plays a much more important role than does G. Because regions
of inferred lateral origin in this dataset present a much weaker signal than in the previous datasets, we should set
k to a small value in order to detect these signals. We observe (Fig. 1e,f) a precipitous drop in the both the number
of detections and detection length from k =20 to 25, again indicating the presence of too many common k-mers

SCIENTIFICREPORTS | 6:29319 | DOI: 10.1038/srep29319 2



www.nature.com/scientificreports/

Gap
- 2k
16+05
%) —A— 4k
=
2 -~ 8k
©
3
©
©
5 5e+04 -
© ./MA————A’—""_’_’_’_A
e
0e+00 -
1 1 T 1 1 1
20 25 30 35 40 45
k
(a)
40000 -
230000 - Gap
S s
©
o - 4k
[0}
T 20000 - = 8k
i)
R " - .
10000 ~
0 -
T T T T T T
20 25 30 35 40 45
k
(c)
4e+05 - Gap
- 2k
- 4k
@ 3e+05 - | 8k
Q
©
Qo
8 26+05 -
s
k<]
16+05
06+00
T T 1 T T 1
20 25 30 35 40 45
k
(e)

1.2e+08
< 9.0e+07
o
[=]
K]
5
B 6.0e+07 =
2
] Gap
IS |2k
12 3.0e+07 - a4k
= 8k
0.0e+00 -
1 1 1 1 1
20 25 30 35 40 45
k
(b)
. %:%
i)
[
<
c
2
©
3
[
O 16407 - Gap
8
ke —— 2k
- 4k
=8k
0e+00 -
T T T T T T
20 25 30 35 40 45
k
(d)
1.2e+07 5
= 9.0e+06 -
i)
=
K]
c
k<]
% 6.0e+06 -
2
[}
o
s
1 3.0e+06 -
0.0e+00 -

25 30 35 40 45

(f)

Figure 1. Number of regions detected as lateral, as a function of k and G. The panels on the left show total
numbers of LGT detections in the ECS (panel a), EB (panel c) and BA (panel e) datasets. The panels on the right
show the total length (in nucleotides) of all LGT detections in the same datasets.

ECS 37.15 94.5 64.06 10.58
EB 29.08 99.99 45.43 15.65
BA 0.4243 99.42 15.94 10.44

Table 1. Summary of genome similarity (percentage of pairwise shared 12-mers) for the three datasets. For

abbreviations see text.

at the former value to make any useful detections. However, the detections are more stable for k> 25, so we set
k=25. The value of G appears to make relatively little difference, so we again select G= 2k for consistency.

We note that TF-IDF is not biased toward detecting more LGT events in larger datasets. With suitable settings
of k and G (as discussed above), fewer regions of within-dataset lateral origin, totaling fewer nucleotides, are
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Figure 2. Inferred network of LGT within the ECS dataset with six biologically based groups. The numbers
on each edge show the total number of genes involved in LGT events from one group into genomes in the other
group.

detected in EB and BA than in ECS even though they contain many more sequences. For the subsequent analyses,
we fix k and G at the optimal values we have found above.

LGT networks and effect of grouping. Next we investigate the networks of inferred LGT among the
genomes in each of our datasets. TF-IDF requires that we recognise or delineate groups of sequences in the data-
set; an inferred LGT event represents transfer into a genome from a donor group (other than that containing the
recipient genome). Using Dataset 1, we explore the effect of different ways of delineating groups. With Datasets
2 and 3 we ask whether adding further potential donor groups affects the inference. As our results will form the
basis of functional analysis (see next section), here we aggregate inferred LGT events by gene. Although genes
are not units of LGT***, they are our link to functional annotation, notably in the GO database®. This mapping
moreover allows us to explore, for the first time, multiple and overlapping transfers in a functional context. As
intergenic regions account for only minor proportions of these genomes, we anticipate that results aggregated by
gene will be substantially applicable to whole genomes as well.

Dataset 1 (E. coli and Shigella). 'We apply two strategies for delineating groups in the ECS dataset. One uses six
established phyletic groups®, thereby reflecting the diverse biological and physiological features that underlie the
recognition of taxa in ECS. The other is explicitly phylogenetic: we cut the MRP supertree of Skippington and
Ragan®! at basal branches to yield four groups. For details of group membership, please consult Supplementary
Fig. S1. As a control, we also generate 50 pseudo-replicate groupings based on the latter.

We begin with the biological (phyletic) delineation of groups. Of the 124717 genes annotated in the 20 E. coli
and 7 Shigella genomes, we infer 45412 (36.4%) to have received LGT from at least one source group. Figure 2
shows the directed LGT network connecting the groups of E. coli (A, B1, B2, D and E) and Shigella (S). Of these 27
genomes, we infer 24 to have accepted an LGT event (Table 2). Group E (E. coli O157:H7 EDL933 and O157:H7)
has been the most-active donor group, supplying genetic material to a total of 18059 genes across all the other
groups. Group E has also been the most-active recipient of LGT on a per-gene basis, with 7177 of its 10490 genes
(68.4%) showing evidence of LGT, all donated from Group B1. The genome E. coli O157:H7 in group E is known
to have acquired substantial genetic material by LGT*; this was notably not found by using a classical LGT detec-
tion method?!. Group B1 (E. coli E24377A, 55989, SE11 and IA11) has been second most-active both as donor
and recipient, donating to 16237 genes across all the other groups, and accepting LGT into 12131 of 18751 genes
(64.7%), with all other groups as donors (Table 2 and Fig. 2).

To evaluate how grouping affects the inference of LGT using TF-IDEF, we delineated a different number of
groups (four) using a phylogenetic criterion (see above). As physiology is not entirely orthogonal to phylogeny,
the two groupings are not unrelated. Phylogenetic Group 1 includes B2 and two members of D; Group 2 encom-
passes E, one member of D and one Shigella; Group 3 has the same membership as A; and Bl and the remainder
of S are merged into Group 4 (for complete lists see Supplementary Table S2). We now infer 18200 genes to have
received LGT from at least one source group (Table 3), only 40.1% of the number detected in the previous group-
ing. The directed network is shown in Fig. 3.

The fortuitous stability of Group A or 3 (see above) allows us to make a meaningful comparison of the results
between the two groupings. We infer the Group A genomes to have accepted LGT into 5841 (34.1%) of their
genes, and the very same Group 3 to have accepted LGT into 4031 genes (23.5%). This difference should reflect
compositional changes within the donor groups, which affects the IDF step. Conversely, group A is inferred to
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D E. coli SMS 3 5 4744 0 - - - -
D E. coli IAI39 4725 1469 S 1469 - -
D E. coli UMNO026 4878 2930 S,B1, B2 1004 769 1157
S gzﬁell"ﬂ“"”i > 4336 1030 E, A, Bl 855 120 55
S Shigella flexneri 2a 4053 1142 D,E, A 650 288 204
Shigella flexneri 2a
S 2457T 4385 1188 E, A, Bl 880 158 150
S Shigella sonnei Ss046 4563 1842 D,E, A, Bl 638 626 578
S Shigella boydii Sb227 4391 1859 D,E, A, Bl 974 538 347
Shigella boydii CDC
S 3083 94 4532 1280 A, Bl 1093 187 -
S Shigella dysenteriae 4063 1300 A 1300 - -
E E. coli 0157 : H7 5204 3685 B1 3685 - -
E. coli 0157 : H7
E EDL933 5286 3492 B1 3492 - -
E. coli K12 substr
A W3110 4213 1211 S,E, Bl 1050 117 44
E. coli K12 substr
A MG1655 4140 2045 D,E, B1,B2 927 465 653
A E. coli HS 4366 2585 D,S,E, B1,B2 891 667 1027
A E.coliCATCC8739 | 4434 0 - - - -
Bl E. coli E24377A 4729 2945 S,E, A, B2 1469 1068 412
Bl E. coli 55989 4953 3108 S,E, A, B2 1526 1081 501
Bl E. coli SE11 4684 2918 S,E, A, B2 1448 1049 421
B1 E. coli IAT1 4385 3157 D,S,EA, B2 1161 991 1005
E. coli 0127 H6
B2 E2348 69 4809 1561 E, Bl 1120 448 -
B2 E. coli 536 4542 1183 E, Bl 855 328 -
B2 | E. coli CFT073 4897 0 - - - -
B2 E. coliEDla 5012 1230 S,E 941 305 -
B2 E. coli UTI89 4827 563 Bl 563 - -
B2 E. coli S88 4688 1088 E, Bl 801 287 -
B2 E. coli APECO1 4878 592 B1 592 - -

Table 2. Numbers of lateral genes with single or multiple donors in each genome within the ECS dataset.
The genomes are grouped into six groups following a phyletic criterion (see text).

have affected 39571 other genes by transfer, but only 14169 genes are affected by Group 3 in the second grouping.
This reflects the increased k-mer diversity of each recipient group, which decreases the TF threshold (that the
frequency must fall below) and thus results in fewer detections. The four Group A/3 genomes show grossly similar
trends between the two groupings, although details differ e.g. in number of genes with >3 LGT donor groups.

Finally, using results from TF-IDF analysis of the ECS dataset with the biological grouping, we compared the
mean G + C content of the lateral genes (not just their inferred lateral regions) with that of their host genome,
using a paired f-test. We find that G + C content is significantly higher in the inferred lateral genes; the P-value is
0.0017. Anomalous G + C content has often been used to detect transferred genes!®*,

To explore the level of transfer signal in the dataset, we generate 50 randomised groupings based on the four
phylogenetic groups as described above. In Fig. 4, we compare the total detection length for the randomised
groups against the real grouping. The total detection length in the real grouping is much greater than for any
randomised grouping; indeed it is 6.2 standard deviations above the mean. Thus we are very confident that there
exists strong lateral signal in this dataset, and that the grouping we have selected is effective in showing it. In Fig. 5
we show the LGT network for the randomised groups. For seven of the twelve directional edges, we detect more
genes in the actual grouping than in most (44-50) of the replicates. No LGT is found from Group 2 or 3 to Group
1 using the actual grouping information, while from Group 4 to Group 1 we inferred fewer genes than in 48 of
the randomised groupings.

Dataset 2 (enteric bacteria). Dataset 2a is a superset of ECS, containing additional genomes of E. coli and
Shigella, plus genomes from Klebsiella, Salmonella and Yersinia. Naively taking the five genera as groups, we infer
LGT only between E. coli and Shigella (Fig. 6a). This happens because the lateral signal is dominated by the 62 E.
coli and Shigella genomes, which are far more similar to each other (and thus share many more identical k-mers)
than with the remaining genera. Since by default we set the IDF threshold to the average frequency of shared
k-mers between a sequence and a group, only the E. coli and Shigella transfers are strong enough to overcome this
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2 E. coli UMNO026 4878 2122 1 2122

4 Shigella flexneri 5 8401 4336 923 2,3 680 243

4 Shigella flexneri 2a 4053 590 2,3 445 145

4 Shigella flexneri 2a 2457T 4385 999 2,3 674 325

4 Shigella sonnei Ss046 4563 988 2,3 688 300

4 Shigella boydii Sb227 4391 1314 2,3 848 466

4 Shigella boydii CDC 3083 94 4532 1244 2,3 879 365

2 Shigella dysenteriae 4063 1363 3,4 498 865

2 E. coli 0157 : H7 EDL933 5286 832 4 832

3 E. coli K12 substr W3110 4213 875 2,4 596 279

3 E. coli K12 substr MG1655 4140 1255 1,4 860 395

3 E. coli HS 4366 1901 1,2,4 948 587 366
4 E. coli E24377A 4729 694 2,3 495 199

4 E. coli 55989 4953 1193 1,2,3 670 361 162
4 E. coli SE11 4684 683 2,3 457 226

4 E. coli IAI1 4385 944 1,2,3 507 300 137
1 E. coli EDla 5012 280 4 280

Table 3. Numbers of lateral genes with single or multiple donors in each genome within the ECS
dataset. The genomes are grouped into four groups by cutting the MRP supertree (see text).

1648 /1164

Figure 3. Inferred network of LGT within the ECS dataset with four phylogenetically based groups. The
numbers on each edge show the total number of genes involved in LGT events from one group into genomes in
the other group.

threshold. There are potentially several non-exclusive ways to circumvent this situation, e.g. by manually over-
riding the default use of the mean value, or reducing the number of ECS genomes or groups. Here we reduce the
number of groups by alternatively merging E. coli and Shigella into a single group, keeping only one or the other,
or deleting both (Table 4). Figure 6 shows the LGT networks inferred in each case. Although the actual numbers
of inferred transfers (even outside E. coli and Shigella) depend strongly on how we deal with E. coli and Shigella,
common trends are nonetheless apparent, e.g. that Salmonella genomes are always inferred to have accepted more
LGT from Klebsiella than vice-versa, and that Yersinia is only weakly connected.

Dataset 2 also allows us to investigate the effect of external groups (here Klebsiella, Salmonella and Yersinia)
on inference within a clade (ECS). We generate Dataset 2b by replacing the 62 E. coli and Shigella genomes in
Dataset 2a with the 27 ECS genomes as above. Using the phyletic (biological) grouping introduced above for the
ECS dataset and retaining the default criterion for the IDF threshold (see previous paragraph), TF-IDF infers
many more transfers within ECS (Figs 2 and 7 and Supplementary Table S3). Inclusion of the more-distantly
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Figure 4. Histogram of the distribution of total length of all detections of the 50 randomly assigned
replicates. The total detection length in the actual grouping (based on cutting the MRP supertree) is shown
as ared line.

Figure 5. Summary of the LGT networks inferred using TF-IDF of the 50 random replicates of the ECS
data. The numbers on each edge show the total number of genes involved in LGT events from one group
into genomes in the other group, averaged over the 50 groupings. Numbers in parentheses are the standard
deviations.

related genomes has lowered the mean value of elements in the relationship matrix, thereby allowing many more
regions within the ECS genomes to exceed the IDF threshold. Even with the additional TF filter, which remains
unchanged, this results in a great increase in the number of transfers. As might be expected, all transfers detected
in the ECS dataset by itself are still detected. Interestingly, this increase is non-uniform across the ECS subgraph:
in every case where we inferred no LGT from one group into another when only the ECS dataset was examined,
we found abundant LGT after adding the three additional genera.

As mentioned above, another option is to manually override the default use of the mean k-mer frequency
value as the IDF threshold. When we set the threshold from the ECS dataset as the IDF threshold in Dataset 2b,
we infer exactly the same genes in the ECS genomes to have accepted LGT from an ECS donor group. That is,
presence or absence of external groups does not affect the performance of TF-IDF beyond their effect on the IDF
threshold. We consider this further in the Discussion.

Dataset 3 (bacteria and archaea). 'The 143-genome Bacteria and Archaea (BA) dataset allows us to examine
the effect of within-group heterogeneity on inference using TF-IDF. Here we delineate groups taxonomically by
phylum (15 phyla) or alternatively by class (31 classes). Grouping the genomes by phylum, we infer 686 genes
as affected by LGT, many fewer than in the smaller but less-divergent previous datasets. Indeed, we infer no
inter-phylum LGT involving the archaeal phyla (Crenarchaeota, Euryarchaeota, Nanoarchaeota) or three of the
bacterial phyla (Aquificales, Planctomycetes, Thermotogales), presumably for the reason indicated above for
Datasets 2a and 2b: potential matches fail to pass the IDF threshold. Of the nine remaining bacterial phyla,
eight are inferred to have been both donors and recipients, while one (Chlamydiales) has been a recipient only
(Fig. 8). The highest-activity pathways (“highways”!*) lie between Proteobacteria and High-G + C Firmicutes
(378 genes affected), followed by those between Proteobacteria and Low-G + C Firmicutes (101 genes). Two
phyla represented by one genome each, Thermus/Deinococcus and Chlorobi, contribute 13.9% and 6.3% of total
inter-phylum LGT; if more sequences had been included, these groups might be recognised as even more-active
in inter-phylum LGT.

When we alternatively group the 143 genomes into 31 classes (Fig. 9), the number of genes inferred to have
accepted inter-class LGT increases nearly five-fold to 3043. We infer 24 lateral genes among eight archaeal classes

SCIENTIFICREPORTS | 6:29319 | DOI: 10.1038/srep29319 7
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(a) (b)

Klebsiella

Salmonella

Shigella

Klebsiella

(c) (d)

Klebsiella

(e)

Figure 6. LGT networks of the EB dataset and its variants. We treat the E. coli and Shigella genomes in
different ways: (a) assigned to separate groups, (b) with Shigella removed, (c) with E. coli removed,
(d) combined into a single group, and (e) with both groups removed from the analysis.

Combine E. coli and Shigella I?IZZEZI’:’ coli+ Shigella, Salmonella, 110
Keep only E. coli Yersinia, E. coli, Salmonella, Klebsiella 92
Keep only Shigella Yersinia, Shigella, Sal, lla, Klebsiell 57
No E. coli or Shigella Yersinia, Salmonella, Klebsiella 48

Table 4. Variants of the EB dataset based on treatment of the E. coli and Shigella groups.
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329

Figure 7. The LGT network inferred using TF-IDF from Dataset 2b, using six phyletic groups for E. coli
and Shigella and grouping the remaining genomes according to genus. The numbers on each edge show the
total number of genes involved in LGT events from one group into genomes in the other group.

Low_GC_Firmicutes

/\
,‘(//

Spirochaetales a’

Chlamydiales

S

High_GC_Firmicutes \

Figure 8. The LGT network inferred for the BA dataset grouped by phylum. The numbers on each edge show
the total number of genes involved in LGT events from one group into genomes in the other group.

with a ninth class, Archaeoglobales, silent to inter-class LGT. As above, no LGT is detected between archaea and
bacteria. This grouping divides Proteobacteria into four subdivisions (a, 3, 7, €) at class level; genomes of the
former three are rich in inferred lateral genes, whereas the € subdivision is relatively silent. In accordance with
our phylum-level analysis, the Bacillus/Clostridium class and Actinomycetales (from High-G+C Firmicutes)
are inferred to have engaged in LGT with genomes across the subdivisions of Proteobacteria. By contrast, and
in contradiction to earlier reports, we infer no LGT involving the Thermotoga® or Aquifex*® genomes. This may
be due to features of our dataset e.g. the number, size, balance, composition and cohesion of groups, and/or the
phylogenetic distinctiveness of these genomes (see Discussion and conclusions).

Using a dataset of 657 bacterial and archaeal genomes and a multi-step LGT inference approach based on
anomalous G+C content and phylogenetic discordance, Popa et al.*! identified 4700 genes of inferred lateral ori-
gin. Nine of these were also identified as lateral in our TF-IDF analysis of the 143-genome dataset, although with
different inferred donors. Our comparison (Supplementary Section 2 and Supplementary Tables S4-S7) indicates
that at least at this phyletic scale, TE-IDF provides access to LGT events spanning broader phyletic distances than
does the approach of Popa et al.*!.

Multiple donor groups and superimposed transfers. In the ECS dataset we observe a large number of
transfers; correspondingly, we find many instances in which a gene is inferred to have accepted genetic material
laterally from more than one donor group. This is especially prevalent in the phyletic grouping of six groups,
whereas the phylogenetic grouping (four groups) contains fewer transfers as observed above. Here we look more
closely at genomes which contain genes with multiple donors, to determine if we can untangle the sources of
multiple transfer.

There are two possible explanations for such instances. One is that the gene is truly a mosaic, having accepted
multiple transfers in the past. However, an alternative explanation is that there was only one transfer, but it was
more ancient. For example, if a sequence is inferred to have accepted genetic material from groups G1 and G2,
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Figure 9. The LGT network inferred for the BA dataset grouped by class. The numbers on each edge show
the total number of genes involved in LGT events from one group into genomes in the other group.

then it is possible that instead there was a single ancestral transfer from an ancestor of G1 and G2. This explana-
tion is parsimonious only if G1 and G2 are closely related (i.e. monophyletic, or adjacent on the phylogenetic tree)
and the events are inferred to affect overlapping regions on the genome. If either of these conditions is not met, it
is more likely that more than one transfer event has occurred.

In Table 5, we examine the relative frequencies of possible ancestral transfers in eighteen ECS genomes. For
ease of analysis, we consider only genes which are inferred to have accepted material from exactly two donor
groups. Of the 2240 such genes in E. coli K12 W3110, K12 MG1655, HS and IAI1, which contain monophyletic
relationships in their donor-group pairs, we observe 18446 events into these genes, forming 6549 overlapping
regions. Of these overlapping regions, the donor groups are monophyletic in 1869 cases. Thus there is consid-
erable evidence for both ancient transfers and mosaicism. However, ancient transfers (identified in this way)
represent only 22-30% of overlapped events in these four genomes. For the other genomes no monophyletic
overlapping regions are found, i.e. most overlaps may be the result of multiple lateral events. This is the first time a
computational method has given us broad accessibility to data that can indicate the presence of these phenomena.

Biological process enrichment. To determine the frequencies at which different sorts of proteins are
implicated in our LGT detections, we extracted protein-name annotations from the corresponding GenBank
files (Table 6). The most-frequent name annotation is in LGT events is hypothetical protein, followed by mem-
brane protein, transcriptional regulator and transporter, protein types known to be exchanged among bacteria®>*.
To further investigate the biological processes affected by LGT, we carried out functional enrichment tests (see
Methods), selecting a false discovery rate of 0.05 as significance threshold. Here we present a general discussion
of biological processes over- or under-represented in the datasets; full lists of terms are given in Supplementary
Tables S8-S10.

Among the ECS genomes, enrichment analysis identifies metabolite and trans-membrane transport, carbo-
hydrate metabolic processes, and small-molecule biosynthesis and catabolism as particularly over-represented
as inferred targets of LGT; at least 42 of the 50 most over-represented terms refer specifically to such processes.
By contrast, the 21 most under-represented terms refer to transposition, genetic recombination, translation, or
metabolism of peptides or nitrogenous compounds.

Within the Enteric Bacteria (EB) dataset, enrichment of terms can depend on how we group the E. coli
and Shigella genomes. When 62 E. coli and Shigella genomes are combined into a single group, biologi-
cal processes related to translation, nitrogen-compound and RNA biosynthesis, and viruses dominate the
most over-represented functions, while trans-membrane transport and polysaccharide metabolism are
under-represented. Removing all E. coli and Shigella genomes, only the E. coli genomes, or only the Shigella
genomes, does not greatly affect this picture. When the E. coli and Shigella genomes are retained but grouped
separately, the TF-IDF analysis is dominated by LGT between these groups (Fig. 6a); viral processes includ-
ing entry into and release from host cells, and extracellular (lipo)polysaccharide biosynthesis, come to the fore
among over-represented processes, while translation, transposition, and purine and ribose metabolism are now
under-represented. These results illustrate how grouping can affect the functional interpretation of LGT in bac-
terial genomes.

With the BA dataset grouped by phylum, relatively few genes are inferred to have accepted LGT (above).
Thirty-five processes are found to be over-represented (see Supplementary section 4), with translational elonga-
tion (GO:0006414) being by far the most significant. No under-represented process passes our FDR threshold.
Grouping instead by class, diverse metabolic processes appear as over-represented, while only two processes
appear as (slightly) under-represented.

Discussion and Conclusions

TEF-IDF is an alignment-free method for the detection of regions of exogenous origin in molecular sequences.
Based on the content of k-mers in a specific dataset, the method can identify regions of exogenous origin in a
sequence, and their inferred donor groups within the dataset, with high efficiency and effectiveness®. Here we
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Lateral genes Number of Numb Number non- Proportion

Genome name with two donors | overlaps (pairwise) | monophyletic phyletic phyletic
E. coli K12 substr W3110 117 223 50 173 22.4%

E. coli K12 substr MG1655 465 1514 423 1091 27.9%
Shigella flexneri 2a 288 709 0 709 0
Shigella flexneri 2a 2457T 158 361 0 0 0
Shigella sonnei Ss046 626 1564 0 1564 0
Shigella boydii Sb227 538 1247 0 1247 0

E. coli 536 328 522 0 522 0
Shigella flexneri 5 8401 120 259 0 259 0

E. coli HS 667 1885 564 1321 29.9%

E. coli E24377A 1068 2272 0 2272 0
Shigella boydii CDC 3083 94 187 277 0 277 0

E. coli SE11 (#20) 1049 2250 0 2250 0

E. coli 0127 H6 E2348 69 448 670 0 670 0

E. coli IAI1 991 2927 832 2095 28.4%

E. coli S88 287 413 0 413 0

E. coliEDla 305 431 0 431 0

E. coli 55989 1081 2344 0 2344 0

E. coli UMNO026 769 2445 0 2445 0

Table 5. Numbers of inferred lateral genes with two donors in the ECS dataset, and the phyletic
relationship of the donors.

apply TF-IDF on three empirical microbial-genome datasets of different sizes and sequence diversity to explore
the advantages and limitations of this method. We systematically varied two key parameter-value settings (for
word length k and gap size G), and investigated how the delineation of groups affects the performance of TE-IDE

Our results indicate that it may not be possible to identify a value of k optimal for all datasets. However, for
these microbial genome datasets, the distribution of shared 12-mers helps us to select k. Within the ECS genomes,
the vertical components of which share a relatively recent common ancestor, the proportion of identical 12-mers
is relatively high (median >60%) and a longer k (35 < k < 50) supports high-confidence detections while not
missing too many real LGTs. By contrast, in the highly divergent BA dataset in which most genomes share <30%
identical 12-mers pairwise, almost no LGT is detected at k > 40. To ensure adequate LGT signal in such a dataset,
k must be set smaller (20 < k < 30). However, at k < 15, k-mers are too frequently matched pairwise at random,
leading to an unacceptable level of false positives. In general, larger values of k are appropriate for high-similarity
datasets, and shorter k for low-similarity data.

G determines how aggressively nearby lateral k-mers are consolidated into a single region. Given a sufficient
density of such k-mers, a larger G causes intervening non-lateral regions to be merged into the consolidated
region. This can cause some false positive regions to be detected by TF-IDF. At shorter G, the total number of
detections increases without greatly affecting total detection length. Thus shorter G is preferred for precise delin-
eation of lateral segments. In most cases, G =2k is a satisfactory option.

Apart from k and G, TF-IDF is also sensitive to how groups are recognised within the dataset. Many more
transfers were inferred within the ECS dataset when six, rather than four, groups were recognised. It is difficult to
disentangle the effects of group number, size, composition and phylogenetic cohesion, but we use the fortuitous
stability of Group A/3 to argue that both TF and IDF terms can contribute to this sensitivity. We further demon-
strate that the presence or absence of external groups does not affect the performance of TF-IDF beyond their
effect (via the constituent sequences) on the IDF threshold. These results emphasise that as implemented here,
TF-IDF is deterministic and is self-tuning to the dataset.

We suspect that these effects manifest so strongly in ECS Groups E and B1 because these lineages have been
particularly active in LGT. Analysing a 64-genome superset of our ECS dataset, Lukjancenko et al.* find that
members of Group E contribute almost half of the new gene families, while our four Group B1 strains contribute
aggressively to the rise in pan-genome size. Additional effects arising from variation in gene content may con-
tribute further.

TF-IDF delivers the most power when applied to a sequence dataset with high within-group similarity but
uniformly low between-group similarity. However, group structure can be arbitrary in real-life cases. Our results
with the ECS subset of Dataset 2 illustrate strategies for dealing with uneven or unbalanced data. The substantial
loss of LGT signal when we assign sequences randomly to groups strongly indicates that groups should be delin-
eated so as to capture the underlying phylogenetic structure where possible. This may not always be possible, as
in our BA dataset, where Thermotoga and Aquifex are represented by single genomes of uncertain but relatively
distant phylogenetic relationship. Other strategies for delineating groups can be imagined, but lie outside the
scope of the present study.

It has long been considered that lateral transfers from different donor groups can be superimposed in the
recipient genome, yielding mosaic or pastiche genes*>*¢. We have now demonstrated this in the ECS dataset. Most
genes that have accepted LGT have done so in multiple events, often from different donor groups. Where group
structure reflects evolutionary history and neighbouring genomic regions are inferred to have been donated by
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Counts Protein name

11944 hypothetical protein

1426 membrane protein

1056 transcriptional regulator

615 transporter

454 oxidoreductase

265 transposase

251 LysR family transcriptional regulator

232 tail protein

192 two-component system response regulator

190 lipoprotein

182 two-component system sensor histidine kinase
162 diguanylate cyclase

158 hydrolase

144 AraC family transcriptional regulator

141 MEFS transporter

135 ABC transporter ATP-binding protein

125 porin

124 peptide ABC transporter permease

121 putative DNA-binding transcriptional regulator
115 protease

105 fimbrial protein

104 sensor histidine kinase

102 multidrug ABC transporter ATP-binding protein
100 glycosyl transferase

95 ABC transporter permease

Table 6. Top 25 protein names (as extracted from the GenBank files) inferred to be affected by an LGT
event in the ECS dataset.

groups adjacent on the tree, the transfer may have been ancestral. Taking a gene-centric approach restricted (for
simplicity of analysis) to genes with only two inferred lateral origins, we find that a modest proportion (22-30%)
might best be explained by ancestral transfer. To our knowledge, this is the first systematic computational study
of multiple or overlapping origins in empirical genome-scale data.

We mapped genes containing the inferred lateral regions to Gene Ontology (GO) terms using BLAST2GO
then applied enrichment tests, identifying a wide range of biological processes as preferentially affected by LGT.
Many processes known to be shared laterally are indeed over-represented, although others (including e.g. trans-
position) are under-represented, whether as a consequence of their actual distribution in the dataset, or their
presumed origin from a donor group not represented in the dataset.

Our inference that genes annotated as involved in translational elongation (GO:0006414) in the BA dataset,
and in translation (GO:0006412) in the EB dataset, are overrepresented among the LGT sets bears comment, as
“informational” functions are considered less-susceptible to LGT than “operational” genes e.g. those involved in
cellular transport or metabolism*2. Closer examination reveals that (1) substantial subsets of our LGT-enrichment
sets annotated with translational elongation (in BA) or translation (in EB) are not core informational genes, or
indeed informational genes at all, but appear in our lists via secondary annotations e.g. involving specialised
regulatory relationships; (2) many informational genes** are well-known to be susceptible to LGT; (3) even “core”
informational genes are sometimes transferred laterally; and (4) in a few cases, core informational genes that
we infer as lateral have features or properties (e.g. constraints, domains, paralogs, phyletic distributions) that
could indicate a lateral history, or help explain why a lateral history has gone unrecognised by classical meth-
ods (for details see Supplementary material). Further, translation is over-represented when the 62 E. coli and
Shigella genomes are combined into a single group; when they all are removed from the analysis; or when only
E. coli, or only Shigella, are removed. However, when we include these E. coli and Shigella genomes but group
them separately, translation becomes under-represented. That is, the LGT “translation” signal is being driven
from parts of the dataset other than the E. coli-Shigella axis, and is completely overshadowed (indeed driven to
under-representation) by the (much stronger) signal from the mostly non-translational transfers between E. coli
and Shigella.

For each dataset, the groups (nodes) and inferred transfers (edges) constitute the LGT network. Each of
these three networks exhibits one or more densely connected regions (subgraphs), as well as nodes that are
more-weakly connected or unconnected. The lack of connection between archaea and bacteria in the BA dataset
is a case in point: far fewer transfers are inferred between archaea and bacteria than internally among archaea, or
internally among bacteria. In the TF-IDF analysis of Dataset 2a, Yersinia remains almost unconnected to other
genera; this illustrates that even among LGT-active groups, some genera can remain inactive.

SCIENTIFICREPORTS | 6:29319 | DOI: 10.1038/srep29319 12



www.nature.com/scientificreports/

Number of Mean Mean G+ C Range of G+C
Name sequences length Range of lengths content (%) content (%)
ECS 27 4906162 4369232-5528445 50.76 50.39-51.33
EB 110 4920079 3976195-6097032 51.03 47.00-57.68
BA 143 3011345 490885-9105828 45.67 22.48-72.12

Table 7. General description of the datasets investigated in this research.

In summary, our results demonstrate that TF-IDF can be applied on diverse empirical genome-scale datasets,
resulting in the inference of inter-group directional LGT and providing first steps toward the systematic recon-
struction of multiple and superimposed transfer events. These inferred transfers affect a broad range of biological
processes, including many already known or suspected to be affected by LGT. Future work will explore whether
and how the settings of k and G affect topological features of the inferred LGT networks, hence our interpretation
of lateral biology in microbial communities and the biosphere.

Methods

Datasets. From our earlier simulation study® we know that the performance of TF-IDF can be affected by
how groups are delineated within a dataset, and by the divergence of sequences within a group. If sequences
within groups are similar to one another (expected mutations up to 0.16/nucleotide) and the groups are dissim-
ilar from one another (expected mutations between neighbouring groups above 0.2/nucleotide), the boundaries
between groups are clear and TF-IDF can achieve high precision (>80%) and recall (>90%)3. Here, we select
three empirical datasets that differ in number of sequences and divergence among sequences, to explore the per-
formance of TF-IDF under a range of biologically realistic situations. Table 7 shows general information (number
of sequences, sequence lengths and G + C content) on these datasets, while further information is presented in
the following paragraphs.

Dataset 1. Escherichia coli and Shigella (abbreviated hereafter as ECS), represented by 20 and 7 genomes
respectively. Here and elsewhere*” the Shigella genomes are resolved as one or more lineages within the genus
Escherichia. Some genomes within ECS are known to be rich in regions of inferred lateral origin?’. Using
alignment-based methods, we have previously shown that lateral transfer of protein-coding regions within ECS
is biased by phylogeny (i.e. genetic relatedness and/or sequence similarity) more than by environment®!, whereas
the distribution of small RNAs has been affected more by gene loss than by LGT*%. For the present work we
recognise groups within ECS in two alternative ways: (1) by cutting the MRP supertree®! at certain levels (see
Supplementary Fig. S1), or (2) by using recognized phyletic groups®. These approaches yield four and six groups
respectively.

Dataset 2a. 110 genomes from the Enterobacteriaceae (53 Escherichia, 9 Shigella, 9 Klebsiella, 22 Salmonella
and 17 Yersinia), here abbreviated EB. Among these Escherichia, Shigella, Klebsiella and Salmonella are consid-
ered relatively susceptible to LGT. Strains of Yersinia harbour plasmids that encode genes of probable lateral
origin®**® but our datasets exclude plasmid sequences. Yersinia appears not to be naturally competent®! and
although its main chromosome shows evidence of pathogenicity islands, their genes match sequences outside the
Enterobacteriaceae® and thus would not be recognised as lateral in our analyses of Dataset 2. We recognise each
genus as a separate group except for E. coli and Shigella, which we treat in different ways (see Results).

Dataset 2b.  'These 75 genomes constitute a subset of Dataset 2a (pruned to 20 E. coli and 7 Shigella) and a super-
set of Dataset 1 (addition of 58 genomes from the other genera). We expect to see the same LGT detections within
E. coli and Shigella as in the ECS dataset when the threshold is the same. Together, Datasets 2a and 2b allow us to
explore the effects of group inclusion/exclusion (of groups other than ECS) and subdivision (ECS).

Dataset 3. 143 genomes across 12 bacterial and 3 archaeal phyla, abbreviated here as BA. This dataset allows us
to explore the effects of phyletic breadth, degree of sequence divergence, unbalanced group size and disruptive
genomes on LGT inference. This dataset has been well-explored in our group using classical alignment-based
(and some novel) methods for more than ten years!*3>**; MRP>* and 16S rRNA reference trees are available. This
dataset moreover offers a more-general (less-biased) selection of Gene Ontology (GO) Biological Process (BP)*
annotations than do specialist datasets dominated by human and animal pathogens (our Datasets 1 and 2).

These datasets span a variety of evolutionary divergences. Information on the divergence among a data-
set is important for setting the parameters of TF-IDF; however, typical approaches based on alignments are
time-consuming and do not scale well with increasing number of sequences. To quantify this variation, we
thus compute a rough measure of sequence similarity by calculating the percentage of identical 12-mers shared
between each pair of sequences. Summary information is presented in Table 1. The distribution of similarities is
shown in Fig. 10; here we see that as expected, the ECS genomes are most similar pairwise, the EB genomes are
more divergent (with a small bimodality consistent with the ECS subset) and the BA genomes the most divergent,
with most sequence pairs sharing fewer than 30% of their 12-mers.

TF-IDF and parameterisation. In this study we apply the TF-IDF method we devised in previous research®.
TF-IDF is an alignment-free method that detects LGT by the relative frequencies of k-mers in pre-determined
groups. The method proceeds in four steps:
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Figure 10. Distribution of 12-mer frequencies in the ECS, EB and BA datasets. The x-axis shows binned
proportions of 12-mers shared pairwise over all genomes in each dataset; the left y-axis shows frequencies
(counts) of 12-mers, and the right y-axis gives the name of the dataset.

Word length k 20-45 in steps of 5
Gap size G 2k, 4k, 8k

Table 8. Range of parameter values investigated with the TF-IDF method. k is the size of k-mers.

ECS >500 contiguous k-mers (500 +k — 1 nt)
EB >100 contiguous k-mers (100 + k — 1 nt)
BA >10 contiguous k-mers (10 +k — 1 nt)

Table 9. Thresholds for mapping LGT segments to genes. The thresholds are selected by means of all
detections in three empirical datasets.

1. Extract all unique k-mers in a dataset and build a k-mer dictionary of the dataset.

2. IDF: we count the identical k-mers between each sequence and each group other than its own. A relation-
ship matrix R is built in which rows are genomes, columns are groups, and individual elements count the
number of identical k-mers shared between a sequence and a group. For consistency across group sizes and
genome lengths, we normalise these counts by dividing by the number of genomes in the group (column),
and by the number of nucleotides in the genome (row). We then compute the mean over all elements in R.
If the value of an element exceeds the mean, the corresponding genome potentially contains lateral events
(segments) donated by that group.

3. For each genome with potential transfers from a donor group, we construct potential LGT segments by
amalgamating all neighbouring k-mers in the genome which also appear in that group. These segments are
further merged by joining all segments which are separated by an amount less than a threshold, which we
refer to as gap size (G).

4. TF: if the average frequency of all lateral k-mers in a candidate LGT segment is lower than the average fre-
quency of all k-mers in the group containing that genome, then that segment is considered to have arisen
by LGT.

In this work we vary word length k and gap size G (see Table 8). Based on the results of our previous study?, we
limit k to the range 20-45; when k < 20 many detected events are false positives, while at k> 50 common k-mers
become too rare, resulting in decreased performance. Values of G were selected to cover a biologically reasonable
range of granularity consistent with computational feasibility.

For the ECS dataset, we also vary group composition in order to study its effect on inference using TF-IDFE.
We recognise groups in two ways as described above; in addition, we also generate 50 randomised groupings
patterned on the first grouping (into four groups by phylogeny) by allocating each sequence to a group chosen
at random, while preserving the number of sequences in each group. By doing this we generate a control set in
which vertical inheritance signal is greatly attenuated, and against which we can compare our actual grouping.
The total detection length based on actual groups (generated by cutting the MRP tree) is significantly higher than
from the random replicates.
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Gene Ontology mapping and enrichment tests.  For each recipient genome, our TF-IDF analysis out-
puts a list of regions (coordinates) inferred to be of lateral origin, and the inferred donor group of each. To
identify the biological functions affected by these regions, we map these coordinates to genes annotated in the
host genome (as given in the NCBI.ffn and.gbk files). For both biological and statistical reasons, we examine only
relatively long regions: biologically we are interested only in LGT events with potential to have functional con-
sequence, while statistically we seek to minimise false positives and noise. Thus, a gene is considered lateral only
if it contains at least one segment which is longer than a given threshold. These thresholds (given in Table 9) are
selected on different datasets to be close to the average length of all LGT detections in that dataset. This accounts
for the variation in sequence diversity among the datasets.

For each dataset we used blastp> at E < 107 to match protein-coding regions annotated in all genomes to the
Swiss-Prot database®. Genes were distinguished by GI number and position. Gene Ontology (GO) terms asso-
ciated with the matches were retrieved using BLAST2GO®**’ version 3.3.1 (mapping and annotation functions)
from GO database version b2g_may15, yielding the background database for enrichment testing. We then submit
a list of genes implicated as recipients of LGT, querying this list against the entire database. Regardless of the
number of inferred lateral regions or donor groups involved, each gene is counted only once. We use a two-tailed
Fisher’s exact test with a false discovery rate (FDR) of 0.05. This yields a list of GO Biological Process (BP) anno-
tations which are over- and under-represented in the test set’®.
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