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Abstract

T-DNA activation-tagging technology is widely used to study rice gene functions. When T-

DNA inserts into genome, the flanking gene expression may be altered using CaMV 35S

enhancer, but the affected genes still need to be validated by biological experiment. We

have developed the EAT-Rice platform to predict the flanking gene expression of T-DNA

insertion site in rice mutants. The three kinds of DNA sequences including UPS1K, DIS-

TANCE, and MIDDLE were retrieved to encode and build a forecast model of two-layer

machine learning. In the first-layer models, the features nucleotide context (N-gram), cis-

regulatory elements (Motif), nucleotide physicochemical properties (NPC), and CG-island

(CGI) were used to build SVM models by analysing the concealed information embedded

within the three kinds of sequences. Logistic regression was used to estimate the probability

of gene activation which as feature-encoding weighting within first-layer model. In the sec-

ond-layer models, the NaiveBayesUpdateable algorithm was used to integrate these first

layer-models, and the system performance was 88.33% on 5-fold cross-validation, and

79.17% on independent-testing finally. In the three kinds of sequences, the model con-

structed by Middle had the best contribution to the system for identifying the activated

genes. The EAT-Rice system provided better performance and gene expression prediction

at further distances when compared to the TRIM database. An online server based on EAT-

rice is available at http://predictor.nchu.edu.tw/EAT-Rice.
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Author summary

Among all the food crops, the rice is one of the staple foods in the human population,

especially in Asia. However, the human population increases rapidly and the cultivated

areas decrease in these decades. To solve the food crisis in the future, the rice researchers

devote themselves to study on the gene function to increase the rice yield and stress toler-

ant ability. There are around 39000 annotated genes in rice, so scientists are hard to survey

the gene functional because of the complexity and interactivity among the genes. There-

fore, scientists put into a lot of manpower and funds into the field. The T-DNA (Transfer

DNA) activation-tagging biotechnology has been wildly used on studies of rice gene func-

tion, however, it might influence the flanking genes expression when T-DNA inserted

into the rice genome randomly. Thus, it will take lot of time for the researchers to validate

the activation of genes by T-DNA enhancer. In these decades, as the increase of the bio-

logical data accumulation, the extraction of hidden information from this data is getting

more and more important. To assist rice biologists in rapidly focusing the target gene

affected by T-DNA. The application of machine learning methods in artificial intelligence

(AI) and the establishment of prediction tool with biological data construction to correctly

identify and classify target genes are of great significance in both theory and practice.

Introduction

Rice is a major staple in the diet for more than half of the world’s human population. With the

rapidly increasing pressures of both human population growth and global climate change,

optimizing rice yields is critical over the next several decades. Sequencing of the rice genome,

the smallest genome among the major cereal crops, was completed in 2005 [1] and from this

work, rice emerged as the major monocot model plant for functional genome study and breed-

ing improvement within cereal crops.

Global crop production, especially including maize, rice, wheat and soybean yields must

double by 2050 to sustain the rapid growth of the World’s population [2]; therefore, rice scien-

tists focus on intensive improvement of rice quality and yield as a primary goal, through the

investigation of rice phenomics and genomics of which approximately 36500 genes have been

annotated for application to functional genomics and modern breeding [3]. The International

Rice Functional Genomics Project (IRFGP) has proposed an international coordinated proj-

ect, RICE2020, to determine the biological function of every gene in the rice genome by 2020

[4]. Multiple methods for large-scale analysis of the biological function of genes by forward or

reverse genetic approaches have been rapidly established, including bacterial artificial chromo-

some (BAC) libraries, large-scale expressed sequence tags (ESTs), full-length cDNA collec-

tions, a transcriptome database, transfer DNA (T-DNA) or transposon-tagged rice mutant

populations, and genome-wide association study (GWAS)[5–15].

T-DNA insertional mutagenesis distributes uniformly throughout the rice genome, but

preferentially in gene-rich regions, which results in knockout/loss-of-function for the inserted

gene. Hence, this method may generate two questions that lead to fewer desirable plant traits:

1) Plant death occurs because the function of an essential gene is absent; 2) A disrupted gene

can functionally complement via its gene family. To solve this problem, multiple tandem cop-

ies of cauliflower mosaic virus (CaMV) 35S enhancers [16] were introduced into a T-DNA

vector for activation/gain-of-function tagging; genes within a 40–60 kb flanking region of the

T-DNA-inserted locus are probably activated. Adding four 35S enhancer sequences in series

to a T-DNA construction can enhance gene expression [16–21]. Development of large T-DNA
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mutant populations provides a powerful genetic resource for both forward and reverse genet-

ics studies on gene function [5–8, 13, 14, 22].

The Taiwan Rice Insertional Mutant (TRIM) database was generated from Tainung 67

(TNG 67) and contains about 93,000 mutant lines; 85% and 65% of TRIM mutants have phe-

notyping and flanking sequence data, respectively [23], which significantly accelerates the abil-

ity to elucidate rice gene function. Three hundred genes of the flanking region of TRIM

mutants were examined; 58% of these genes were activated by T-DNA insertion at differential

levels [24] and demonstrating the activation of multiple activated genes became a laborious

and time-consuming process.

Bioinformatics has developed rapidly [25, 26] and many biological prediction tools have

been built by machine learning approaches [27–31]. Therefore, we developed a machine learn-

ing based tool for predicting the flanking gene expression around the T-DNA insertion site to

assist researchers in improving the screening efficiency of activated genes.

We collected the validated genes by RT-PCR and clustered them into activated and non-

detectable groups. DNA sequences including UPS1K (a 1 kb upstream sequence from the start

codon), DISTANCE (from the start codon of a target gene to enhancer) and MIDDLE (a 150

bp up- and downstream sequence around the central nucleotide of the DISTANCE region)

were retrieved to encode and build a two-layer machine learning prediction model. The fea-

tures, containing N-gram, Motif, nucleotide physicochemical properties (NPC), and CG-

island (CGI), were referenced to construct the first-layer models by support vector machines

(SVM)[32]. Meanwhile, the logistic regression scoring, that take into account of the distance

from target gene to T-DNA located site was used to weight the feature-encoding. In the second

layer, because biological phenomena are caused by multiple factors, we analyzed different

combinations of the four features noted above. In the second-layer models, the NaiveBayesUp-

dateable algorithm selected from 69 classified methods of the Waikato environment for knowl-

edge analysis (WEKA) to integrate the first-layer models [33]. Our prediction platform,

EAT-Rice, based on the TIGR MSU v7.0 genome, can predict genes within a specific range on

both sides of the T-DNA insertion site and can provide a prediction outcome, confidence

score, and the distance between T-DNA insertion site and target gene.

Materials and methods

Data sources and dataset preparation

For T-DNA activation-tagging, individual insertion events were confirmed by southern blot.

Plasma rescue was used to find the T-DNA insertion site, then RT-PCR to detect the expres-

sion of genes around the T-DNA insertion site activated by enhancer. Two experimental data-

sets were collected: the first dataset included 226 T-DNA mutants containing 293 verified

genes and the second dataset included 11 mutants containing 65 verified genes. Gene expres-

sion was divided into three types: activated gene (defined Ac), gene with no significant effect

(defined NE), and non-detectable gene (defined ND)(Table 1). The first dataset of gene anno-

tations were based on The Institute for Genomic Research Rice Genome Annotation project

(TIGR)[34], and the second dataset was based on Rice Genome Automated Annotation Sys-

tem (RiceGAAS)[35]. Both of them in genome sequence were referenced from Oryza sativa

japonica cv. Nipponbare. Each data in the dataset represents the target gene which was vali-

dated within its T-DNA mutant line; in other words, the same target gene in different mutant

line was defined as the different data. Moreover, each data contained name of the mutant line,

T-DNA insertion site, accession number, and the states of gene expression.

Data for 30 non-detectable genes were collected but in order to ensure the quality and sta-

bility of our prediction system, these genes were removed. The no significant effect gene was
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defined as a non-activated gene (named NAc). The first dataset contained 280 genes, defined

as the training set; the second dataset contained 48 genes, defined as the independent-testing

set (Table 1). Two datasets come from different research units, which means that this data was

made by different experimental process. We expect that the predictive model should have

compatibility and practicality for the data from different research units; therefore, we applied

TDNA-DS1 as training data and TDNA-DS2 as testing data rather than mixed the two datasets

together. Thus, the method could also be used to validate the model whether it works in the

study or not.

The ratio of positive data (indicated Ac) and negative data (indicated NAc) in training data

may influence the efficiency of machine learning. First layer models of the training dataset

with different proportions of positive and negative data were established. After evaluation, the

optimal ratio of positive to negative data (P/N ratio) in 1:1 was obtained (S1 Fig). To divide the

positive data into two section, we used the sequence similarity grouping. One sequence was

selected within the population of 190 positive data compared with others using Pair-BLAST;

the average of 189 scores was defined as the sequence similarity score. The flowchart for each

positive data was duplicated to ensure all data were assigned a similarity score. Scores were

sorted and divided into two groups (S2 Fig). To avoid losing data and optimal P/N ratio, 180

positive data was divided into two groups and merged 90 positive data in each group with the

same negative data into training set of 180 data points named as training subset 1 and training

subset 2, respectively.

TRIM database

Taiwan Rice Insertional Mutant Database (TRIM, http://rice.sinica.edu.tw/fgb2/gbrowse/

TRIM_gb) which were built by Taiwan Academia Sinica can accelerate the rice functional

research. The projects of TRIM are establishment of the mutant population, generation of

genome-wide gene knockout by T-DNA, flanking sequence analysis, seed collection and phe-

notype characterization, seed conservation and PCR screening, inserted site in rice genome as

well as the inserted orientation on the template are included. All above are to establish a data-

base of the insertional mutant population. Biologists can survey whether the T-DNA mutants

were inserted around the target gene which they are interested in because it might be suitable

for gene functional study.

In this study, the T-DNA mutant lines are acquired from TRIM database, the expression

levels of flanking genes were further identified. Our purpose is to effectively predict the effect

of T-DNA insertions on flanking genes by the EAT-Rice, which will accelerate the research of

Rice gene function by TRIM mutants.

Table 1. Data distribution of flanking genes in rice T-DNA mutants.

Data Sources Mutant Line Gene Expression States Validated Genesa

Ac NE ND

TDNA-DS1b 226 190 90 13 293

TDNA-DS2c 11 26 22 17 65

Sum 237 216 112 30 358

a Validated gene indicated flanking gene expression of T-DNA mutants detected by RT-PCR.
b TDNA-DS1 indicated the first collected dataset.
c TDNA-DS2 indicated the second collected dataset.

https://doi.org/10.1371/journal.pcbi.1006942.t001
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Sequence retrieving

To analyze the difference in DNA sequences between activated (indicated Ac) and inactivated

(NAc) genes, the three-part nucleotide sequence of the gene was retrieved, including UPS1K,

DISTANCE, and MIDDLE. The three kinds of sequences retrieving followed the three hypoth-

eses, which were supported in previous studies [36, 37]. 1) Based on promoter-enhancer inter-

action, first part of DNA fragment was one kb of upstream sequence from the start codon, also

core promoter region, named as UPS1K; 2) In addition, based on scanning model, second part

of DNA fragment was from the start codon of target gene to enhancer named as DISTANCE;

3) At last, based on lopping model, third part of DNA fragment was from 150 bp of up- and

downstream sequence around the central nucleotide of DISTANCE region, and total length is

301 bp named as MIDDLE (Fig 1). T-DNA insertion site at upstream of target gene is an

example shown as Fig 1. In fact, T-DNA may be inserted downstream of the target gene or

intragenic. Therefore, the sequence length of the DISTANCE and MIDDLE will be changed

depending on the T-DNA insertion site.

Feature encoding

Nucleotide context (N-gram). There were three points about the principle of N-gram.

First, it chose specific sequences of DNA as template. Second, it searched the fragment of every

nucleotide group to know frequency of occurrences of every fragment. Finally, it found repre-

sentative fragments of sequences between Ac and NAc groups. These short fragments of nucle-

otide might be transcription factor biding site or motif. Three, four, five, and six-gram was

applied to produce 64, 256, 1024, and 4096 types of nucleotide groups, respectively. Eq 1 was

used to encode for N-gram models in different combinations (four types of gram coding),

where j indicated encoding by frequency of occurrences of nucleotide fragments in specific

area; total number of nucleotide groups was 5440.

NGRAM numberðiÞ ¼
j; j 2 N

0; otherwise
; i 2 f1; 2; . . . ; 5440g ð1Þ

(

Regulatory cis-elements (Motif). In the study, 2,087 verified motifs of regulatory cis-ele-

ments were collected [38] and the Find Individual Motif Occurrences (FIMO) tool within the

Fig 1. Illustration of three kinds of sequence information used in EAT-Rice construction. First region (slanted box) indicates

UPS1K. Second region (curly bracket) indicates DISTANCE. Third region (double-headed arrow) indicates MIDDLE. The gene

coding domain sequence (Gene CDS) of target gene is as grayish white box.

https://doi.org/10.1371/journal.pcbi.1006942.g001
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Multiple Em for Motif Elicitation (MEME) suite was applied to search regulatory cis-elements

on promoters [39]. The feature encoding was based on the result of the FIMO comparison.

The 2,087 regulatory cis-elements were encoded based on number, conservation, orientation,

density, and distance from a regulatory cis-element to translation start site (TLS) of the gene

[40, 41], constructing a 12,522-dimensional training model.

Motif number is the frequency of motif occurrence within the promoter (j) represented in

Eq 2. Motif conservation values were calculated using Eq 3 by adding all scores of a specific

motif (Mi), acquired by applying the FIMO tool, and dividing by the motif number. Motifs

may be on the leading strand or lagging strand, therefore encoding was calculated by the ratio

of motifs on positive and negative orientation. Positive orientation (specific motif on leading

strand divide by motif number) was calculated using Eq 4; negative orientation (using the

motif on the lagging strand) was calculated using Eq 5. Eq 6 was used to calculate motif density

(indicating dispersed extent of a specific motif location on the promoter). Motif distance (dis-

tance between motif and T-DNA inserted site) was calculated using Eq 7; with multiple motif

locations, each distance was calculated and summed, then divided by the motif number.

Motif NumberðiÞ ¼
j; j 2 N

0; otherwise
; i 2 f1; 2; . . . ; 2087g ð2Þ

(

Motif ConserveðiÞ ¼
Mi alignment score in promoter

Motif numberðiÞ
; i 2 1; 2; . . . ; 2087f g ð3Þ

Motif Pos:ori:ðiÞ ¼
pos inMotif numberðiÞ

Motif numberðiÞ
; i 2 1; 2; . . . ; 2087f g ð4Þ

Motif Neg:ori:ðiÞ ¼
neg inMotif numberðiÞ

Motif numberðiÞ
; i 2 1; 2; . . . ; 2087f g ð5Þ

Motif DensityðiÞ ¼
length of Mi �Motif numberðiÞ
distance of Mi distribution

; i 2 1; 2; . . . ; 2087f g ð6Þ

Motif DisTGðiÞ ¼
distance from T� DNA inserted site to TLS in Mi

Motif numberðiÞ
; i 2 1; 2; . . . ; 2087f g ð7Þ

Nucleotide physicochemical and conformation properties (NPC). The 125 types of

dinucleotide physicochemical properties and structures from a dinucleotide properties data-

base (DiProDB) (https://diprodb.leibniz-fli.de/) were integrated into 15 types by principal

component analysis (PCA)[42]. A 240-dimensional training model using this feature was built

to identify specificity of the target sequence (Eq 8).

NPC valueði;jÞ ¼
SðdiÞ � FjðdiÞ

sequence length � 1
; i 2 1; 2; . . . ; 16f g; j 2 1; 2; . . . ; 16f g; di 2 D; Fj

2 F; ð8Þ

where D is the combination of 16 types of dinucleotides for every property; F is 15 types of

dinucleotide physicochemical properties; S(di) is frequency of occurrences of 16 dinucleotides

A predictive model for flanking gene expression of T-DNA activation-tagged rice mutants

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006942 May 8, 2019 6 / 20

https://diprodb.leibniz-fli.de/
https://doi.org/10.1371/journal.pcbi.1006942


on the target sequence; Fj(di) represents the value of 16 dinucleotides corresponding to each

property in 15 dinucleotide physicochemical structures.

CpG islands (CGI)

To determine the association of gene activation by analyzing whether CpG-island is present in

promoter [43, 44]. The EMBOSS Newcpgreport tool from The European Bioinformatics Insti-

tute (EMBL-EBI) was used to predict CpG islands, and encoded by number, length, distance,

CG ratio, and OE value (http://www.ebi.ac.uk/Tools/seqstats/emboss_newcpgreport/). CGI

number was the number using Newcpgreport to predict CpG islands on the promoter of target

gene (Eq 9). CGI length was value of the length of CG-island divided by the length of promoter

(Eq 10). CGI distance was distance from CG-island to TLS of gene (Eq 11). The CG ratio of

CGI was ratio of CpG dinucleotides in CG-island (Eq 12). The observed/expected (OE) value

of CGI was ratio of number of CpG dinucleotides observed in CG-island to the expected num-

ber of CpG dinucleotides. Its formula was number of CpG dinucleotides on the promoter

divided by number of cytosine nucleotide multiply number of guanine nucleotide on CpG-

island (Eq 13).

CGI Number ¼
j; j 2 N

0; otherwise
ð9Þ

(

CGI LengthRatio ¼
length of CGI

length of promoter
ð10Þ

CGI Dis ¼ jTLS � CGI locationj ð11Þ

CGI CGRatio ¼
CpG% in CGI
CGI number

ð12Þ

CGI OE ¼
number of CpG in CGI

ðnumber of C in CGIÞ � ðnumber of G in CGIÞ
ð13Þ

Significant pattern selection between Ac and NAc genes

To reduce model complexity and shorten calculation time, we analyze the frequency of pattern

occurrences of 5440 nucleotide groups of N-gram and 2087 regulatory cis-elements of Motif

in the sequence, including UPS1K, DISTANCE, and MIDDLE, between Ac and NAc genes.

DNA fragments with a P-value of< 0.05 by T-test (implemented by R) were selected to iden-

tify the patterns with different frequencies in the Ac and NAc sequences. For the N-gram, the

UPS1K, DISTANCE, and MIDDLE, 359, 4085, and 349 patterns were filtered out with P-

value < 0.05. In the Motif, 106 patterns were identified. The selected patterns above were

encoded further depending on what the N-gram or motif it derived (An example was shown

in S3 Fig).

Model selected evaluation

In the research, a formula was designed to evaluate the prediction performance of the two sec-

ond-layer models from training subset 1 and subset 2. We considered AUC, Sn, and Sp as our

evaluating indicator in model, and the formula includes the value of cross-validation multi-

plied by the value of exchange-testing, divided by the value of self-consistency. Note, the for-

mula indicates the lower the evaluating scores, the higher the extent of model overfitting, and

A predictive model for flanking gene expression of T-DNA activation-tagged rice mutants

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006942 May 8, 2019 7 / 20

http://www.ebi.ac.uk/Tools/seqstats/emboss_newcpgreport/
https://doi.org/10.1371/journal.pcbi.1006942


vice versa.

ModelðEvaÞi ¼
ModeliEvacv �ModeliEvaEx� test

ModeliEvaSelf
; Eva 2 AUC; Sn; Spf g ð14Þ

Modeli ¼ ModelðAUCÞi þModelðSnÞi þModelðSpÞi;where i ¼ number of model

Architecture of prediction system

In this study, we built the prediction system about the flanking gene expression of T-DNA

insertion site in rice mutants by two layers model of machine learning. A 280 training set was

selected to train a model of logistic regression based on the relationship between distance from

the 35S enhancer to the target gene and gene expression. LIBSVM was used to build the first

layer model that adopted three kinds of DNA sequences and four kinds of features for encod-

ing. For UPS1K, four features, i.e., N-gram, Motif, NPC, and CGI, for encoding, while for DIS-

TANCE and MIDDLE only N-gram and NPC were used to encode, and eight prediction

models were generated (Table A in S1 Supplement). The optimal P/N ratio was calculated

from the average results of eight models. For the second layer, we used a different combination

to integrate first layer models encoded by four features, picked out the preferred model of pre-

dictive performance, and used WEKA v3.6 to analyze 69 kinds of classification algorithms.

NaiveBayesUpdateable was adopted to build models (Table B in S1 Supplement). The accuracy

of the two-layer model was evaluated with 48 independently testing data (Fig 2).

Performance evaluation of model

A 5-fold cross-validation method and 48 verified genes were chosen as testing data to evaluate

the predictive performance of the model; evaluation indictor were Accuracy (Acc), Sensitivity

(Sn), Specificity (Sp), F-score (F1), and AUC (Area under the receiver operating characteristic

curve). Acc can evaluate the prediction accuracy of positive and negative data; the closer to

100%, the more accurate the overall predictive performance of the model (Eq 15). Sn and Sp

evaluate the accuracy of the prediction of positive and negative data, respectively (Eqs 16–17).

F1 is the weighted average of Recall (also called Sn) and Precision (the ratio of true positive

data with true positive data plus false positive data) of models (Eq 18). When the numbers of

positive and negative data were different, Acc was not a good evaluation indicator, so we also

considered AUC using an ROCR library of R language additionally. The Sn, Sp and AUC

value are from 0 to 1. The closer to 1, the better learning of model.

Acc ¼
TP þ TN

TP þ FP þ TN þ FN
� 100 ð15Þ

Sn ¼
TP

TPþ FN
ð16Þ

Sp ¼
TN

TN þ FP
ð17Þ

F1 ¼ 2�
Precision� Recall
Precisionþ Recall

¼
2� TP

2� TP þ FN þ FP
ð18Þ
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Results

Relation between gene activation and distance from 35S enhancer

When we assigned the UPS1K sequence of the gene in the T-DNA activation-tagged mutant,

we discovered 55 repeat sequences of different expression states, which are the result of a single

Fig 2. Flow chart of system architecture. The dotted line square indicates two-layer model construction. The solid and dotted circle line used for four kinds of features

in 2nd Layer Modules indicates feature combination mechanism.

https://doi.org/10.1371/journal.pcbi.1006942.g002
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target gene affected by multiple independent T-DNA insertion events. The data of these

repeats differ significantly in the distance from the T-DNA insertion site to the target gene.

We grouped data based on the distance from the 35S enhancer to the TLS of the gene and cal-

culated the ratio of gene activation in detached groups that separated by distance. Statistical

analysis showed that the distance between enhancer and TLS of the gene negatively correlated

with gene activation (Fig 3A; Table C in S1 Supplement), implying that distance has the ability

to influence the interaction between the enhancer and target gene.

Previous studies have suggested that the enhancer-gene interaction was not affected by ori-

entation, location (i.e., the enhancer is located on the upstream, downstream or intragenic

locus) and distance [17, 45]. However, our analysis demonstrated that there is a statistically sig-

nificant difference in distance (P = 6.39e-07)(Fig 3A; Table D in S1 Supplement). Gene orien-

tation, T-DNA insertion orientation, and location were analyzed to assess the promoter-

enhancer interaction and if the probability of gene activation was influenced by these three fac-

tors. No significant effect for the three factors on the enhancer-to-gene activation was observed

(Fig 3B–3D; Tables C and D in S1 Supplement).

The repeat sequences of different expression states may cause contradictions in model

building by machine learning. Therefore, we used logistic regression to establish a model

based on the distance factor to predict the probability of gene activation. The value of the

regression prediction were used as a feature-encoding weighting when the first layer modules

were built to distinguish repeat sequences, and the logistic regression formula was as shown in

Eq 19:

p xð Þ ¼
expð1:448� 7:099e� 05xÞ

1þ expð1:448� 7:099e� 05xÞ
; ð19Þ

where linear regression formula is 1.448–7.099e-05x; intercept (fixed constant of linear regres-

sion) is 1.448; independent variable parameter is -7.099e-05; and x indicates distance variable.

π(x) indicates the logically transformed function of the linear regression and represents the

possibility of gene activation.

Performance of the system with two-layer architecture in the subsets

The evaluation results on the first layer feature model of training subset 1 showed that the

models constructed by UPS1K and MIDDLE in the N-gram encoding and UPS1K in Motif

encoding achieved the most desirable results (Table 2). In models of UPS1K and MIDDLE

using N-gram encoding, the cross-validation was 90.00% and 95.00% on Acc, while the inde-

pendent-testing result for the same models was 64.58% and 72.92%, respectively. In the Motif

model using N-gram encoding, training was 82.22% on Acc, but for the independent-testing

of the Motif model using N-gram encoding, Acc was only 50.00%, indicating that this model

may suffer from overfitting.

Model performance of training subset 2 was similar to subset 1. The range of expected

model performance with 5-fold cross-validation was 79.44% - 89.44% and independent-testing

was 64.58% - 70.83% on Acc. Compared with subset 1, the Motif model using N-gram encod-

ing of subset 2 was >14.58% on Acc and was> 0.17 on AUC. In the N-gram encoding of sub-

set 1 and subset 2, the DISTANCE model was 53.89% and 61.67% for cross-validation on Acc,

respectively. However, for subset 1 and subset 2, the UPS1K model was approximately 36.11%

and 19.44% greater than the DISTANCE model, and the MIDDLE model was also greater

than 41.11% and 27.77%, respectively. In the NPC encoding, cross-validations of the models of

UPS1K, DISTANCE, and MIDDLE in subset 1 and subset 2 averaged 55.18% and 54.63%,

respectively; the average of independent-testing was 61.11% and 60.42%. In the CGI encoding,
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cross-validation and independent-testing were close to 50% on Acc, suggesting that CGI

might not be a good classification feature. Taken together, N-gram and Motif classification

performance was more valuable than NPC and CGI, indicating that some classification fea-

tures have meaningful biological significance in this study.

To consider the complexity of the biological mechanism, the second layer models combined

four features by integration of machine learning, with an eye to improving system accuracy. In

the cross-validation of subset 1, we found that all evaluated parameters except the AUC dem-

onstrated N-gram encoding provided a dominant contribution to classification (Table 3). The

AUC value coincides with model performance; higher AUC value provide superior stability of

the Ac and NAc gene classification in model performance. From these results, we selected the

CGI+Motif+N-gram combination based on the highest AUC. The independent-testing results

were Acc of 72.92%, AUC of 0.76, F1 of 0.772, Sn of 0.846, and Sp of 0.591. In the cross-valida-

tion of subset 2, the performance of a single N-gram was similar to that of subset 1, indicating

that the contribution of N-gram in the second layer combination was more favorable. After

considering the balance performance between AUC, Sn, and Sp, we selected two combinations

of N-gram+NPC and CGI+N-gram+NPC. The results illustrated that both model perfor-

mances were equivalent, implying that incorporation of the CGI feature did not improve accu-

racy. From this assessment, we selected the N-gram+NPC combination in subset 2. The

independent-testing results were Acc of 79.17%, AUC of 0.806, F1 of 0.828, Sn of 0.923, and Sp

of 0.636.

Fig 3. Correlation analysis of enhancer property and the activation ratio of genes. In the interaction between the enhancer and the target gene, we have summarized

four properties including. (A) The distance from the 35S enhancer of the T-DNA insertion site to the TLS of gene. (B) Gene orientation. (C) Orientation of T-DNA

insertion (enhancer’s orientation). (D) Location of T-DNA insertion (enhancer’s location). US (Up-stream): T-DNA inserts into upstream of target gene, DS (Down-

stream): T-DNA inserts into downstream of target gene, IG (Intragenic): T-DNA inserts into intragenic of target gene.

https://doi.org/10.1371/journal.pcbi.1006942.g003
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Model selection

We determined the optimal models from training subset 1 and subset 2 by second layer model

combination and then chose the final model by comparing the accuracy of the cross-validation

on both models. However, we found for the subset 1 model that the cross-validation value for

Acc was 94.45% and the independent-testing value was 72.92% on Acc.

For the subset 1 model, differences of performance between cross-validation and indepen-

dent-testing on Acc and AUC were 21.53% and 0.229, respectively; for the subset 2 model,

cross-validation of the subset 2 model for Acc was 88.33% lower than that of the subset 1

model, and differences of performance were 9.16% on Acc and 0.166 on AUC. From the above

described, the subset 1 model has higher performance in learning, however, it worked not well

in testing. In addition, the subset 1 model might have an overfitting phenomenon in the first

layer because Motif encoding that could affect the performance of the second layer; overfitting

of the subset 1 model (or any model) would engender poor prediction performance for data

other than its own training data. To verify this issue, we used another training data from subset

2 as the testing data to evaluate the subset 1 model, and vice versa. In addition, we also used

the training data from the building model as the testing data to evaluate the training quality of

the model.

Evaluation results indicated that self-consistency compared to cross-validation increased

0.55% for the Acc indicator in subset 1. However, Acc increased by 1.67% in subset 2, indicat-

ing that the training quality of the model credible. Subset 1 was 6.12% higher than subset 2 in

Table 2. Evaluation of the first layer of SVM feature model.

Feature Encoding Sequence Cross-Validation Independent-Testing

Acc(%) AUC F1 Sn Sp Acc(%) AUC F1 Sn Sp
N-gram UPS1K 90.00 0.804 0.900 0.900 0.900 64.58 0.698 0.622 0.538 0.773

DISTANCE 53.89 0.555 0.484 0.433 0.644 64.58 0.661 0.585 0.462 0.864

MIDDLE 95.00 0.980 0.950 0.956 0.944 72.92 0.815 0.772 0.846 0.591

Overalla 79.63 0.780 0.778 0.763 0.829 67.36 0.725 0.660 0.615 0.743

NPC UPS1K 56.11 0.538 0.633 0.755 0.367 60.42 0.780 0.537 0.423 0.818

DISTANCE 50.00 0.486 0.536 0.578 0.422 54.17 0.528 0.645 0.769 0.273

MIDDLE 59.44 0.621 0.610 0.634 0.555 68.75 0.780 0.667 0.577 0.818

Overall 55.18 0.548 0.593 0.656 0.448 61.11 0.696 0.616 0.590 0.636

Motif UPS1K 82.22 0.879 0.826 0.844 0.800 50.00 0.490 0.571 0.615 0.364

CGI UPS1K 51.67 0.526 0.62 0.789 0.245 50.00 0.439 0.613 0.731 0.227

Feature Encoding Sequence Cross-Validation Independent-Testing

Acc(%) AUC F1 Sn Sp Acc(%) AUC F1 Sn Sp
N-gram UPS1K 81.11 0.888 0.811 0.811 0.811 70.83 0.638 0.759 0.846 0.545

DISTANCE 61.67 0.613 0.615 0.611 0.622 58.33 0.743 0.444 0.308 0.909

MIDDLE 89.44 0.940 0.897 0.922 0.867 70.83 0.823 0.781 0.962 0.410

Overall 77.41 0.814 0.774 0.781 0.767 66.66 0.735 0.661 0.705 0.621

NPC UPS1K 53.89 0.535 0.638 0.811 0.267 56.25 0.669 0.571 0.538 0.591

DISTANCE 61.67 0.627 0.623 0.633 0.600 54.17 0.675 0.421 0.308 0.818

MIDDLE 48.33 0.509 0.546 0.622 0.345 70.83 0.743 0.708 0.654 0.773

Overall 54.63 0.557 0.602 0.689 0.404 60.42 0.696 0.567 0.500 0.727

Motif UPS1K 79.44 0.844 0.798 0.811 0.778 64.58 0.661 0.691 0.731 0.545

CGI UPS1K 49.44 0.471 0.480 0.466 0.522 41.67 0.484 0.588 0.769 0.000

a Overall indicates average performance of models built by UPS1K, DISTANCE and MIDDLE sequence.

https://doi.org/10.1371/journal.pcbi.1006942.t002
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cross-validation and 5.00% higher in self-consistency. In contrast, subset 2 was 2.23% higher

than subset 1 in exchange-testing, indicating that subset 2 was not only fault tolerant but also

accurate with respect to prediction (Table E in S1 Supplement). So, we designed a formula (see

Eq 14), it can calculate which training model who has the greater quality. Additionally, apply-

ing the formula, subset 2 was identified as the best-fit model for our system, because the score

of the subset 2 model was higher than the score for the subset 1 model.

Performance evaluation: distance between 35S enhancer and TLS of the

gene

We found a correlation between gene activation by the 35S enhancer and the distance from

the 35S enhancer to the TLS of the gene, indicating that the distance factor has an important

significance (Fig 1A). We further analyzed the predictive performance of the EAT-Rice using

Table 3. Evaluation of the second layer of combination model using NaiveBayesUpdateable.

Pattern of Feature Cross-Validation Independent-Testing

Acc(%) AUC F1 Sn Sp Acc(%) AUC F1 Sn Sp
N-gram 95.00 0.981 0.950 0.956 0.945 72.92 0.777 0.772 0.846 0.591

NPC 56.67 0.578 0.557 0.544 0.589 58.33 0.725 0.412 0.269 0.955

CGI 50.00 0.500 0.550 0.611 0.389 50.00 0.479 0.613 0.731 0.227

Motif 82.22 0.822 0.826 0.845 0.801 50.00 0.490 0.571 0.615 0.364

CGI+N-gram 95.00 0.982 0.950 0.956 0.945 72.92 0.783 0.772 0.846 0.591

CGI+NPC 50.56 0.561 0.508 0.511 0.500 58.33 0.734 0.412 0.269 0.955

CGI+Motif 82.22 0.822 0.826 0.845 0.801 50.00 0.484 0.571 0.615 0.364

N-gram+NPC 95.00 0.978 0.950 0.956 0.945 72.92 0.786 0.772 0.846 0.591

Motif+N-gram 94.45 0.987 0.944 0.945 0.945 72.92 0.753 0.772 0.846 0.591

Motif+NPC 82.22 0.845 0.826 0.845 0.801 50.00 0.610 0.571 0.615 0.364

CGI+N-gram+NPC 95.00 0.978 0.950 0.956 0.945 72.92 0.794 0.772 0.846 0.591

CGI+Motif+N-gram 94.45 0.989 0.944 0.945 0.945 72.92 0.760 0.772 0.846 0.591

CGI+Motif+NPC 82.22 0.849 0.826 0.845 0.801 50.00 0.617 0.571 0.615 0.364

Motif+N-gram+NPC 94.44 0.986 0.945 0.956 0.934 72.92 0.758 0.772 0.846 0.591

CGI+Motif+N-gram+NPC 94.44 0.986 0.945 0.956 0.934 72.92 0.763 0.772 0.846 0.591

Pattern of Feature Cross-Validation Independent-Testing

Acc(%) AUC F1 Sn Sp Acc(%) AUC F1 Sn Sp
N-gram 88.89 0.969 0.890 0.901 0.878 70.83 0.823 0.781 0.962 0.409

NPC 57.78 0.600 0.537 0.489 0.666 52.08 0.502 0.303 0.192 0.909

CGI 49.44 0.494 0.326 0.244 0.745 58.33 0.615 0.375 0.231 1.000

Motif 79.45 0.795 0.798 0.812 0.779 64.58 0.638 0.691 0.731 0.545

CGI+N-gram 88.89 0.967 0.890 0.901 0.878 70.83 0.841 0.781 0.962 0.409

CGI+NPC 57.78 0.598 0.537 0.489 0.666 52.08 0.526 0.303 0.192 0.909

CGI+Motif 79.45 0.796 0.798 0.812 0.779 64.58 0.696 0.691 0.731 0.545

N-gram+NPC 88.33 0.972 0.884 0.890 0.878 79.17 0.806 0.828 0.923 0.636

Motif+N-gram 87.78 0.975 0.872 0.834 0.922 77.08 0.841 0.814 0.923 0.591

Motif+NPC 77.78 0.825 0.775 0.767 0.790 64.58 0.631 0.691 0.731 0.545

CGI+N-gram+NPC 88.33 0.972 0.884 0.890 0.878 79.17 0.813 0.828 0.923 0.636

CGI+Motif+N-gram 87.78 0.974 0.872 0.834 0.922 77.08 0.851 0.814 0.923 0.591

CGI+Motif+NPC 77.78 0.823 0.775 0.767 0.790 64.58 0.644 0.691 0.731 0.545

Motif+N-gram+NPC 88.33 0.978 0.879 0.846 0.922 77.08 0.830 0.814 0.923 0.591

CGI+Motif+N-gram+NPC 88.89 0.977 0.885 0.857 0.922 77.08 0.832 0.814 0.923 0.591

https://doi.org/10.1371/journal.pcbi.1006942.t003
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different distance ranges and compared the predictive accuracy in training and independent-

testing data. In addition, we compared the difference in predictive accuracy of EAT-Rice and

TRIM platforms using different distance intervals.

First, we grouped training data of subset 2 and 48 independent-testing data based on differ-

ent distance ranges and analyzed the predictive performance of EAT-Rice (Fig 4A; Table F in

S1 Supplement). Among genes at>20 kb distances, Acc of training data showed an increasing

trend, but independent-testing on Acc showed a decreasing trend. With the increase in the

length of the DISTANCE sequence, the features generated by N-gram+NPC, the final model

used for the EAT-Rice, were more consistent with sequence-specificity related to DISTANCE

sequence, resulting in the observation of the overfitting phenomenon in EAT-Rice for gene

over a 20 kb distance.

On the other hand, the T-DNA mutant lines were obtained from TRIM, however, we found

that the states of flanking gene activation we identified were different from the database. To

compare the performance of EAT-Rice and TRIM, we collected and analyzed 100 activated

genes not used in subset 2 from 190 positive data in the training dataset. Performances of

TRIM and EAT-Rice were 39.00% and 94.00% on Acc, respectively, applying this analysis

(Data not shown). TRIM had reliable predictive accuracy when the gene distance was less than

10 kb, but less reliable predictive ability over 10 kb. For EAT-Rice, the performance gradually

decreased, but predictive accuracy was eliminated for ranges beyond 30 kb (Fig 4B; Table G in

S1 Supplement), indicating that the reliable predictive range of TRIM was approximately 10

kb up- and downstream of the T-DNA insertion site, however, EAT-Rice could predict more

accurately than TRIM at greater gene distances. Overall, EAT-Rice out-performed TRIM with

respect to the predictive accuracy of gene activation but due to overfitting, the predictive ability

of EAT-Rice was reduced at distances of more than 20 kb.

Discussion

In previous studies, we thought the enhancer has no bearing on activated genes when the ori-

entation, location, or distance is different [17, 37, 45, 46]. However, our statistical results

showed the distance factor may influence the probability of gene activation by the enhancer

(Fig 1A). We speculated three reasons might causing the difference. 1) Previous investigations

discussed the activation of this target genes by an endogenous enhancer, but the exotic 35S

enhancer could cause nonspecific gene constitutive expression in the research. 2) The activa-

tion of a single enhancer was the focus of prior work; in contrast, our research objective

focused on different insertion sites of enhancer from many mutant lines. Comparing the inten-

tion of the past research with ours are very different in this issue. 3) Finally, mammalian sys-

tems have been the target in previous work whereas ours is plants; the mechanisms of

enhancers would be expected to be distinctive.

Previous work showed that the distance was a key factor to target gene influenced by the

35S enhancer on T-DNA activation-tagging [36]. The enhancer works only at a suitable dis-

tance and if the distance between the target gene and the enhancer is too far or too close, the

enhancer-promoter interaction will be diminished [47, 48]. A similar mechanism exists in

transgenic plants, where the interaction strength depends on the intensity of the enhancer and

the sensitivity of the target gene promoter, and thus determines whether the distance barrier

can be overcome [49, 50]. Although the sequence distance of suitable interaction for the 35S

enhancer is unknown, prior work showed the impact of the 35S enhancer could be observed at

a 78 kb distance [51].

In the first layer model, we captured three sequence fragments based on probable mecha-

nisms of the enhancer and discovered that the rank of performance was MIDDLE > UPS1K >
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DISTANCE in the model built from N-gram (Table 2). We speculated the reason for DIS-

TANCE sequence having the lowest accuracy was that it depended on the distance from the

T-DNA insertion site to TLS of gene. The difference in the distance from insertion site to gene

led to a varied sequence length (100 bp-30000 bp). The sequences may contain, for example, a

gene coding region, promoter, or intergenic region. These sequences would produce excessive

noise which would hinder classification, and led us to choose the important sequence by T-

test.

It is noteworthy that the accuracy of MIDDLE is better than that of UPS1K. In general, we

reasoned the performance of transcription was improved mainly by the enhancer interaction

with promoter. We expected that the UPS1K sequence offered a critical message to augment

the efficiency of classification and thought the sequence of DISTANCE and MIDDLE would

provide less value. However, the result was not as expected. To check whether the MIDDLE

could offer a useful message, we obtained randomly 180 fragments that were 301 bps from the

rice chromosome to replace the original MIDDLE sequence. At the same time, to avoid taking

repeat sequences, like retrotransposon elements or centromere region, we used BLAST

method to compare the sequences of Oryza Repeat Database v3.3 offered by TIGR to randomly

obtain sequences [52]. Then, we built the model by N-gram encoding with these sequences.

Using independent-testing, the performance of model decreased by 18.75% of Acc, and then

AUC decreased by 0.246 (Table H in S1 Supplement). The results illustrated that MIDDLE

had a quite pronounced effect with regard to gene activation of 35S enhancer, suggesting the

nearby relationship between the MIDDLE region sequence and enhancer.

The result of the first layer revealed the accuracy rank of the four features was N-

gram> Motif > NPC > CGI. However, the result of the second layer showed the accuracy of

the N-gram+Motif combination was less than the accuracy of N-gram alone. Although the

principles of N-gram and Motif are similar, both are searching for specific fragments on

sequences to encode, there are several differences between N-gram and Motif. N-gram used a

3–6 bp fragment from the random combination of nucleotides to encode, so its fragment may

have no known biological significance. Motif collected cis-regulatory sequence fragments that

have known biological significance in the plant kingdom. We anticipated N-gram and Motif

to complement each other to enhance classification performance, however, the results demon-

strated N-gram was a marked improvement over other combination. Perhaps, N-gram consid-

ered all nucleotide combinations, while Motif only considered data that was already confirmed

by experiment. In the plant kingdom, the regulatory elements already confirmed are finite,

and N-gram may substitute for the Motif function. Since the ND gene cannot confirm whether

it is affected by 35S enhancer, it is deleted ND gene when data processing in this work.

Furthermore, we also participated the deleted 30 ND gene in training dataset, and following

system structure to build the same model (Table I in S1 Supplement). The result indicated that

the gene sequences of ND phenotype might include certain biological features of activated

gene and produced an incorrect classification in the model.

Conclusion

DNA sequence analysis and machine learning were used to build a two-layer model system.

The system predicts the flanking gene expression activated by the 35S enhancer in rice mutant

Fig 4. Performance evaluation in different distance ranges. (A) Assessment of EAT-Rice in different datasets. The value of Train, Test A and Test B are

corresponding to left Y axis. Train indicates 5-fold cross-validation of training model. Test A indicates the performance of model with the original

independent testing data. Test B indicates the performance of model with the new testing data collected after the EAT-Rice had been constructed. STDEV

(cross line histogram) is the standard deviation of these three kinds of values, Train, Test A and Test B, and the value of STDEV is corresponding to the right Y

axis (STDEV is non-available in the 0–2 range). (B) Assessment between EAT-Rice and TRIM. Y axis is the performance of accuracy.

https://doi.org/10.1371/journal.pcbi.1006942.g004
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lines of T-DNA insertion activation-tagging. To avoid deviation caused by single machine

learning, the two-layer model was implemented with LIBSVM algorithm in the first layer and

NaiveBayesUpdateable algorithm in the second layer. The distance factor from the 35S

enhancer to the translation start site of target gene is consider, so the possibility of target gene

activation is estimated by logistic regression. Then, the feature weighting of the first layer

model is based on the value of logistic regression. We retrieved three region sequences, includ-

ing UPS1K, DISTANCE, and MIDDLE, and use these features including N-gram and NPC to

encode. The accuracy of cross-validation is 88.33%, and the accuracy of independent-testing is

79.17%. When EAT-Rice is compared to TRIM, the accuracy of EAT-Rice is 55.00% greater

than TRIM, and the confidence interval is in the range of 2–5 and 10–20 kb. We found a nega-

tive correlation between the distance on the genomic sequence and gene activation by the

enhancer, for example, if the gene is closer to the enhancer, gene activation is more likely. For

UPS1K, DISTANCE, and MIDDLE, the models constructed from MIDDLE and UPS1K con-

tribute more to classified prediction, but the information offered from MIDDLE provided a

greater contribution than UPS1K to the system for identifying activated gene in the model,

suggesting the sequence context of MIDDLE may cause proteins to bind to the region and

influence the interaction between the 35S enhancer and target gene. Finally, we have developed

a system that predicts flanking gene expression activated by the CaMV 35S enhancer in

T-DNA insertion activation-tagged rice mutants. We expect our system (EAT-Rice) can assist

rice gene scientists in enhancing the efficiency of selecting candidate genes.
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