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Abstract

Purpose

Ocular somatosensory-autonomic reflexes play critical roles in maintaining homeostasis of

the eye. The purpose of this study was to investigate the pupil response to nociceptive cor-

neal stimuli.

Methods

A Waterloo-Belmonte pneumatic esthesiometer was used to determine detection thresholds

and randomly deliver mechanical and chemical stimuli from levels of detection threshold to

twice the threshold in 50% steps to the central cornea of 15 healthy subjects. For each stim-

ulus, imaging of the stimulated/unstimulated eye was performed using two modified/cali-

brated Logitech c920 digital cameras for 4 seconds each, pre/post stimulus capture. The

data were processed with a custom segmentation algorithm to help identify the pupils and

pupil diameter was measured using ImageJ software. Pupil dilation response differences

between the ipsi- and contralateral eye was analyzed using dependent t-tests. The effect of

stimulus intensity, modality and sex of subjects were analyzed using repeated measures.

Results

In mechanical and chemical stimulation experiments, there was no difference in pupil

responses between the stimulated eye and the unstimulated eye, (all dependent T-test p >
0.05). On average, pupil diameter increased from baseline as the corneal stimulus intensity

increased. This happened regardless of whether mechanical or chemical stimulation

occurred (ANOVA p < 0.05). At 200% threshold, pupil diameter was greater than at all stimu-

lus intensities (Tukey HSD, all p < 0.05). Based on stimulus intensity, females had greater

pupil diameters than males at levels of 150% threshold and 200% threshold (ANOVA p <
0.05, all Tukey HSD p < 0.05).

Conclusion

This study serves as a basis for the characterization of the local stimulus-response neural

circuitry relating nociceptive stimuli to autonomic responses and in combination with our

work on completely separate autonomic circuits of bulbar conjunctival vessel dilation and
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reflex tearing suggests that the monotonic measurements of redness, tearing and pupils

provide accurate, separable responses that reflect painful stimulus intensity.

Introduction

The International Association for the Study of Pain defined pain as, “an unpleasant sensory

and emotional experience associated with actual or potential tissue damage, or described in

terms of such damage” [1]. The word “pain” has also been used to describe the experiences

associated with discomfort and other unpleasant feelings [2,3]. Pain is subjective and by defini-

tion it is experienced only when an individual is in a conscious state, yet the perception and

modulation of pain induces brain activity that is driven by autonomic processes that operate

below the level of consciousness [4–6]. Previous reports have proposed that autonomic ner-

vous system (ANS) responses have a strong relationship to pain perception and as such, may

be possible alternatives for the measurement of pain [7,8].

Within the eye, the ANS controls (among others) two antagonistic iris muscles, the sphinc-

ter and dilator pupillae to change pupil size. The sphincter pupillae is innervated by parasym-

pathetic fibers and constricts the pupil, and conversely, the dilator pupillae is innervated by

sympathetic fibers and dilates the pupil [9]. Accommodation, luminance, attention, and alert-

ness (among others) cause fluctuations in pupil size [10–12]. The relationship between pupil

size changes and pain perception has been looked into quantitatively by various researchers

and has been termed pupillary reflex dilation [13], pupil dilation response [14], phasic pupil

dilation [14,15], reflex pupillary dilation [16], and ciliospinal reflex [17]. Chapman et al. [14]

delivered intra-cutaneous noxious fingertip stimulation to 20 subjects at four different intensi-

ties and observed a pupillary dilation response. The pupillary dilation response began 0.3 s

after delivery of the stimulus and peaked at 1.25s. The researchers concluded that there was a

consistent pupillary dilation response to painful systemic stimulation in a dose-response

manner.

The pain experience for men and women appear to be different [18,19]. Ellermeier and

Westphal [20] suggested females had greater pupil dilation responses than males when tonic

pressure was applied to the fingers of subjects, and in the same study, females reported greater

pain than males while experiencing the same amounts of noxious stimulation.

On the ocular surface, corneal sensitivity has been shown to vary with age [21–23], time of

day [24], and menstruation [25,26] (among other factors). However, there is limited research

on the effect of gender on corneal sensitivity [23,27]. Acosta et al. [23] reported that in com-

parison to men of similar age, premenopausal women had lower thresholds to both mechani-

cal and chemical corneal stimulation but, there was no difference between the overall corneal

sensitivity of males and females.

Corneal nociceptors receive their innervation from the trigeminal ganglion, via the nasocili-

ary branch of the ophthalmic division of the trigeminal nerve [28,29] and respond to chemical,

mechanical and thermal stimulation [30–37]. These neurons have been shown to respond to

pneumatic stimulation delivered using the esthesiometer used in the experiment we report:

Corneal mechanical response is to ocular surface temperature flow, chemical response is to the

protons dissolved in the tears when the stimulus column has additional CO2, and cooling is to

room temperature flow [30,35,36].

The autonomic responses to painful ocular stimuli are relatively poorly understood. We

have shown that tearing occurs after painful corneal stimulation [38], in a threshold-scaled,
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dose-response manner and, similarly, bulbar conjunctival vaso-dilation (hyperemia) [39] also

occurs in a dose-dependent manner. Understanding these local neural circuits are important

in-and-of-themselves, but since ocular inflammatory responses are tied to local pain and red-

ness responses, understanding these mechanisms is important in order to systematically and

fully characterize the inflammatory response in humans, in for example, in dry eye [40]. In

addition, since pupillary responses themselves occur after painful systemic stimulation, we

explored how the pupil changed with these local (corneal) stimuli in order to begin to deter-

mine if this autonomic system varied similarly to tearing and redness responses.

The purpose of this exploratory study, then, was to determine whether a pupil response

exists for nociceptive corneal mechanical and chemical stimuli, and if so, whether the pupil

response is intensity specific. In addition, we were interested in exploring whether the stimula-

tion modality, ipsi- and contralateral effects and whether there were differences in the response

between sexes.

Methods

Subjects

Ethics clearance (ORE # 19252) was obtained from the Office of Research Ethics at the Univer-

sity of Waterloo before the study began. Eligible subjects signed an informed consent docu-

ment before enrolment in the study.

15 healthy subjects participated in this study. All subjects underwent a comprehensive ocu-

lar examination (with 3 months prior to the study), including an ocular surface work up,

where a licensed clinician concluded that they were free from any disease or disorder of the

ocular system and appendages. There were 8 male and 7 female volunteers ranging in age from

19 to 34. Subjects on any topical or systemic medication were excluded from the study.

Waterloo computer-controlled Belmonte esthesiometer

The computer-controlled Belmonte esthesiometer has been described before [31,35,41]. Our

modified device used for the delivery of mechanical and chemical stimuli to the ocular surface

consists of a control box that electronically regulates the mixture of air and carbon dioxide

(CO2). The flow rates of air and concentration of CO2 are separately controlled by two digital

flow controllers. Within the nozzle assembly is a thermostat to control temperature. A cali-

brated video camera was used to ensure that the stimulus was orthogonal to, and the nozzle tip

was 5mm from the ocular surface.

Nociceptive stimuli

Mechanical stimuli consisted of a series of air pulses with varying flow rates from 0 to 200 ml/

min and chemical stimulation was delivered by increasing the concentration of CO2 in the air.

An ascending methods of limits [42] was used to determine mechanical and chemical detec-

tion thresholds of the cornea.

The mechanical threshold, which is the lowest air flow rate (with CO2 set at 0%) that the

subject could detect, was first determined. The flow-rate steps were set at 10 mL/min, and the

mechanical threshold was the average of three readings when the subject first reported the

stimulus. For determining the chemical threshold, the flow rate of air was set at half the ini-

tially determined mechanical threshold, and CO2 was added to the air in increments of 5%

CO2. The chemical threshold was the average of three first reports of stimulus detection.

Pupil reflex to pain
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Stimulus delivery

The subjects wore in-ear headphones with white noise playing in the background. The stimu-

lus was presented at the corneal apex of the left eye while subjects viewed a fixation target that

was 3 meters away. The tip of the esthesiometer was rotated to ensure the stimulus was deliv-

ered perpendicular to the corneal surface during stimulus delivery. The temperature of the air

was set to 50˚C, this decreased to 33.4˚C at the ocular surface at room temperature of 23˚C.

This was calibrated using a custom electronic thermometer positioned 5 mm from the probe

tip (which corresponds to the position of the ocular surface in the experiments). The duration

of the stimulus was 2 seconds and it was delivered to the ocular surface immediately after a

blink. The subject blinked freely between trials. The next stimulus was triggered after the sen-

sation caused by the last stimulus had disappeared completely.

Once the mechanical and chemical thresholds were determined, a sham (no stimulus was

delivered but the participant thought a stimulus was being delivered) and three stimuli were

then delivered to the subject in random order, in both the mechanical and chemical stimula-

tion experiments–stimuli at 0%, threshold (sham), stimulus at 150% threshold, and stimulus at

200% threshold. The pupil size prior to stimulus delivery (baseline) and after stimulus delivery

were compared.

Data processing and pupil size measurements

Imaging of the stimulated and unstimulated eye was performed using two modified and cali-

brated Logitech c920 digital cameras (Logitech c920; Logitech International S.A., Newark,

CA), for 4 seconds before (pre-stimulus capture) and 4 seconds after the delivery of the stimu-

lus (post-stimulus capture). The data were processed with a custom segmentation algorithm to

help identify the pupils. We then measured the pupil diameter (average of horizontal and verti-

cal measures) using ImageJ software (NIH, Bethesda, MD), for the pre/post capture periods.

The percent (%) change in pupil size was calculated in 2 ways. First, the average pupil size

for the 4 seconds after “stimulation” in the baseline (no stimulus) trial was used as the refer-

ence and then, the maximum pupil size from the fitted function was used. “% change maxi-

mum” being (100�(baseline–max) / baseline) was calculated. Second, % change in average

pupil diameter after no stimulation was calculated using the mean of baseline and no stimulus

average as the baseline, and pupil diameter after 2x threshold stimulus intensity. “% change

average” was (100�(mean pupil diameter after stimulation—mean of baseline)/ mean of

baseline).

Analyses

Preliminary results showed large pupil change effect sizes (of approximately 1.5) and sample

size calculations showed approximately 6 participants were necessary to test the (paired) mean

difference before and after corneal stimulation [43]. However, in order to stratify by the sex

predictor variable, we chose a 15-participant sample size with approximately equal males and

female subject numbers.

Initial exploratory examination of pupillary dilation after stimulation was done using gen-

eralized additive models (GAMs), fitting smooth functions (spline-based) to pupil size against

time, with stimulus intensity, stimulus type (mechanical or chemical) and sex as predictor vari-

ables. This was done using the MGCV package in R [44,45]. Non-linear mixed effect models

were fit to pupil size against time functions, using the SAEMIX package in R[44], and non-lin-

ear regression was done in SPSS for Windows, Version 16.0 (Chicago, SPSS Inc.). Differences

in mean pupil diameter using stimulus modality, sex and stimulus intensity predictors were

analyzed using repeated measures (RM)-ANOVA and Tukey’s Honestly Significant Difference

Pupil reflex to pain

PLOS ONE | https://doi.org/10.1371/journal.pone.0227771 January 17, 2020 4 / 16

https://doi.org/10.1371/journal.pone.0227771


(HSD) tests for post hoc analysis. Pupil size differences between the ipsi- and contralateral eye

was analyzed using dependent t-tests. An alpha value of 0.05 or less was assumed to be

significant.

Results

A GAM with a 5 knot spline to smooth the pupil diameter and time function (separately for

each stimulus intensity), stimulus type, and sex predictors accounted for approximately 60% of

the deviance (R2 = 0.6), with significant smooth terms (all p<0.001), and significant main

effects of stimulus type, intensity and sex (all p<0.01). This general smoothing function fit to

the data, consisting of an initial pupil dilation and an approximate return to near baseline

diameter 8 seconds after stimulation is shown in Fig 1.

A similar pupil dilation and constriction function,

Pupil Size ¼ C þ
ðB � A � TimeÞ

eA�Time

was fit to the data using nonlinear mixed modeling.

After initial exploratory analysis, it was apparent that the confidence intervals of the esti-

mates C commonly included zero, so we fitted a 2-parameter model without C.

An example of the mixed model results on randomly selected participants for different

stimulus intensities is in Fig 2. The left panel is using data from baseline stimulation and the

right panel from twice-threshold intensities. Illustrating that the stimulus does have an effect

on the pupil, the difference in the ‘size” component (B) was statistically significant comparing

baseline to twice-threshold stimuli (paired t(df = 29) -41.702, p< 0.001). Figs 3 and 4 show the

comparisons of these fits for male and female participants.

Mean pupil diameters

In order to examine integrated (“area under curve”) performance we also looked at the average

effects over the 8 second post-stimulus interval. A summary of the mean pupil diameters for

males and females across the different stimulus intensities and modalities can be found in

Table 1 below. Pupil diameters at baseline (before each measurement session), 0% threshold

(the catch trials when the esthesiometer intensity setting was zero) and with mechanical and

chemical stimulation of differing intensities stratified by modality are shown in Fig 5.

On average, pupil diameter increased from baseline as the corneal apical stimulus intensity

increased. This happened regardless of whether mechanical or chemical stimulation occurred

(ANOVA F(4,224) = 356.6, p< 0.05). At 200% threshold, average pupil diameter was greater

than at all other stimulus intensities (Tukey HSD, all p< 0.05).

Effects of stimulus modality and stimulus intensity on pupil diameter

There was no difference in average pupil size between chemical and mechanical stimulation

based on stimulus intensity (ANOVA F(4,224) = 0.1, p> 0.05).

Relationship between ipsi- and contralateral eye

With mechanical and chemical stimulation of the cornea (Fig 6), there was no difference in

pupil responses between the ipsilateral eye (stimulated eye [left eye]) and the contralateral

(unstimulated) eye (paired t-test t(14) = 0.6, and t(14) = 0.8, mechanical and chemical respec-

tively, both p>0.05).

Pupil reflex to pain
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Effects of sex and stimulus intensity on pupil diameter

There was a difference in pupil diameter between male and female subjects based on stimulus

intensity (ANOVA F(4,224) = 5.9, p< 0.05). Females had greater pupil diameters than males

at 150% and 200% of threshold (Tukey HSD p< 0.05).

Discussion

This is the first study to demonstrate the effect of systematic mechanical and chemical noxious

ocular surface stimulation on pupil responses. Suprathreshold stimulation of the cornea

appears to evoke a 2-to-3 second dose-response-like pupil diameter increase and a near-return

to pre-stimulation diameter after 4 seconds.

The dilator and sphincter pupillae muscles of the iris are innervated by sympathetic and

parasympathetic neurons respectively. Together, these smooth muscles work antagonistically

to control pupil size [9]. The Edinger-Westphal nucleus, located in the midbrain, controls cir-

cular fibers within the sphincter pupillae to cause constriction of the pupils, mediating the

pupillary light reflex[46]; it is however not involved in dilation. The hypothalamus controls

radial muscles in the dilator pupillae to cause pupillary dilation [9]. The hypothalamus is also

Fig 1. Normalized smooth pupil dilation function (“Effect”, ordinate, normalized mm) versus time (seconds) derived from a generalized

additive model with time, sex, and stimulus intensity and type predictor variables. The grey region around the solid line is the approximate

95% confidence interval.

https://doi.org/10.1371/journal.pone.0227771.g001
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Fig 2. Example hierarchical fits of pupil size versus time for 4 (randomly selected) subjects. Left panel, 4 baseline stimuli and right panel same 4 subjects’

stimuli at twice threshold. Each time point has mechanical and chemical stimulus measurements.

https://doi.org/10.1371/journal.pone.0227771.g002

Fig 3. Group pre- and post-stimulus pupil diameter for mechanical corneal stimulation in male and female

subjects.

https://doi.org/10.1371/journal.pone.0227771.g003
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directly activated by ocular surface pain via the trigeminal pathway [28,29], therefore the pupil

dilation response to nociceptive corneal stimuli observed in this study may support the idea

that a neural connection exists within the hypothalamus linking dilation response and corneal

nociception.

There have been reports of similar increase in pupil size in response to noxious stimulation.

Chapman et al. [14] reported that pupil diameter increased when the intensity of painful fin-

gertip stimulation was increased and proposed that this pupil size change was a complex

defensive response to nociception mediated within the brain, and thus a good indicator of cen-

tral processing of painful stimuli. Larson et al. [47] observed the effect of painful stimulation

on physiological outcomes including pupil size, heart rate and arterial blood pressure in anes-

thetized subjects. They observed greater pupil sizes in subjects as putative painful stimulation

increased and concluded that in comparison to heart rate and arterial blood flow, pupil

responses provide greater sensitivity as a measurement of noxious stimulation. Oka et al. [15]

studied the pupil dilation response to nociceptive stimuli and concluded that the increased

pupil response to increasing noxious sensory input was not an artifact of cognitive effort,

Fig 4. Group pre- and post-stimulus pupil diameter for chemical corneal stimulation in male and female subjects.

https://doi.org/10.1371/journal.pone.0227771.g004
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independent of painful experience, as some researchers had earlier suggested [48], but rather

existed as part of a higher order defense response.

In our experiment reported here, we assessed the effect of the sex of subjects on the pupil

dilation response to nociceptive corneal stimuli. From our results, there seems to be a

Table 1. Mean ±(SD) pupil size between males and females for corneal stimulation experiments.

Sex Mean Pupil Diameter (mm) (±) Std. Deviation

Baseline Mechanical Stimulus Male 4.5 0.7

Female 4.7 0.7

Total 4.6 0.8

Chemical Stimulus Male 4.6 0.7

Female 4.7 0.8

Total 4.6 0.9

Total Male 4.5 0.7

Female 4.7 0.8

Total 4.6 0.8

0% Threshold Mechanical Stimulus Male 4.8 0.7

Female 4.5 0.7

Total 4.7 0.7

Chemical Stimulus Male 4.7 0.6

Female 4.6 0.7

Total 4.7 0.6

Total Male 4.8 0.6

Female 4.6 0.7

Total 4.7 0.7

Threshold Mechanical Stimulus Male 6.2 0.4

Female 6.1 0.3

Total 6.2 0.3

Chemical Stimulus Male 6.2 0.3

Female 6.4 0.3

Total 6.3 0.3

Total Male 6.2 0.3

Female 6.3 0.4

Total 6.3 0.3

150% Threshold Mechanical Stimulus Male 6.6 0.3

Female 6.9 0.3

Total 6.7 0.3

Chemical Stimulus Male 6.7 0.4

Female 7.1 0.3

Total 6.9 0.4

Total Male 6.6 0.3

Female 7 0.3

Total 6.8 0.4

200% Threshold Mechanical Stimulus Male 7.1 0.2

Female 7.5 0.4

Total 7.3 0.3

Chemical Stimulus Male 7.2 0.3

Female 7.7 0.3

Total 7.5 0.4

https://doi.org/10.1371/journal.pone.0227771.t001
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difference in male and female pupil responses to threshold-scaled and therefore approximately

equivalent noxious ocular surface stimulation: In females, pupil dilation was greater to supra-

threshold stimuli than it was in males. Fillingim and Maixner [18] reviewed experiments con-

ducted by others on gender differences in responses to noxious experimental stimuli using a

‘box-score’ or vote counting method and concluded that “females exhibit greater sensitivity to

noxious stimulation than males”. Population based research by Unruh [19] shows that in com-

parison to men, there is a greater prevalence of back pain, arthritis and headaches among

women. These findings may possibly be due to women having a tendency to honestly report

pain (both acute and chronic) more often than men [49]. Hypotheses about sex differences

include sex-role expectations [50], hormones [51,52], differences in skin thickness and body

size [53] and sensory differences between men and women [54]. Ellermeier and Westphal [20]

reported females had greater pupil dilation responses than males when high tonic pressure was

applied to the fingers of subjects, and in that same study, females reported greater pain than

males when the same amount of pressure was applied to the subjects’ fingers. Since it is not

Fig 5. Mean pupil diameter across different stimulus intensities for mechanical (blue)/chemical (red) corneal stimulation experiments (upper panel) and for male (blue)

and female (red) subjects (lower panel). Error bars denote 95% confidence interval.

https://doi.org/10.1371/journal.pone.0227771.g005
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Fig 6. Box-plot of mean pupil diameter in the ipsilateral (stimulated) and the contralateral (unstimulated) eye after corneal mechanical (upper

panel) and chemical (lower panel) stimulation. Error bars denote 95% confidence interval.

https://doi.org/10.1371/journal.pone.0227771.g006
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possible for one to voluntarily control his/her pupil response to noxious stimulation, the sex

differences found in our study point to affective or sensory components of pain as opposed to

subject bias in response [50] or attitudinal factors [55].

In this experiment, noxious stimulation of one eye caused pupil dilation in both eyes, much

as withdrawal of light causes direct and consensual mydriasis. Similarly, Beradelli et al. [56]

reported that ipsilateral electrical stimulation of the supraorbital branch of the trigeminal

nerve caused a bilateral ocular reflex (blinking). The balance between the sympathetic and the

parasympathetic system input determines the pupillary response as increased sympathetic

innervation will cause a resultant pupillary dilation while decreased innervation will result in

pupillary constriction. A possible explanation for the pupil dilation response may be linked to

the fight or flight response–a physiological activation of the sympathetic nervous system that

occurs when a harmful event (in this case noxious corneal stimulation) is perceived. The fight

or flight response is characterized by the release of different hormones, and, for example, the

adrenal medulla is known to secrete epinephrine and norepinephrine, the latter being the

same neurotransmitter that modulates the iris dilator responsible for pupil dilation [57].

Situ and Simpson [38] reported comparable results to those of this study when they investi-

gated the interaction between noxious corneal stimulation and tear secretion; mechanical and

chemical corneal stimulation evoked increased reflex tearing. In addition, Situ and Simpson

[38] reported that mechanical corneal stimulation produced the most reflex tearing. In a recent

study by Alabi and Simpson [39], conjunctival redness increased in a dose dependent way to

noxious corneal stimulation. The authors went on to further show that chemical stimulation of

the cornea had a greater effect on conjunctival redness than mechanical corneal stimulation.

However, in the current study, we have shown that the pupil response to corneal stimulation

was the same regardless of whether a chemical or mechanical stimulus is applied. This leads to

the speculation that the reflex arcs producing local changes in tear formation and conjunctival

vessel dilation in response to painful corneal stimulation do not behave in the same way to that

producing pupil dilation. The pupils respond to both mechanical and chemical stimulation in

a similar manner therefore it can be assumed that the afferent parts of these reflex arcs read the

information from mechanical and chemical nociceptors in an analogous way.

Increased tear secretion, conjunctival vessel dilation and more recently, the pupil dilation

in response to corneal nociception shown in this study, result from different motor effects in

different tissue. Because of this, and because each response to pain is monotonically related to

pain (at least when scaled to detection thresholds), stimulating the cornea systematically,

might be useful in assessing pain (and perhaps even consciousness), objectively and with

greater accuracy by assessing multiple ocular responses. Treister et al. [58] suggested that a

combination of several autonomic measures provided more accurate information than each

single measures, and so a combination of these physiological responses to pain could provide

better characterization of the pain process.

Our pupil dilations in response to painful suprathreshold corneal stimuli were comparable

to some recent results reported in the literature although details are difficult to match since fac-

tors such as subjective stimulus intensity (that we did not measure) or fixation target lumi-

nance were not uniform across studies, so numerical comparisons are somewhat fuzzy.

Nevertheless, there are similarities: For example, our pupil dilations were maximum approxi-

mately 2 seconds after stimulation and this is very similar to that reported by Hofle et al. [59],

who used pressure pain on fingers as stimuli. In a different study, Hofle et al. [60] showed that

the small pupil dilation effect occurred much sooner than ours when participants just viewed a

painful stimulus compared to an innocuous one. On the other hand, our pupil dilation max-

ima occurred somewhat sooner than those reported by Eisenach et al. [61], perhaps not sur-

prisingly, since they used thermal stimulation of the forearm or calf. The % maximum change
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was and % average change of pupil diameters in our study (see methods) were 79.7% and 57.4

respectively, generally quite high, compared to other reports, but again, similar concerns about

different methods make direct comparisons problematic. For example, Oka et al. [62], and

Hofle et al. [59], report pupil dilation in response to pain of less than 1 mm while we have aver-

age change approaching 3 mm. Scaled differently, Eisenach et al. [61], show around 15%

change whereas our stimulation produced between 60%– 80% dilation. Although the timing

and amount of dilation differ, these reports and ours show the same thing—dilation of the

pupil after painful stimulation. On the other hand, the differences might reflect varying meth-

ods but also might point to the neural circuits driving the ocular response differing from those

responsible for those driven by painful stimulation of the limbs.

Some experimental limitations of this study include a restriction to the stimulus intensity

range, a limit to the amount of time selected to observe the pupil response and not observing

several autonomic responses simultaneously. The highest stimulus intensity used was twice the

threshold. The potential to go beyond twice threshold for both mechanical and chemical cor-

neal stimulation would be beneficial because information regarding what happens to the pupil

response at higher ocular surface stimulation intensities remains unknown. In assessing the

pupil response to noxious stimulation, we limited the measurements to a time frame of 4 sec-

onds. This method was chosen because prior studies involving painful stimulation and pupil

responses [14,15,20] identified the greatest pupil response within the first three seconds of the

post stimulus period; however, the potential to observe the pupil response over a longer period

of time would provide important information regarding the complete nature of the pupillary

response to noxious stimulation.

Conclusion

In summary, this study provides some evidence that noxious mechanical and chemical stimu-

lation of the central cornea evokes a dose dependent autonomic pupil dilation response. There

seems to be a sex difference in the pupil dilation response, with women having a greater

response than men when experiencing threshold-scaled equivalent amounts of noxious stimu-

lation. This study serves as a basis for the characterization of the local stimulus-response neural

circuitry relating nociceptive stimuli to autonomic responses and in combination with our

work on completely separate autonomic circuits of bulbar conjunctival vessel dilation and

reflex tearing suggests that the monotonic measurements of redness, tearing and pupils pro-

vide accurate, separable responses that reflect painful stimulus intensity.
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