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Abstract: Prodrugs are bioreversible, inactive drug derivatives, which have the ability to convert
into a parent drug in the body. In the past, prodrugs were used as a last option; however, nowadays,
prodrugs are considered already in the early stages of drug development. Optimal prodrug needs to
have effective absorption, distribution, metabolism, and elimination (ADME) features to be chemically
stable, to be selective towards the particular site in the body, and to have appropriate safety. Traditional
prodrug approach aims to improve physicochemical/biopharmaceutical drug properties; modern
prodrugs also include cellular and molecular parameters to accomplish desired drug effect and
site-specificity. Here, we present recently investigated prodrugs, their pharmaceutical and clinical
advantages, and challenges facing the overall prodrug development. Given examples illustrate that
prodrugs can accomplish appropriate solubility, increase permeability, provide site-specific targeting
(i.e., to organs, tissues, enzymes, or transporters), overcome rapid drug metabolism, decrease toxicity,
or provide better patient compliance, all with the aim to provide optimal drug therapy and outcome.
Overall, the prodrug approach is a powerful tool to decrease the time/costs of developing new drug
entities and improve overall drug therapy.

Keywords: prodrugs; biopharmaceutics; drug absorption; oral administration; drug targeting; drug
delivery; ProTide

1. Introduction

Powerful modern drug discovery techniques, such as combinatorial chemistry and high-throughput
screening, enable the discovery of novel chemical entities with high pharmacological efficacy [1].
These techniques have also created a new challenge, as many of the new drug candidates have
unfavorable physicochemical features and still require chemical modification or use of formulation
technologies to achieve adequate performance and pass the rigorous drug development process
successfully [2]. Chemical modifications may range from creating salts for improved dissolution rate [3]
to increasing lipophilicity, e.g., through incorporating alkyl moieties into the drug molecule; however,
these modifications may result in the loss/reduction of pharmacological activity compared to the parent
drug [4]. Various formulation technologies can be employed to overcome physicochemical obstacles [5–7],
though they may or may not be successful in reaching adequate drug delivery. The prodrug approach
represents a potentially effective solution to these obstacles [8].

Prodrugs are bioreversible, inactive drug derivatives, which have the ability to convert into the
active parent drug within the human body. The prodrug approach is used to overcome biopharmaceutic,
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pharmacokinetic, or pharmacodynamic obstacles, including poor chemical stability, solubility limitations,
lack of site-specificity, extensive drug metabolism, passing through biological barriers, exploiting
endogenous metabolic pathways, toxicity, or compliance obstacles (unacceptable taste/odor), all in favor
of optimal oral bioavailability and consequent therapeutic effect [9]. The prodrug approach is used for
the optimization of newly discovered chemical entities, as well as to improve the properties of already
marketed drugs. The United States Food and Drug Administration (FDA) have approved around
30 prodrugs in the past decade (12% of all approved new small-molecule entities). Approximately 10%
of all commercially available medicines in the world are considered to be prodrugs [10].

In the past, the prodrug approach used to be considered as a last resort in drug development;
not only is this no longer the case but nowadays, the prodrug approach is considered at very initial
stages of drug research and development. Making a prodrug indeed means dealing with a new
chemical entity; however, prodrugs do not come with the same cost as developing a novel drug.
The improved performance (compared to the parent drug) expedites the process of drug development,
which eventually may save time, money, and efforts [9,11–13].

We can distinguish between the traditional and modern approaches to prodrug design.
The traditional prodrug approach includes covalent binding of the parent drug to either hydrophilic
functional groups (e.g., phosphate, sulfate) in order to improve the solubility of the parent drug [14]
or lipophilic groups (e.g., alkyl, aryl) in order to improve passive permeability [15]. In this strategy,
it is difficult to direct the prodrug towards a specific site; nevertheless, this is an important tool to
improve physicochemical and/or biopharmaceutical properties and overcome obstacles that a drug
faces in the body. The potential aims of this approach include to modify drug pharmacokinetics,
accomplish extended drug release, decrease toxicity, and more [11]. On the other hand, the molecular
revolution in biology and medicine has allowed a modern approach to prodrug design, which includes
molecular/cellular parameters (membrane influx/efflux transporters and cellular protein expression
and distribution) and is directed towards specific target molecules in the body [11,16–18]. The carrier
is covalently attached to the parent drug in order to selectively target certain enzymes/transporters.
The opportunity to control the mechanism and site of parent drug release from the prodrug, which,
in turn, may enable targeting the free drug to the site(s) it is actually needed, presents a significant
advantage for the modern prodrug approach and a challenge for the prodrug development; this step
can also be optimized through powerful computational simulations [19–21].

Regardless of the specific approach or purpose, following prodrug intake, it needs to undergo an
activation step in which the free parent drug is liberated, and the pharmacological effect can then be
exerted (Figure 1). The prodrug activation can be either chemical or enzyme-mediated conversion to the
parent drug. This step is unique for prodrugs and distinguishes their development from regular drugs.
It is likely that this extra step has contributed to the past reluctance of the pharmaceutical industry to
take a prodrug approach early on in the development process; nowadays, it is well recognized that
this extra step also brings great potential with it. Numerous prodrug advantages and the number of
registered prodrugs in the last decades demonstrate how invaluable this approach has grown to be.

Prodrugs can be developed for many routes of administration: oral, intravenous, intramuscular,
inhalation, transdermal, and more [22]. Nevertheless, the oral route is the most common and desirable
route of administration; therefore, oral prodrugs are emphasized in this article. Our main goals are to
provide the key concepts of the prodrug approach, provide an overview of successfully registered
oral prodrugs, and analyze their gained therapeutic advances in comparison to the parent drug.
Furthermore, successful examples of prodrugs, either already on the market or in clinical trials,
are presented, emphasizing their pharmaceutical/therapeutic/clinical advantages compared to the
parent drug.
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Figure 1. Illustration of activation of orally administered prodrugs in the gastrointestinal tract. 
Scissors represent chemical/enzymatic activation of the carrier-drug with consequent release of the 
reaction products: carrier and drug alone. 

2. Prodrug Activation 

As mentioned above, one of the main steps to consider in prodrug design is the activation 
mechanism, which liberates the active parent drug from the prodrug in an effective and well-
characterized manner, in order to meet the therapeutic purpose. Prodrug activation can be based on 
chemical processes (e.g., oxido-reduction) or can occur via enzyme-mediated hydrolysis, from 
oxidoreductases (i.e., cytochrome P450), hydrolytic enzymes (i.e., carboxylesterases, phosphatase, 
esterase) to transferases and lyases [23]. 

In oral prodrug delivery, significant challenges are the numerous absorption barriers and 
consecutive sites of potential metabolism on the way to the systemic blood circulation. A key issue 
with oral prodrugs is whether the prodrug will be activated before or after absorption and reaching 
the systemic circulation. Here, we present two examples of each approach and the importance of 
choosing the pre/post-absorption activation approach. 

The post-absorption activation approach is demonstrated on the nucleoside analogs, in which 
case the optimal prodrug is stable during transport/delivery but is freely cleaved to liberate the parent 
drug once at the target site. Valacyclovir, the 5′-valyl ester prodrug of the anti-herpetic drug acyclovir 
(Table 1), demonstrates 3–5 fold higher systemic bioavailability when compared to the parent drug. 
This increase in the prodrug bioavailability is due to the human peptide transporter 1 (hPEPT1), 
which mediates its intestinal absorption [24]. Nevertheless, the efficacy of valacyclovir 
predominantly relies on fast transformation to the acyclovir in-vivo; it has been shown that 
valacyclovir is stable in the gastrointestinal lumen (which allows its hPEPT1-mediated transport and 
increased absorption), followed by a high predisposition for intracellular enzymatic-mediated 
activation [24]. Following the discovery of valacyclovir, the enzyme responsible for this 
bioconversion to acyclovir has been identified, and it has been shown that this enzyme is a serine 
hydrolase, consequently named human valacyclovirase [25]. It was later shown that human 
valacyclovirase is an optimal targeting molecule for α-amino acid ester prodrugs, whereas it is mildly 
active toward amide prodrugs [26,27]. Subsequent acyclovir liberation from valacyclovir allows the 
free drug to be selectively taken by the infected cells and followed by acyclovir triphosphorylation 
catalyzed by host cell enzymes, resulting in acyclovir triphosphate, which prevents viral DNA 
synthesis by inhibiting the viral DNA polymerase [28]. This example includes both transporter-
mediated transport for increasing acyclovir intestinal absorption and a specific prodrug-activating 

Figure 1. Illustration of activation of orally administered prodrugs in the gastrointestinal tract. Scissors
represent chemical/enzymatic activation of the carrier-drug with consequent release of the reaction
products: carrier and drug alone.

2. Prodrug Activation

As mentioned above, one of the main steps to consider in prodrug design is the activation mechanism,
which liberates the active parent drug from the prodrug in an effective and well-characterized
manner, in order to meet the therapeutic purpose. Prodrug activation can be based on chemical
processes (e.g., oxido-reduction) or can occur via enzyme-mediated hydrolysis, from oxidoreductases
(i.e., cytochrome P450), hydrolytic enzymes (i.e., carboxylesterases, phosphatase, esterase) to transferases
and lyases [23].

In oral prodrug delivery, significant challenges are the numerous absorption barriers and
consecutive sites of potential metabolism on the way to the systemic blood circulation. A key issue
with oral prodrugs is whether the prodrug will be activated before or after absorption and reaching the
systemic circulation. Here, we present two examples of each approach and the importance of choosing
the pre/post-absorption activation approach.

The post-absorption activation approach is demonstrated on the nucleoside analogs, in which
case the optimal prodrug is stable during transport/delivery but is freely cleaved to liberate the
parent drug once at the target site. Valacyclovir, the 5′-valyl ester prodrug of the anti-herpetic drug
acyclovir (Table 1), demonstrates 3–5 fold higher systemic bioavailability when compared to the
parent drug. This increase in the prodrug bioavailability is due to the human peptide transporter
1 (hPEPT1), which mediates its intestinal absorption [24]. Nevertheless, the efficacy of valacyclovir
predominantly relies on fast transformation to the acyclovir in-vivo; it has been shown that valacyclovir
is stable in the gastrointestinal lumen (which allows its hPEPT1-mediated transport and increased
absorption), followed by a high predisposition for intracellular enzymatic-mediated activation [24].
Following the discovery of valacyclovir, the enzyme responsible for this bioconversion to acyclovir has
been identified, and it has been shown that this enzyme is a serine hydrolase, consequently named
human valacyclovirase [25]. It was later shown that human valacyclovirase is an optimal targeting
molecule for α-amino acid ester prodrugs, whereas it is mildly active toward amide prodrugs [26,27].
Subsequent acyclovir liberation from valacyclovir allows the free drug to be selectively taken by
the infected cells and followed by acyclovir triphosphorylation catalyzed by host cell enzymes,
resulting in acyclovir triphosphate, which prevents viral DNA synthesis by inhibiting the viral
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DNA polymerase [28]. This example includes both transporter-mediated transport for increasing
acyclovir intestinal absorption and a specific prodrug-activating enzyme, making it a ‘double-targeted’
approach [24]; this is an inspiring example for a promising way to exploit modern molecular knowledge
in the development of novel prodrugs and improving overall drug targeting and therapy (Figure 2).
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Figure 2. Double-targeted prodrug strategy illustration: binding to the PEPT1 transporter and activation
through enzyme valacyclovirase. PEPT1, peptide transporter 1; AA, amino acid.

A novel phospholipid-based prodrug approach has been developed and studied in our research
group [29–33]. Phospholipids (PL) are natural substrates of an enzyme phospholipase A2 (PLA2),
which is responsible for the hydrolysis of the sn-2 fatty acyl bond of the PL, thereby liberating a free
fatty acid (FA) and a lysophospholipid [34]. PLA2 has been reported to be significantly overexpressed
in the inflamed intestinal patched of inflammatory bowel disease (IBD) patients [35,36], likely due to its
important role in the pathogenesis of many inflammatory/cancer processes [37]. Our prodrug design
includes a drug conjugated to the sn-2 position of the PL in place of a FA [38]. Previous reports have
suggested that the PLA2 enzymes don’t have any specific FA selectivity [39], signifying that carefully
designed PL-drug conjugates may be specifically activated by this enzyme. Hence, this PL-based
prodrug design may exploit PLA2 catalytic action, thereby liberating the free drug moiety from the
PL-drug complex. Since the intact complex cannot be absorbed and owing to the enzyme overexpression
at the inflamed intestine, oral administration of this prodrug may target the free drug specifically to
the diseased intestinal patches, representing a significant therapeutic advance to our treatment of IBD
patients [30–33]. This example illustrates beneficial prodrug activation already within the intestinal
lumen, prior to absorption.

Another exciting approach to prodrug targeting to specific tissues is the directed enzyme prodrug
therapy (DEPT), which uses enzymes artificially brought into the body to activate the prodrug and
release the active moiety. This strategy has been shown for antibodies (ADEPT), genes (GDEPT,
also known as suicide gene therapy, where the enzyme is created inside the target cell, by means
of a gene supplied by gene therapy), viruses (VDEPT, where viruses carry the gene for GDEPT),
polymer-directed enzyme prodrug therapy (PDEPT), and clostridia-directed enzyme prodrug therapy
(CDEPT), which takes advantage of the hypoxic cancer surroundings to target drugs to tumors through
a bacteria residing in the cancer tissues [40].

3. Clinical Prodrugs for Oral Drug Delivery

In this section, we discuss prominent examples of successful prodrugs for oral administration
registered by the FDA in the past decade, emphasizing the improvements accomplished by developing the
prodrug as compared to the free drug. A key setback when it comes to oral drugs is inadequate intestinal
permeability and, consequently, absorption due to low drug lipophilicity [41,42]. Several prodrugs have
been developed to overcome this obstacle, such as direct thrombin inhibitor dabigatran etexilate [43] and
telotristat etiprate for carcinoid syndrome diarrhea [44] and fingolimod hydrochloride [45] and dimethyl
fumarate [46] for the therapy of multiple sclerosis.
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Table 1. Prodrug structures and their therapeutic uses.

Prodrug Structure Therapeutic Uses

Valacyclovir
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Baloxavir marboxil 

 

Influenza [54,55] 

Remdesivir 

 

Coronavirus disease 2019 (COVID-19) in 
adults and adolescents with pneumonia 
requiring supplemental oxygen [56,57] 

inhibitor dabigatran etexilate [58] and telotristat etiprate for carcinoid syndrome diarrhea [59] and 
fingolimod hydrochloride [60] and dimethyl fumarate [61] for the therapy of multiple sclerosis. 

Influenza [58,59]

Remdesivir
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An interesting example of increased permeability (through increasing lipophilicity), as well as
prodrug targeting, is demonstrated in recently approved antiviral drugs—tenofovir and sofosbuvir.
Both prodrugs have been developed using a novel ProTide technology. The ProTide technology
allows nucleotide analog delivery to the cells by masking the monophosphate/monophosphonate
hydroxyl groups by an aromatic group of amino acid ester [47]. The prodrug, tenofovir alafenamide
hemifumarate, developed via this technology, was approved by the FDA in 2015 as a tablet, a fixed-dose
mixture of elvitegravir, cobicistat, and emtricitabine; it was also the first clinically efficient nucleoside
analog produced with this technology (Table 1). As opposed to previously used tenofovir disoproxil,
which was cleaved both intracellularly and extracellularly, tenofovir alafenamide has been shown to be
cleaved largely intracellularly, allowing optimal tissue targeting with lower doses (which has helped
to reduce kidney toxicity and bone marrow depletion). The following year, tenofovir alafenamide was
approved as a drug for hepatitis B virus (HBV) infection. ProTide approach has also been used for
the prodrug sofosbuvir, an antiviral (highly potent inhibitor of hepatitis C virus NS5B polymerase)
nucleotide analog, in order to improve permeability and liver targeting [62].

One of the recent prominent examples of marketed prodrugs is the baloxavir marboxil, approved
by the FDA in 2018. Baloxavir marboxil is an antiviral drug for influenza, the first in nearly 20 years
(Table 1) [59]. Due to reduced susceptibility or resistance of neuraminidase inhibitors (oseltamivir,
zanamivr, and peramivir) to the influenza viruses, there has been a strong need for an alternative
with a different mechanism of action. Baloxavir marboxil is a prodrug of baloxavir acid whose
mechanism of action is selective inhibition of influenza cap-dependent endonuclease. Clinical trials
have demonstrated a bigger decrease in viral load with baloxavir marboxil vs. oseltamivir [58,59].
In addition, combination with neuraminidase inhibitors may lead to relieving concerns about the
development of resistance [63].

One of the other reasons for using a prodrug approach is enhancing drug aqueous solubility.
An interesting example of a novel approach for prodrug solubility improvement is isavuconazonium
sulfate (Table 1), an acyloxyalkyl triazolium salt of the antifungal agent, isavuconazole. The primary
goal was to improve solubility for parenteral use; however, the exceptional improvement in solubility
has allowed the development of both parenteral and oral prodrug administration. Isavuconazonium is
entirely cleaved by esterases (mainly butyrylcholinesterase) in the plasma following parenteral use;
following oral administration, quick presystemic/systemic metabolism in the gut, liver, and plasma
converts the prodrug to isavuconazole, with almost complete bioavailability following both routes
of administration (~98%) [49]. Isavuconazonium sulfate was approved by the FDA as a drug for
invasive aspergillosis and invasive mucormycosis in adults. Another prodrug with improved solubility
registered by the FDA in the past decade is tedizolid phosphate for acute skin infections [48].

The advantage of the modern targeted prodrug approach is demonstrated for gabapentin
enacarbil, a prodrug approved by the FDA in 2011 for restless leg syndrome/postherpetic neuralgia
(Table 1). Gabapentin enacarbil is a prodrug of gabapentin and a substrate for two high-capacity
nutrient transporters—MCT-1 and sodium-dependent multivitamin transporter (SMVT)—with a wide
distribution throughout the human gastrointestinal tract [50]. The prodrug design has increased
the capacity of transport and allowed the delivery of higher gabapentin doses in appropriate dose
proportion, circumventing uptake saturation at clinical doses.

An example of prodrug utilization for prolonged drug action, an N-acylsulfonamide prodrug
of prostacyclin agonist, ACT-333679, selexipag, was approved by the FDA for pulmonary arterial
hypertension (Table 1) [51]. It was approved as an agonist of the prostacyclin receptor, which leads to
vasodilatation in the pulmonary circulation. ACT-333679 is up to 37-fold more potent than selexipag,
and it exhibits 3–4 fold higher levels of the free drug following oral administration in humans, making
the ACT-333679 the main contributor of the selexipag efficacy [64]. Selexipag was developed in order
to prolong the drug effect duration, which has been accomplished by slow bioconversion via hepatic
carboxylesterase 1, and it has improved peak-to-trough fluctuation (dose-proportional pharmacokinetic
exposure), as well as decreased side effects [51].
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Some prodrugs are designed in order to improve the pharmacokinetic profile for the parent drug.
Examples include fesoterodine fumarate, used for the treatment of overactive bladder syndrome,
was developed in order to decrease interpatient pharmacokinetic variability [65]; angiotensin II
antagonist azilsartan medoxomil monopotassium, which allows higher bioavailability, characterized
by larger ability to control 24-h systolic blood pressure, in comparison to other sartans [38]; valbenazine
tosylate for tardive dyskinesia has improved pharmacokinetic profile [66].

Numerous prodrugs have been approved to accomplish specific goals; bioprecursor prodrug,
a blood thinner, and inhibitor of the platelet P2Y12 prasugrel hydrochloride through metabolic activation
have accomplished sulfenylation of the platelet P2Y12 receptor, thus exhibiting its pharmacological effect
(Table 1) [52]; eslicarbazepine acetate, the anticonvulsant has demonstrated improved safety profile
and reduced drug interactions [67]; droxidopa, used for neurogenic orthostatic hypotension/off-label
Parkinson disease, has demonstrated enhanced brain permeability [68].

At the moment, there are numerous clinical trials being conducted to evaluate the efficacy of
prodrugs for different therapeutic purposes; here, we present some interesting examples. For instance,
a trial is underway to evaluate the efficacy of anticancer prodrug NUC-1031, produced via ProTide
technology, in patients with advanced biliary tract cancer (Table 1) [53]. NUC1031 is formed as a
pre-activated monophosphate form of gemcitabine, which, due to the protective phosphoramidate
transformation, has the ability to overcome resistance mechanisms of gemcitabine, including
resistance to human equilibrative nucleoside transporters-based, nucleoside activation resistance
(deoxycytidine kinase deficiency), and pyrimidine deamination (via deoxycytidine deaminase),
presented in Figure 3 [54].
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Figure 3. NUC-1031 overcomes the main resistance mechanisms associated with gemcitabine,
in particular, transport via human equilibrative nucleoside transporters (hENT1), breakdown via
cytidine deaminase (CDA), and activation via deoxycytidine kinase (dCK). NUC-1031 is designed to
create and retain higher drug levels concentrations of metabolite inside the tumor in comparison to
gemcitabine. The promoieties are shown with a dashed red line.

An ongoing trial is conducted for the AKR1C3-activated prodrug OBI-3424 for patients with
relapsed/refractory T-cell acute lymphoblastic leukemia (Table 1) [55]; OBI-3424 also entered trials
for hepatocellular carcinoma and castrate-resistant prostate cancer [56]. OBI-3424 selectively releases
a potent DNA alkylating agent in the presence of the aldo-keto reductase family 1 member C3
(AKR1C3), overexpressed in cancerous tissues; it is distinguished from traditional alkylating agents
(i.e., cyclophosphamide, ifosfamide) by its selective mode of activation [57]. Enalapril, a well-known
model angiotensin-converting enzyme inhibitor (ACEI) prodrug, activated by carboxylesterase 1,
is currently under clinical investigation in order to determine the influence of genetic variability of
the enzyme on the enalapril activation, pharmacokinetics, and pharmacodynamics in a multiple-dose



Pharmaceutics 2020, 12, 1031 8 of 12

healthy volunteer setting. The conclusions from this study could be a major stepping stone for a more
personalized use of ACEI prodrugs [69].

Remdesivir is an antiviral nucleotide prodrug (ProTide) [70], which inhibits viral RNA
synthesis [61]. Nucleoside analogs have poor permeability through the cells; therefore, modifications,
such as monophosphate, ester, or, in this case, phosphoramidate prodrug, can significantly improve
drug permeability through cells and metabolism, leading to the liberation of the free nucleoside or
phosphorylated nucleoside within the cells [71]. Remdesivir was developed as a therapeutic agent for
treating RNA-based viruses threatening to become a global pandemic, including Ebola virus (EBOV)
and the Coronaviridae family of viruses. It has been evaluated in humans against acute Ebola virus
disease [72], and on May 1st, 2020, the Food and Drug Administration (FDA) gave out an Emergency
Use Authorization (EUA) for the emergency use of remdesivir for treating hospitalized patients with
severe 2019 coronavirus disease (COVID-19) (Table 1) [60]. Remdesivir is still an investigational drug
and, as of yet, has not been approved for any indication.

Despite the evident success in the field of prodrug design, further studies are needed, particularly
in the early steps of the drug discovery, in order for prodrugs to accomplish the optimal efficacy and
advance their role in contemporary pharmacotherapy.

4. Conclusions

This work presents a brief overview of the prodrug concept, classifications, recent developments,
and clinical applications. We provide examples of potential uses and advantages of the contemporary
prodrugs, such as overcoming solubility and permeability limitations, improving disease-targeting ability,
overcoming extensive drug metabolism, and increasing treatment safety. Prodrugs are employed more
and more as a tool to improve various drug characteristics, and their influence and development
are expected to grow. Increasing knowledge of enzymes and membrane transporters in terms of
structure, specificity toward different substrates, mechanism of action, and role can lead to the future
development of successful targeted prodrug delivery. Prodrug design and synthesis are expected to
change in the future through the use of different linkers/spacers, which can significantly improve drug
delivery, targeting or controlling the rate of prodrug activation and release of the active parent drug.
Besides, emerging computational methods play an important role in prodrug optimization and have
the opportunity to significantly enhance the efficiency of the prodrug development process. Overall,
prodrugs have become a vital part of the drug discovery toolbox, and their use is likely to further expand.
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