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Limnoraphis robusta CS-951 is a sheathed, filamentous benthic, nonheterocystous cyanobacterium. It was isolated from brack-
ish water and identified morphologically as Lyngbya majuscula. We report the draft genome of L. robusta CS-951, with a genome
size of 7,314,117 bp, a 41.6% GC content, and 6,791 putative protein-coding genes assembled into 361contigs.
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Benthic filamentous cyanobacteria occur globally in freshwater,
brackish, and marine systems. Eutrophication can stimulate

large blooms that can have significant negative environmental,
economic, and social impacts by smothering seagrass beds and
producing toxins (1, 2). Recent molecular taxonomic reevalu-
ation of the widely identified problem species Lyngbya majuscula
revealed multiple polyphyletic genera (3, 4). These genera circum-
scribe a continuum of morphologically similar cyanobacteria ranging
from freshwater to marine, benthic to planktonic, diazotrophic, and
nondiazotrophic taxa, including Okeania, Trichodesmium, Lyngbya,
Moorea, and Oscillatoria (5, 6).

A nonaxenic benthic estuarine cyanobacteria strain, CS-951
(CCAP 1446/4, Norfolk, United Kingdom), characterized by
sheathed unbranched filaments and first identified morphologi-
cally as Lyngbya majuscula, was supplied by the Australian Na-
tional Algae Culture Collection (CSIRO, Australia) and cultured
in 50% seawater f/2 medium (7) at 23°C under 15 �mol photons
m2 s�1 with a 12 h/12 h light-dark cycle.

DNA was isolated from culture using a phenol-chloroform
method (8) following mechanical agitation with silica/zirconium
beads in cetyltrimethylammonium bromide (CTAB) buffer, and
treatment with proteinase K and lysozyme. A genomic library was
prepared following Nextera XT protocol (Illumina, Inc.) and se-
quenced on an Illumina MiSeq platform (Ramaciotti Centre, Aus-
tralia) using 150-bp paired-end sequencing. Initial de novo assem-
blies were performed with Velvet v.1.2.03 (9), under default
parameters, with Kmer lengths of 75, 85, and 95, and insert sizes
estimated by mapping reads to scaffolds from the L. majuscula 3L
assembly (10) and a 5.8-kbp cistron containing nitrogen fixation
(nif) genes (GenBank accession no. DQ078751.1) (BWA v.0.5.9
[11] and SAMtools v.0.1.18 [12]). Initial contigs were evaluated
based on the number of contigs assembled, N50, maximum contig
size, and total length of assembled contigs. De novo assemblies
were refined using kmer lengths of 85 and expected coverage
depths of 7 and 20. Additional assemblies were performed using
MaSuRCA v.2.3.2 (13) and A5 v.20150518 (14) under default pa-
rameters. Contigs from contaminating heterotrophic bacteria

were removed from assemblies based on GC content, phyloge-
netic affinity, and coverage depth. Lastly, qualifying contigs from
the three assemblies were merged into final contigs using CISA
v.1.3 (15). Final assembled contigs were submitted to IMG ER and
RAST for automatic annotation. The resulting draft genome for
L. robusta CS-951 had 361 contigs covering 7,314,117 bp, with
41.6% GC content and 6,791 putative protein-coding genes.

The CS-951 16S rRNA gene sequence is indistinguishable
from the planktonic freshwater L. robusta strain CCALA 996
(16). Positive identification of the nifHDK operon suggests CS-
951 is nonheterocystous diazotrophic. BLAST searches employed
to identify homology to cyanobacterial toxins with known genes
(e.g., LxtABCD, sxt), returned no positive hits. Secondary metab-
olite and toxin biosynthesis genes were predicted by antiSMASH
(17) using NRPS and/or PKS gene identification. Four predicted
structures had no similarity to characterized toxins and represent
novel secondary metabolites.

Benthic cyanobacteria are known for their production of di-
verse secondary metabolites, which may be species specific (5, 6).
The availability of this genome allows for greater understanding of
secondary metabolites.

Nucleotide sequence accession numbers. This whole-genome
shotgun project has been deposited at DDBJ/EMBL/GenBank un-
der the accession number LATL00000000. The version described
in this paper is version LATL02000000.
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