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ARTICLE INFO ABSTRACT
Keywords: Agriculture is a significant source of carbon emissions, which have a substantial environmental
Digital economy impact. The digital economy plays a vital role in mitigating these emissions through innovative

Agricultural carbon emissions
Fixed effects model
Mechanism analysis

digital solutions. As a leading agricultural nation, China faces substantial pressure to reduce its
agricultural carbon emissions(ACE). This paper aims to thoroughly examine the relationship
between the growth of the rural digital economy and ACE. To achieve this, we utilize an extensive
panel dataset covering China’s provinces from 2011 to 2020, analyzing the dynamic and spatial
effects of digital economy development on ACE. The key findings of this research are as follows:
(1) The rapid expansion of the digital economy significantly reduces ACE. (2) The impact of
digital economic development on lowering ACE varies spatially, with a clear progression from
eastern to western regions. (3) The digital economy helps reduce ACE through three specific
channels: fostering technological innovation, enhancing scale efficiency management, and
providing agricultural financial incentives. Based on these findings, this study proposes policy
recommendations to improve digital infrastructure, promote balanced regional development in
the digital economy, and optimize the management of agricultural science and technology. These
policy insights aim to transform agriculture and achieve the goal of reducing ACE, thereby
contributing to broader environmental sustainability.

1. Introduction

Global warming poses a formidable challenge to human society, largely driven by the relentless rise in greenhouse gas emissions,
with carbon dioxide being the primary contributor. This trend has precipitated a more frequent occurrence of extreme climatic events,
including atmospheric pollution [1], bipolarization of drought and flood [2], and rising sea levels [3]. These phenomena collectively
pose a grave threat to the biodiversity of our planet, disrupt the delicate balance of natural ecosystems, and give rise to a plethora of
detrimental impacts on the livelihoods of human populations. In light of these circumstances, there has been a unanimous consensus
across various sectors of society on the critical need to address these global climate challenges, underscoring the necessity for a
transition towards low-carbon development practices [4]. Agriculture, a crucial component of the national economy, ranks as the
second-largest contributor to greenhouse gas emissions, trailing only industrial production. Data released by the Food and Agriculture
Organization of the United Nations (FAO) show that agricultural activities contribute to over 30 % of global anthropogenic greenhouse
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gas emissions, primarily through carbon dioxide [5]. This alarming trend has understandably drawn significant international attention
towards the carbon emissions(CE) from agricultural practices. Nonetheless, it is necessary to acknowledge that agriculture remains
exceedingly vulnerable to the impacts of climate change, and navigating the path towards emission reduction within this sector is
fraught with complexity and challenges.

Within the conventional Chinese agricultural paradigm, several factors contribute, directly or indirectly, to elevated CE in the
agricultural sector. These factors include the application of pesticides and chemical fertilizers [6], land irrigation [7], ploughing
practices [7], resource allocation inefficiencies [8], and low production efficiency [9]. This situation hinders the pursuit of low-carbon
agricultural evolution. China is the world’s largest carbon emitter, China’s agricultural carbon emissions(ACE) account for 17 % of the
national total, making the reduction of these emissions crucial for achieving the “dual-carbon” objective [10]. In response to global
climate change and the swift expansion of the DE, the Chinese government has introduced the “Opinions on Effectively Implementing
the New Development Concept for Carbon Peaking and Neutrality” and the “2030 Peak Carbon Action Program.” These initiatives aim
to address the pressing environmental challenges and promote sustainable development [11]." These policy documents emphasize that
there is an urgent need to reduce agricultural production costs through the use of agricultural digitalization and technological
innovation [12], and that the digital transformation of agriculture can promote the improvement of traditional agricultural production
and business structures, and ultimately promote low-carbon agriculture towards a sustainable development path.

In the contemporary era, the DE plays a crucial role in reshaping the global economic landscape and optimizing resource allocation
through platformization, intelligence, and sharing [13]. The white paper “The Development of China” (2021) shows, the DE now
makes up one-third of China’s Gross Domestic Product (GDP) [14]. Its impact on rural development has been growing steadily,
especially as digital technologies become more prevalent in rural regions. Advanced information technology has fostered the rise of
new industries that digitize rural economic activities, enhancing efficiency, vitality, and quality. This shift has significantly supported
the green transformation and revitalization of the rural economy [15]. Furthermore, the DE provides new opportunities for rural
revitalization by reshaping production environments and creating innovative pathways for development. The DE offers innovative
solutions for the greening of energy-intensive industries by both digital industrialization and industrial digitization. This process helps
reduce the dominance of “high-pollution, high-energy-consumption, and high-emission” low-end industries. As a result, the DE plays a
crucial role in decreasing ACE [16]. The rapid expansion of the DE is intricately connected to the rural economy, prompting scholars to
explore the complex relationship between the DE and ACE. Can the DE significantly contribute to achieving the ‘dual carbon’ ob-
jectives? If so, what are the mechanisms behind its impact on lowering ACE? These questions are pivotal and remain a focus of current
research. This study aims to explore novel approaches to reducing ACE and to provide a theoretical framework for advancing the DE.

This paper analyzes the impact of the DE on ACE using provincial panel data from China spanning 2011 to 2020. By constructing a
panel data model, this paper discusses the development of rural digital economy across China and its impact on ACE. Additionally, a
mediating effect model is established to elucidate the mechanisms linking the DE to ACE. Compared to previous studies, this paper
offers several innovative contributions. Firstly, it validates the causal relationship between the DE and ACE from the perspective of the
DE itself. Secondly, it integrates relevant DE data, providing a new foundation for understanding the interactions between DE
development and ACE. Thirdly, it identifies and emphasizes mechanisms such as technological innovation incentives, scale efficiency
management, and agricultural financial compensation in the relationship between the DE and ACE.

The paper is structured as follows: Section 2 presents the literature review. Section 3 explains the theoretical framework and
hypotheses. Section 4 presents the data and variable selection for the study. Section 5 describes the empirical results. Section 6 presents
the recommendations and limitations of the article.

2. Literature review

The evolution of the DE is significantly transforming and enhancing traditional agricultural production methodologies. By inte-
grating with the DE, traditional agricultural practices benefit from the rapid dissemination of big data, fostering a shift towards a more
efficient production paradigm. This synergy between conventional agriculture and digital innovations is driving substantial im-
provements in production efficiency and effectiveness. This culminates in the establishment of a digital agriculture model, charac-
terized by a cooperation between government entities and businesses, thereby enhancing the productivity of agricultural operations
and actualizing the high-quality development of the agricultural sector [17]. Additionally, the integration of agriculture and
e-commerce has given rise to a novel paradigm in agricultural development, catalyzing the metamorphosis of the traditional industry
into sectors that are technologically advanced and digital-intensive [18]. Present-day academic research into the DE’s progression
concentrate on two primary dimensions. Firstly, the growth of the DE profoundly impacts various societal aspects, such as employ-
ment, consumer behavior, trade, finance, and the industrial landscape. As a pivotal locational determinant for spatial economic
configuration, the DE’s ascension has led to an information revolution and a recalibration of factors, effectively dismantling
geographical, temporal, and informational barriers. This not only offers positive stimuli for economic growth [19], industrial structure
upgrading [20], regional innovation [21], and high-quality development of industries [22] but also propels the innovation in
microenterprises and ensures the unimpeded circulation of production factors such as capital and technology [23]. Secondly, a group
of scholars has begun exploring the environmental impacts of the DE. Although the expansion of the DE can increase overall output
levels, it also raises concerns about the potential rise in energy consumption and CE associated with this growth. In the academic
community, there appears a lack of consensus on this subject matter. A subset of scholars postulates that the DE possesses eco-friendly
attributes and holds the potential to mitigate CE [24]. On one hand, the DE serves as an early catalyst for economic growth, offering
extensive scale, scope, and long-tail effects that can create new industries and innovative business models [25]. This capacity un-
derscores the “direct effect” of the DE in reducing CE. Additionally, by replacing traditional information technologies with advanced
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alternatives, the DE plays a crucial role in reducing energy consumption and lowering CE. This technological evolution enhances the
allocation and utilization of resources, addressing the inefficiencies of previous development practices [26]. Through optimizing
industrial energy consumption, the DE exhibits the “indirect effect” of CE reduction. However, some scholars contend that the rela-
tionship between the DE and CE follows a “unidirectional pathway.” They argue that as the DE expands, it may increase resource
consumption and result in higher CE [27].

ACE are the greenhouse gases released directly or indirectly from agricultural activities. These emissions stem from the use of
fertilizers and pesticides, energy waste, and land tilling during the production process, specifically in plantation agriculture as dis-
cussed in this paper [28]. The data at hand reveal that approximately 70 % of the increased concentrations of atmospheric methane can
be attributed to human production endeavors [29]. Agriculture stands out as the predominant contributor to methane emissions, and it
is projected by some experts that, in the absence of efficacious interventions to reduce ACE, we may witness an additional 30 % surge in
global ACE by the year 2050 [30]. Academic studies into the macro-level quantification and analysis of ACE were initiated by West and
Marland, with their focus on variables such as seed cultivation, pesticides, fertilizers, energy wastage, and land tilling, specifically in
the United States. They established a comprehensive index system for measuring ACE, spanning four critical dimensions: seed culti-
vation, pesticides, fertilizers, and agricultural irrigation, subsequently proceeding to perform calculations based on this framework
[31]. Presently, China’s agricultural GHG emissions constitute 17 % of the national total, placing the country at the forefront of ACE on
a global scale. Currently, China is experiencing a continuous annual growth of 5 % in ACE, which constitute approximately 17 % of the
nation’s total greenhouse gas emissions [32]. Given this context, studying ACE within China’s broader carbon footprint is essential. A
significant portion of academic research in China has focused on understanding the regional distribution of these emissions and
exploring the factors influencing their spatial patterns from various perspectives. Research in this domain has highlighted the pivotal
role of agricultural carbon emission reduction, emphasizing the necessity of balancing economic efficiency with environmental sus-
tainability. This research is crucial for achieving sustainable agricultural development [33]. Insights from these studies can inform and
guide policy formulation, fostering region-specific low-carbon agricultural practices. These efforts also support the principles of green
development in the agricultural sector.

Scholars, both domestically and internationally, have extensively discussed the intersection of the DE and CE, providing valuable
insights into how the DE impacts carbon reduction mechanisms. However, a comprehensive review of existing literature reveals three
main limitations. Firstly, while many studies have examined the correlation between the DE and CE, most have neglected the agri-
cultural perspective, with only a few focusing on the relationship between the DE and ACE. Secondly, much of the existing literature
has concentrated on identifying factors that influence ACE without exploring the underlying mechanisms [34]. Lastly, although the
DE’s impact extends beyond social employment, economic development, and industrial structure, its significant role in environmental
enhancement is often overlooked. This paper aims to address these gaps and offers several potential contributions. Firstly, it shifts the
research perspective from urban-level impacts of the DE on CE to analyzing the effects of the rural DE on ACEs, emphasizing the
environmental ramifications attributed to the rural DE. Secondly, the study considers both spatial differences and the influence of DE
characteristics on the results of the benchmark regression analysis, thoroughly examining the heterogeneous impacts of the rural DE on
ACE through the lens of regional heterogeneity. In addition, the study delves into the mechanism of the rural DE’s impact on ACE from
three perspectives: technological innovation, scale of operation and financial compensation.

3. Theoretical analysis and hypotheses
3.1. The effect of DE advancement on ACE

Relying on digital resources such as knowledge and information, the DE has become a key factor of production. These resources are
vital not only for the growth of the DE itself but also for the advancement of other industries. Unlike traditional production factors like
capital and labor, digital resources stand out due to their virtual nature, high permeability, and instantaneous transmission capabilities
[35]. This study employs a Cobb-Douglas production function incorporating labor, capital, and technology as inputs. Accordingly, a
company’s output level, denoted by Q, can be expressed as follows:

Q = DPA°K’LY )

In this context, Q denotes a company’s output level. D represents the components of the DE, A stands for exogenous technological
progress, and K and L correspond to the inputs of capital and labor, respectively. The coefficients 6,a,5, and y denote the output
elasticities associated with each production factor.

Moreover, a specified portion of the total output, presumed to be a fraction w, is allocated to emission reduction activities [36]. This
allocation serves as the emission reduction output, culminating in the formulation of the company’s net output equation and the
equation for ACE.

Y=(1-0)Q @
€O, = (1 - w)'Q ®)

Wherein, Y represents the net output of a company, w represents the proportion of the output used by the company for carbon
reduction relative to the total output, 4 represents the pollution elasticity of the company’s net output, and CO; represents ACE. From
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equation (3), it is clear that ACE are positively correlated with both output and the pollution elasticity of net output, while they are
negatively correlated with a company’s efforts to reduce emissions. By solving for 1 - ® from equation (2) and integrating it into
equation (3), along with equation (1), we can derive the relationship between ACE, pollution elasticity of net output, and various
production factors:

DA,
COy = YuxD A K L

To ensure that the model setup conforms to the linear characteristics required for parameter estimation and hypothesis testing, the
logarithm of both sides of equation (4) is taken, resulting in the following model:

InCO, = %ﬂ+0<1 - %)In.D +a<1 - %)IHA +ﬂ(1 - %)InK+y(l - %)IHL (5)

Equation (5) demonstrates that ACE are influenced by the input of various factors and have a positive correlation with the pollution
elasticity of net output, denoted as p. When p is within the range (0, 1), ACE show a negative correlation with the input of digital
elements. In this case, the development of the DE can lead to an increased input of digital elements, which helps reduce ACE.
Additionally, digital technology can be harnessed to transform and upgrade high-pollution industries. This process improves resource
utilization efficiency and reduces the pollution elasticity of net output, thereby further decreasing ACE. Based on this, Hypothesis 1 is
formulated in this paper:

Hypothesis 1. The advancement of the DE can substantially reduce ACE.

3.2. Mechanisms for mediating CE from agriculture in the DE

The DE generates substantial knowledge spillover effects that not only facilitate knowledge dissemination and diffusion but also
diminish information asymmetry [37]. This economy augments the ease of accessing information resources for enterprises, expands
market opportunities, and reveals latent profits. Moreover, it mitigates risks linked to agricultural technology innovation, encouraging
enterprises to amalgamate both internal and external innovation resources and technological components [38]. From the perspective
of market demand, the DE enhances innovation development strategies, increases production efficiency, and improves both the R&D
process and business models. These advancements lead to improved total factor productivity and a reduction in ACE [39]. Therefore,
Hypothesis 2 is formulated as shown in Fig. 1:

Hypothesis 2. The DE promotes technological innovation, thereby reducing ACE. Furthermore, a mechanism incentivizing tech-
nological innovation operates within the interaction between the DE and ACE.

Utilizing digital information technology, ED can alleviate the constraints of geographical resources and environmental conditions
on industrial agglomeration. By fostering industrial agglomeration through collaborative production [37], it substantially lowers
transaction costs, promotes agricultural collaborative and smart manufacturing, and drives innovation in agglomeration mechanisms,
effects, and patterns, consequently facilitating online industrial aggregation [40]. Industrial agglomeration plays a crucial role in
enhancing technological progress and diffusion, fostering competitive effects, and boosting production efficiency. Moreover, it le-
verages economies of scale to significantly reduce ACE [41]. In light of these findings, as depicted in Fig. 1, Hypothesis 3 is proposed:

Hypothesis 3. The DE intensifies industrial agglomeration, thus diminishing ACE, and establishes a management mechanism for
economies of scale between the DE and ACE.

In agricultural development, the DE furnishes more accurate agricultural data. Under the impetus of the DE, financial institutions
can extend loans and subsidies tailored to low-carbon agricultural technologies through diverse online platforms. Governments,
similarly propelled by the DE, can leverage its financial channels to offer fiscal support, aiding farmers in managing uncertainties and
risks [42]. By serving as a conduit for financial transactions, thereby bolstering information transparency and resource allocation
efficiency, the DE effectively facilitates agriculture’s transition toward low-carbon practices [43]. Hence, as depicted in Fig. 1, this

—P| Knowledge spillover I—P| Technological Innovation |—

Agricultural Carbon
Emissions

Digital 5 3 ; 5
Ecoilomy :I Industrial agglomeration |—’| Economies of scale I Lt

—>| Financial Channels |—>| Financial Compensation |—

Fig. 1. Mechanistic analysis of the DE and ACE.
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paper posits Hypothesis 4:

Hypothesis 4. The DE can employ financial channels to reduce ACE. This approach involves the creation of an agricultural financial
offset mechanism that links the DE to the reduction of ACE.

4. Selecting variables and data source
4.1. Variables and data sources

4.1.1. Dependent variable

In this paper, the response variable is ACE. We calculate these emissions using the methodology recommended by the 2006
Guidelines for National Greenhouse Gas Inventories from the United Nations Intergovernmental Panel on Climate Change. This
approach assesses the CE generated by the inputs of agricultural materials in farming practices [44]. The specific calculation method is
detailed in Equation (6).

CE:ZCEi:ZTixéi (6)

In Equation (6), CE represents the total CE from agricultural activities. The term CE; encompasses six types of agricultural materials,
including fertilizers, pesticides, and agricultural films, which are referred to as carbon emission sources. T; denotes the emissions from
the i-th category of these sources, while §; signifies the emission coefficients for the respective category. The specific emission co-
efficients for each type of carbon emission source are detailed in Table 1.

4.2. Independent variable

The primary explanatory variable in this paper is the DE [46]. Given the wide scope of the DE, it is essential to consider multiple
dimensions when assessing it. This paper selects five indicators to assess: Internet penetration, Internet-related outputs, the Digital
Financial Inclusion Index, the number of users of the “accessible” Internet, and the number of relevant people working as Internet
professionals [47]. The entropy method is employed to calculate these indicators, which together determine the digital rural con-
sumption level for each province. We following the calculation method proposed by Jiang and other scholars [48], the data mentioned
above are standardized, ensuring all indicators are positive, and the calculation results were shown in equations (7)—(12):

X —min{X;} )
ij - .
max{%X,} — min{X}
Calculate the weight Yj; of the value of the jth indicator in year i:
Yy =
= m (8)
X
i=1
Determine the entropy value of the ith indicator e;:
e 1
j = m (C)]
Inm) 3% (¥; + InY,)
i=1
Indicator weights Wj:
1—¢
Wi =5
m 10
2 X (10)
i=1
Single-indicator evaluation score Sj;:
Sy = X; W; an
Table 1
Carbon sources of ACE and their coefficients.
Carbon sources Carbon emissions data Reference sources
Fertilizer inputs 0.895 6 kg kg~ ! West et al. [31], Oak Ridge National Laboratory, USA
Pesticide application 49341 kg kg ™! Oak Ridge National Laboratory, USA
mulch 5.180 0 kg kg ! Institute of Agricultural Resources and Ecological Environment, Nanjing Agricultural University
mechanical energy consumption 0.592 7 kg kg ™! United Nations Intergovernmental Panel on Climate Change (IPCC)
Soil tillage 311.600 0 kg kg2 College of Biology and Technology, China Agricultural University
Electricity for irrigation 25.000 0 kg kg2 Dubey et al. [45]
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Composite level score S; in year i:
Si=)_S; (12)
Jj

In this context, X;j represents the value of the jth evaluation indicator for year i. m represents the number of years of assessment and n
represents the total number of indicators.

4.2.1. Control variables

To account for the influence of extraneous factors on the explanatory variables, this study incorporates a set of control variables:
rural consumption, agricultural labor productivity, agricultural production structure, population size, agricultural disaster rate, trade
openness, population density, urbanization rate, and infrastructure. Rural consumption is expressed in terms of disposable income per
rural resident [49]. Agricultural labor productivity is represented by the ratio of the total power of agricultural machinery to the
number of people employed in the primary industry [50]. The agricultural production structure is defined by the ratio of the area sown
with grain to the total cropped area [51]. Population size is indicated by the number of rural inhabitants [52]. The agricultural disaster
rate is calculated as the proportion of the area affected by crop damage to the total cropped area [53]. Trade openness is expressed as
the total volume of imports and exports relative to the Gross Regional Product (GRP) [54]. The ratio of resident population to area at
the end of the year is used to calculate population density [55]. The ratio of urban population to total population was used to calculate
the urbanization rate [56]. The natural pair quantification of regional road mileage is used to express infrastructure [57]. These
variables are detailed in Table 2.

4.3. Model analysis

Examining the complex relationship between DE and ACE, developing a robust and targeted econometric model is essential.
Building on the preceding theoretical analysis, this study employs a two-way fixed effects model.

In ACE, = By + B, DEy + pscontroly + u; + p, + € (13)

In equation (13), i represents the location, and t denotes the year. ACE;; indicates the ACE of region i at time t, while DE;; represents the
DE of region ii at the same time. The term control;; includes a set of control variables that may influence ACE, such as rural con-
sumption, agricultural labor productivity, agricultural production structure, population size, agricultural disaster rate, trade openness,
population density, urbanization rate, and infrastructure level. To address the issue of heteroskedasticity, a logarithmic transformation
is applied to variables with significant value differences. y; denotes a locational fixed effect, serving to account for potential differences
in ACE across diverse geographical terrains. p, is a temporal fixed effect, offering a flexible mechanism to control for potential temporal
differences, while ¢; constitutes a stochastic error term, encapsulating: (1) other influential factors of lesser significance, (2) obser-
vational inaccuracies, and (3) stochastic elements that elude control and precise quantification. The data in this paper come from the
China Statistical Yearbook and the annual reports of provinces and cities, and summarize the balanced panel data of 30 provincial
administrative divisions in China between 2011 and 2020. Tibet, Hong Kong, Macao, and Taiwan are excluded from the analysis due to
data unavailability. To address any gaps in the dataset, linear interpolation and ARIMA modeling techniques are employed. As shown
in Table 3.

4.4. Stylized fact

Fig. 2 showcases bubble diagrams depicting the correlation between the DE and ACE. The diagrams represent data from four
different years: 2011 (top left), 2014 (top right), 2017 (bottom left), and 2020 (bottom right). To account for the substantial variations
in ACE, these values have been logarithmically transformed. Each bubble’s size represents the magnitude of rural consumption within
the corresponding region. The charts clearly demonstrate that rural consumption significantly influences both the DE and ACE.

Table 2

Definitions and calculation methods of variables.
Definition Variable Symbol Definition
DV Agricultural Carbon Emission ACE Logarithm of total agricultural carbon emissions
v Digital Economy DE Standardized processing of the digital economy
(4% Rural Consumption RC Disposable income per rural inhabitant
Ccv Agricultural Labor Productivity ALP Gross power of agricultural machinery/number of persons employed in the primary sector
cv Structure of Agricultural Production SAP Area sown in grain/area sown in crops
Ccv Size of Population SP Logarithm of rural population size
Ccv Agricultural Disaster Rate ADR Area affected by crops/area sown with crops
cv Trade Openness TO Total exports and imports/gross regional product
Ccv Population Density PD Year-end resident population/area
Ccv Urbanization Rate UR Urban Population/Total Population
Ccv Level of Infrastructure LI Road mileage in logarithms
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Table 3
Descriptive statistics of variables.
Variable Obs Mean SD Min Max
ACE 300 5.47 1.02 2.66 6.90
DE 300 0.37 0.17 0.07 0.98
RC 300 9.35 0.41 8.27 10.46
ALP 300 4.47 2.05 1.55 12.59
SAP 300 0.64 0.14 0.35 0.97
SP 300 7.26 0.89 5.35 8.62
AD 300 0.14 0.11 0.01 0.61
TO 300 0.26 0.29 0.01 1.54
PD 300 8.20 0.74 6.34 9.44
UR 300 0.59 0.12 0.35 0.89
LI 300 11.68 0.84 9.39 12.88
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Fig. 2. 2011, 2014, 2017, 2020 DE and ACE bubble map.

Notably, regions with higher levels of rural consumption tend to have a robust DE while maintaining relatively low levels of ACE.
To further analyze the data, we computed the upper and lower quartiles, maximum and minimum values, and the median of ACE
for each province annually from 2011 to 2020, covering 30 provinces nationwide. We then constructed a box plot to represent the
distribution of ACE. As shown in Fig. 3, there are significant differences in ACE across provinces, highlighting the stark contrast in
pollution levels between regions. Notably, there is a decreasing trend in ACE in each region post-2014, which may be attributable to
shifts in policy. The year 2014 marks a pivotal moment, as big data was incorporated into China’s central government work report for
the first time, and the DE was elevated to a national strategy [58]. This qualitative transformation in 2014 actively facilitated changes
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Fig. 3. Box-plot of ACE.
in agricultural production methods, contributing to a reduction in ACE [59].
5. Empirical analysis
5.1. Estimated results of fixed effects model
In this study, Stata 17 is employed to perform a Hausman test on the panel dataset. The results indicate a P value less than 0.01,
leading to the rejection of the original hypothesis of random effects. Following this, annual dummy variables are included to test for
individual time effects. The results reveal a P value below 0.01, compelling the rejection of the initial hypothesis of “no time effect.” As

a result, a two-way fixed-effects model is chosen to investigate the influence of the DE on ACE. This comprehensive model includes
comparisons with both mixed-effects and random-effects models. Table 4 displays the regression outcomes for the mixed regression

Table 4
Regression.
Varible OLS RE FE
@ (@) 3
DE —0.146 —-0.161° —0.236°
(0.096) 0.017 (0.036)
RC 0.072 0.123° 0.077¢
(0.144) 0.035 (0.047)
ALP 0.169° 0.084° 0.066°
(0.061) 0.022 (0.008)
SAP —0.036 —0.041 —0.081¢
(0.085) 0.038 (0.017)
SP 2.132° 0.510° 0.358°
(0.664) 0.112 (0.097)
ADR 0.010 0.013° 0.012°
(0.036) 0.003 (0.004)
TO —0.020 0.065" 0.056"
(0.099) 0.027 (0.018)
PD -1.089" 0.096 -0.016
(0.457) 0.114 (0.113)
UR 0.525 0.133" 0.201
(0.234) 0.076 (0.044)
LI 0.020" 0.135 —0.058
(0.275) 0.107 (0.052)
Constant —6.461 2.931° —-0.172"
(0.062) 0.103 (0.067)
N 300 300 300
R? 0.883 0.928 0.997
Standard errors are provided in parentheses. Significance levels are represented by symbols:
2 for 10 %.
b for 5 %, and.
¢ for 1 %.
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model (OLS), the random-effects model (RE), and the two-way fixed-effects model (FE).

As shown in Table 4, we observe that the mixed-effects model in Model (1) has an R2 of 0.883. In contrast, the random-effects
model in Model (2) shows an R2 of 0.928, and the two-way fixed-effects model in Model (3) achieves a remarkable R2 of 0.997,
indicating a superior overall fit for the fixed-effects model. Notably, the regression coefficient for the DE, the central explanatory
variable in this study, is negative in column (3). This signifies a significant negative correlation between the DE and ACE. Specifically, a
1 % increase in the DE correlates with a 0.236 % decrease in ACE, a relationship that is statistically significant at the 1 % level. These
empirical findings strongly suggest that the DE substantially suppresses ACE. Therefore, China can enhance agricultural production
efficiency by advancing the DE, which in turn will reduce ACE and improve the ecological environment.

In the spectrum of control variables, the regression coefficient corresponding to the structure of agricultural production is mani-
festly negative, indicating a decrement in ACE as it ascends. Conversely, the regression coefficients pertaining to rural consumption,
agricultural labor productivity, population magnitude, rate of agricultural disasters, and the openness of trade exhibit a positive
orientation, leading to an enhancement in ACE concomitant with their increase.

5.2. Heterogeneity analysis

China’s economic progression exhibits a phase-wise progression, initiating from the coastal regions in the east and gradually
pervading the inland territories in the west. Crucially, the DE’s influence is not uniform but varies significantly across diverse natural
and human landscapes. Based on the regional categorization of the National Bureau of Statistics, this paper examines three regions:
East, Central and West [60]. The regression analyses, as presented in Table 5, reveal an intriguing pattern. It becomes evident that the
DE significantly impacts ACE in all three regions, with the western region exhibiting a notably stronger response. This discrepancy can
be traced back to a variety of factors. The western region, in stark contrast to the eastern region which enjoys geographical advantages
and a state of economic affluence, demonstrates an acute sensitivity in its agricultural labor productivity and production structure to
the DE’s fluctuations. This finding serves to highlight the transformative potential of DE advancements in mitigating ACE, especially in
regions that are comparatively underdeveloped, such as the western part of the country.

5.3. Tests for mediating effects

The theoretical study above shows that the DE can reduce ACE through three main mechanisms: promoting technological inno-
vation, enabling scale management, and providing agricultural financial compensation. First, the DE facilitates access to information,
identifies market opportunities, diminishes technological innovation risks, and fosters enterprise innovation, consequently reducing
ACE [61]. Second, the application of digital technology enhances industrial clustering, advances intelligent agricultural
manufacturing, and boosts production efficiency, thereby curtailing ACE [62]. Third, the DE provides precise agricultural data,
supports low-carbon technology loans and governmental financial backing, increases information transparency, and encourages a shift
towards low-carbon agricultural practices [63]. To validate these theoretical mechanisms, this study employs a mediation analysis

Table 5
Heterogeneity analysis.

Varible East Middle West
@™ 2) 3)

DE —0.079** —0.136%* —0.242%**
(0.024) (0.037) (0.061)

RCL 0.034** 0.021* 0.084***
(0.087) (0.026) (0.096)

ALP 0.069* 0.132%* 0.157%**
(0.072) (0.018) (0.043)

SAP —0.027** —0.041** —0.069%**
(0.085) (0.024) (0.038)

SP 1.872%*x 0.478%** 0.612%**
(0.569) (0.237) (0.148)

ADR 0.009 0.014%** 0.013%**
(0.013) (0.002) (0.005)

TO —0.018* 0.059%* 0.082%**
(0.076) (0.034) (0.027)

PD —0.791 0.128 —0.027
(0.236) (0.175) (0.182)

UR 0.347 0.276* 0.218
(0.271) (0.142) (0.163)

LI 0.014* 0.027 —0.039
(0.156) (0.034) (0.029)

Constant -1.871 1.587%** —1.356**
(0.089) (0.167) (0.084)

N 300 300 300

R? 0.914 0.958 0.981
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approach inspired by Baron [64] and Hayes [65], utilizing a fixed effects model. Within this framework, we introduce three recursive
equations as shown in Egs. (14)-(16):

In ACE;; = oy + B, DE;; + pscontroly + p; + p, + € 14
Wi = ot + v, DEic + @controly 4w+, + &it (15)
In ACE;; = ot + P,DE;; + OWje + pcontroly + ui+o, + i (16)

In this model, InACE;; represents the logarithmic ACE of region i at time ¢, while DE;; denotes the DE of region i at the same time. control;
includes many control variables that affect ACE, e.g. rural consumption, agricultural labor productivity, the structure of agricultural
production, population size, agricultural disaster rate, trade openness, population density, urbanization rate, and infrastructure state.
Additionally, W;; serves as a mediating variable, including (1) scientific and technological innovation, measured by the number of
patents related to agricultural science and technology [66]; (2) scale of operation, indicated by the expanse of arable land under family
contracting operations [67]; and (3) financial compensation, reflected by the level of financial support allocated to agriculture [68].

The procedure for assessing the mediating effect is carried out as follows [69]: First, model (1) is estimated to assess the impact of
the DE on ACE. A significantly negative ; would indicate a suppressive influence of the DE on ACE, which is already supported by the
data presented in the table. Next, estimate model (2) to analyze the relationship between the DE and the mediating variables. A
significantly positive coefficient would suggest that the DE facilitates the intermediary variable, whereas a negative coefficient would
imply a restraining effect. Finally, estimate model (3). If either y, or 6 is non-significant, proceed to the next phase of testing.
Conversely, if both y; and 0 are significant, an intermediary effect is established. At this point, a significant regression coefficient f,
would indicate a partial intermediary effect, while a non-significant 8, would suggest a complete intermediary effect.

Table 6 presents the findings derived from the evaluations of the second-stage and third-stage mediated effects. Columns (1), (3)
and (5) show the important impact of the development index on DE, scale of operations and economic compensation. This observation
necessitates further exploration through mediated effects tests. Meanwhile, Columns (2), (4), and (6) of the same table showcase the
third-stage estimation results relevant to the mediation effect model, assessing the impacts of scientific and technological innovation,
operational scale, and financial compensation on ACE. Notably, the coefficients for scientific and technological innovation, operational
scale, and financial compensation all demonstrate a significant negative correlation with ACE. This indicates that the DE continues to
play a crucial role in reducing ACE. It underscores the existence of mediating mechanisms associated with technological innovation,
business operation scale, and financial compensation. In summary, the findings confirm that scientific and technological innovation,
the scale of business operations, and financial compensation each serve as partial mediators. Thus, the DE emerges as a crucial tool for
reducing ACE, facilitated by the relationship of three distinct mechanisms: the incentive for technological innovation, the management
of scale efficiency, and the mechanism for agricultural financial compensation.

Building on the preceding theoretical analysis, the DE influences ACE through three main mechanisms: technological innovation,
operational scale factors, and financial compensation. As shown in columns (1) and (2) of Table 6, confirm that the DE promotes
technological innovation, which in turn reduces ACE. This highlights an incentive mechanism for technological innovation between
the DE and ACE. For Hypothesis 3, the results in Columns (3) and (4) demonstrate that the DE enhances industrial clustering, thereby
decreasing ACE. This underscores a mechanism of scale efficiency management. Furthermore, the results for Hypothesis 4 in Columns
(5) and (6) indicate that the DE effectively utilizes financial channels to reduce ACE, emphasizing a financial compensation mecha-
nism. Thus, all hypotheses are validated, confirming that the DE, through these three mechanisms, plays a crucial role in mitigating
ACE.

Table 6
Results of the intermediary effect test.
varible Incentives for technological innovation Management of economies of scale Agricultural financial compensation
@ (2 3 @ 5) 6)
Technological innovation Carbon Scale of operations Carbon Financial compensation Carbon
DE 0.176** —0.182* 0.281* —0.213** 0.098** —0.182*
(0.091) (0.117) (0.175) (0.057) (0.074) (0.078)
Technological innovation —0.259%**
(0.038)
Scale of operations —0.092%**
(0.034)
Financial compensation —0.164***
(0.057)
Constant 0.234 —0.549%** —0.348 —1.411%** —1.723%%** —1.867%**
(0.241) (0.187) (0.244) (0.361) (-0.207) (0.214)
Control YES YES YES YES YES YES
Time FE YES YES YES YES YES YES
Province FE YES YES YES YES YES YES
N 300 300 300 300 300 300
R? 0.918 0.929 0.857 0.839 0.984 0.891
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6. Conclusion and recommendations
6.1. Conclusions of the study

This paper investigates the impact of the rural DE on ACE using panel data from 30 Chinese provinces from 2011 to 2020. The
analysis is conducted through a fixed-effects model. Additionally, it evaluates the internal mechanisms by which the DE contributes to
the reduction of ACE. The primary findings are as follows: Firstly, a higher level of rural consumption correlates with a more robust DE,
which is associated with relatively lower ACE. However, there are differences in ACE across provinces, highlighting significant
regional variations in pollution levels. Secondly, a clear downward shift in ACE is observed post-2014, closely linked to policy ad-
justments in that year. The year 2014 is remarkable for integrating big data into China’s central government work report, marking the
DE’s elevation to a national strategic priority. This transformation has been pivotal in changing agricultural production, significantly
reducing ACE. Thirdly, there is a strong negative correlation between the DE and ACE. Specifically, a 1 % increase in the DE results in a
0.236 % reduction in ACE, a finding that is statistically significant at the 1 % level. Fourthly, the DE has a significant impact on ACE
across China’s eastern, central, and western provinces, with the most pronounced effects observed in the western region. Finally, the
study demonstrates through a mediation effect model that the DE reduces ACE via three mechanisms: incentivizing scientific and
technological innovation, managing scale efficiency, and providing agricultural financial compensation.

6.2. Policy recommendations

Premised on the insights obtained from the preceding analysis, it becomes unequivocally clear that the evolution of the DE,
propelled by its foundational elements of digital technology and data, harbors the potential to catalyze a comprehensive meta-
morphosis including the dimensions of production factors, productivity, and the relationships in production, subsequently exerting a
direct impact on carbon reduction in the agricultural domain. In light of these findings, the following policy recommendations are
proffered:

Firstly, establishing a robust DE infrastructure in rural areas is essential. Strengthening the research, development, and dissemi-
nation of digital agricultural technologies can empower farmers to modernize their equipment and adopt energy-efficient practices,
ultimately reducing greenhouse gas emissions. The government can significantly contribute by boosting financial support to facilitate
the adoption of innovative technologies, enhance agricultural production efficiency, and establish a carbon market. This approach
would incentivize the agricultural sector to reduce ACE through carbon trading mechanisms.

Secondly, fostering balanced progress in the development of the rural DE across various regions is of paramount importance. Given
the significant disparities in ACE between different areas, it is essential to tailor policies to the unique conditions of each region. This
strategy ensures that local needs are met while also minimizing unnecessary ACE. In addition, there is an urgent need to amplify the
adoption of innovative digital agricultural technologies, alongside providing comprehensive training that supports practices such as
organic farming, diversified cultivation, and the enhancement of farming methodologies. These initiatives play a pivotal role in
reducing dependence on chemical fertilizers and pesticides, as well as in reducing greenhouse gas emissions, ultimately contributing to
the overarching objective of lowering ACE. Moreover, there is a call for a unified and vigorous approach towards education and
awareness-raising campaigns within rural communities. The goal here is to elevate the environmental awareness of rural inhabitants,
fostering their enthusiastic involvement in projects designed to mitigate ACE.

Thirdly, is necessary to strengthen mechanisms that promote scientific and technological innovation, enhance scale efficiency
management, and offer fiscal recompense for the agricultural sector. This enhancement plays a vital role in driving forward tech-
nological progress and nurturing environmentally sustainable farming practices. The governmental bodies should allocate additional
funds for research and development to stimulate innovation in digital agricultural technology, while also protecting the intellectual
property rights of innovators. Moreover, there appears a necessity to offer comprehensive training and guidance in managing large-
scale agricultural operations, and to simultaneously encourage farmers to adopt a cooperative model of operation, which would serve
to amplify production efficiency. Moreover, establishing suitable financial compensation frameworks for agriculture is of utmost
importance. This could involve fostering active participation of the agricultural sector in the trading of carbon emission rights,
providing agricultural producers with an opportunity to gain additional income through emission reduction initiatives. Such in-
centives are poised to inspire farmers to adopt agricultural practices that are more environmentally friendly.

6.3. Limits and Future research

This paper examines the impact of DE on ACE in China, focusing on technological innovation, business scale, and fiscal
compensation. However, several limitations are present. Firstly, the study does not account for long-term trends or seasonal variations,
even though both the DE and ACE are dynamic. Consequently, longer-term data is necessary. Additionally, China’s agricultural
production varies significantly by region, with large-scale plantations in the north and small-scale diversified agriculture in the south,
making it challenging to generalize the findings nationwide. Secondly, on a theoretical level, studying the DE and ACE spans multiple
disciplines, including economics, environmental science, and information technology. Differences in theoretical approaches and
methods among these disciplines may limit the research perspectives and explanatory frameworks. Furthermore, existing economic
development and environmental impact models may not fully explain the specific effects of digital technology on ACE. Thirdly, from a
methodological point of view, it is more difficult to build an accurate model to assess the impact of DE on ACE. It requires compre-
hensive consideration of factors such as technological innovation, market dynamics, and policy changes. Lastly, in terms of
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argumentation, this study establishes certain assumptions, and the uncertainty of these assumptions may affect the reliability of the
results. Additionally, interpreting the results often depends on specific geographical, economic, and socio-cultural contexts.

Future research should aim to conduct more geographic information system (GIS) studies to analyze the relationship between
digital economic development and ACE across different regions. Additionally, studying the impact of policy and institutional factors on
this relationship is crucial to understanding how policies may affect ACE reduction or increase. The influence of policy regimes on the
DE and ACE also requires deeper investigation, as government policies and regulations can significantly shape this dynamic. Overall,
this area of research is still developing, and more in-depth studies are necessary to better understand the impacts of the DE on ACE. This
understanding will be vital for supporting more sustainable agricultural practices and economic development.
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