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     Mycobacterium tuberculosis  is an inhaled pathogen 
that primarily infects macrophages and DCs. 
Bacterial replication in infected cells is inhibited 
by the actions of IFN- �  and TNF- � , supplied by 
antigen-specifi c T cells and cells of the innate 
immune system ( 1 – 5 ). Although infected humans 
and mice generate  M. tuberculosis  – specifi c T cells, 
the immune system is generally incapable of pro-
viding sterilizing immunity against this pathogen, 
and individuals cured of primary  M. tuberculosis  
infection remain vulnerable to reinfection ( 6 – 8 ). 
The only approved vaccine against  M. tuberculosis , 
the  M. bovis  derivative Bacille Calmette-Gu é rin 
(BCG), induces, at best, only partial immunity 
( 9 ). Immunization of mice with BCG induces 
protective immunity that results in  � 10-fold 
fewer  M. tuberculosis  organisms in the lungs upon 
aerosol challenge. 

 CD4 +  T cells play a dominant role in immu-
nity to  M. tuberculosis  because animals defi cient in 
these cells are more susceptible to infection than 
normal mice or mice lacking CD8 +  T cells ( 10 –
 12 ), and patients with CD4 T cell defi ciency 

from HIV infection have dramatically elevated 
rates of reactivation tuberculosis ( 13 ). After aero-
sol infection in mice,  M. tuberculosis  replication 
is controlled when eff ector T cells reach the 
lung ( 6 ). Among CD4 +  T cell subsets, IFN- �  – 
producing Th1 cells are essential, because hu-
mans with defects in the IFN- �  receptor have 
markedly increased susceptibility to mycobacte-
rial infections, and mice lacking either IFN- �  or 
its receptor die rapidly after infection ( 2 – 4 ). Al-
though it is commonly assumed that vaccines 
that elicit larger or more Th1-focused antigen-
specifi c T cell responses will be more eff ective, 
the extent to which very high numbers of  M. tu-
berculosis  – specifi c Th1 cells can provide protec-
tive immunity remains unclear. 

 Two hypotheses have been proposed to ex-
plain how  M. tuberculosis  evades T cell – mediated 
immune defenses. The fi rst posits that  M. tubercu-
losis  induces complex T cell responses comprising 
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  Mycobacterium tuberculosis  infection induces complex CD4 T cell responses that include T 

helper type 1 (Th1) cells and regulatory T cells. Although Th1 cells control infection, they 

are unable to fully eliminate  M. tuberculosis , suggesting that Th1-mediated immunity is 

restrained from its full sterilizing potential. Investigation into T cell – mediated defense is 

hindered by diffi culties in expanding  M. tuberculosis  – specifi c T cells. To circumvent this 

problem, we cloned CD4 +  T cells from  M. tuberculosis  – infected B6 mice and generated 

transgenic mice expressing a T cell receptor specifi c for the immunodominant antigen early 

secreted antigenic target 6 (ESAT-6). Adoptively transferred naive ESAT-6 – specifi c CD4 +  T 

cells are activated in pulmonary lymph nodes between 7 and 10 d after aerosol infection 

and undergo robust expansion before traffi cking to the lung. Adoptive transfer of activated 

ESAT-6 – specifi c Th1 cells into naive recipients before aerosol  M. tuberculosis  infection 

dramatically enhances resistance, resulting in 100-fold fewer bacteria in infected lungs. 

However, despite large numbers of Th1 cells in the lungs of mice at the time of  M. tuber-

culosis  challenge, protection was not manifested until after 7 d following infection. Our 

results demonstrate that pathogen-specifi c Th1 cells can provide protection against inhaled 

 M. tuberculosis , but only after the fi rst week of infection. 
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splenocytes expressed the transgene-encoded TCR  �  and  �  
chain ( Fig. 1 C ). 

 To confi rm the specifi city of these cells, CD4 +  T cells 
were purifi ed from C7 TCR tg mice or B6 control animals 
and were stimulated with titrating amounts of ESAT-6 pep-
tide. Although both CD4 +  T cell populations proliferated 
similarly to anti-CD3/CD28 stimulation (not depicted), only 
C7 TCR tg CD4 +  T cells proliferated in response to ESAT-6 
peptide ( Fig. 1 D ). In summary, C7 TCR tg mice contain CD4 +  
T cells that express a TCR specifi c to ESAT-6 3-15  – I-A b  com-
plexes. This TCR was isolated from a CD4 +  T cell clone re-
sponding to a live  M. tuberculosis  infection. 

 C7 TCR tg CD4 +  T cells differentiate into Th1 cells 

during  M. tuberculosis  infection 

 To determine whether C7 TCR tg CD4 +  T cells respond to 
ESAT-6 antigen generated during aerosol infection of mice, 
10 4  naive C7 TCR tg CD4 +  T cells (on a RAG-1 – defi cient 
[RAG  � / �  ] background) were adoptively transferred into B6 
recipients that were aerosol infected 1 d later with 100 CFU 
 M. tuberculosis . The data in  Fig. 2 A  show that at this T cell 
dosage, naive C7 CD4 +  T cells (congenically marked with 
CD90.1) are not detectable in uninfected mice.  In contrast, 
marked expansion of C7 CD4 +  T cells is noted in the pulmo-
nary LNs (pLNs) of mice infected 12 d earlier ( Fig. 2, A and B ). 
Analysis of pLNs, spleen, and lung between days 12 and 18 
of infection demonstrates that the frequency of C7 CD4 +  T 
cells increases in the lung and spleen ( Fig. 2 C ). Staining for 
intracellular TNF- �  and IFN- �  demonstrates that respond-
ing C7 CD4 +  T cells acquired Th1 eff ector cell functions 
( Fig. 2 D ). The diff erentiation of responding cells into Th1 
eff ector cells is further supported by their expression of T-bet, as 
measured by intracellular staining ( Fig. 2 E ). In contrast, naive 
C7 CD4 +  T cells did not diff erentiate into regulatory T cells 
because the transcription factor Foxp3 was not expressed 
(unpublished data). 

 These experiments demonstrate that naive C7 CD4 +  
T cells are activated in vivo in the setting of pulmonary 
 M. tuberculosis  infection and that they traffi  c from draining 
LNs to the lung. Furthermore, these studies demonstrate that 
naive C7 TCR tg CD4 +  T cells diff erentiate into Th1 eff ector 
cells, as is observed with polyclonal ESAT-6 – specifi c T cell 
responses ( 24 ). 

 T cell priming occurs between days 7 and 10 after infection 

 The ESAT-6 – specifi c CD4 +  T cell response to  M. tuberculosis  
has been measured in functional ways via ELISA, ELISPOT, 
or intracellular cytokine staining in mice with a complex 
TCR repertoire ( 24, 25 ). One limitation of relying on these 
methods is that the frequency of antigen-specifi c cells needs to 
be high enough to detect by fl uorimetric analysis, and these 
cells need to produce cytokines to be detected. Accordingly, 
naive cells cannot be studied because these cells need to expand 
and diff erentiate into cytokine-producing cells before they 
can be visualized. Using these methods,  M. tuberculosis  – specifi c 
eff ector CD4 +  T cells are fi rst detectable in the pLNs  � 14 d 

Th1 and Th17 eff ector cells that enhance bacterial clearance, 
and regulatory T cells that restrict bacterial clearance ( 14 – 16 ). 
In this scenario, regulatory T cell function is suffi  cient to pre-
vent clearance of primary infection or development of protec-
tive immunity. The second hypothesis is that  M. tuberculosis  has 
acquired mechanisms to hide from the immune system within 
infected cells, out of reach of the adaptive immune system. 
These hypotheses are not mutually exclusive and evidence in 
support of both is mounting. Because tuberculosis is a lengthy 
infection, with clinically distinct phases, it is likely that the 
mechanisms of immune evasion diff er during early, latent, and 
late infection. Determining the relative contributions of dis-
tinct immune evasion mechanisms is essential for vaccine de-
sign and new therapeutic approaches. 

 In this study, we investigated whether high numbers of 
 M. tuberculosis  – specifi c Th1 cells can protect mice from infection. 
We generated mice that are transgenic (tg) for an MHC class II –
 restricted TCR specifi c for the  M. tuberculosis  antigen early 
secreted antigenic target 6 (ESAT-6). We show that ESAT-6 –
 specifi c Th1 cells are remarkably potent in protecting mice 
from infection. However, ESAT-6 – specifi c Th1 cells con-
trolled bacterial replication only after day 7 following infection, 
despite the fact that high numbers of these cells were in the lung 
before, during, and after inhalation of live  M. tuberculosis . These 
studies indicate that during the fi rst week of infection,  M. tuber-
culosis  – infected cells are either physically inaccessible to patho-
gen-specifi c eff ector CD4 +  T cells or are functionally incapable 
of receiving CD4 +  T cell help. 

  RESULTS  

 Generation of ESAT-6 – specifi c TCR tg mice 

 ESAT-6 is a secreted protein implicated in  M. tuberculosis  
pathogenesis ( 17 ) and is a key antigen in humans, primates, and 
mice, and vaccination with ESAT-6 induces protective CD4 +  
T cell immunity ( 18 – 22 ). To study the CD4 +  T cell response 
to  M. tuberculosis , tg mice for an MHC class II – restricted TCR 
specifi c for ESAT-6 3-15  in the context of I-A b  were generated. 
To isolate a TCR that is functional during in vivo infection, 
CD4 +  T cells specifi c for ESAT-6 were harvested from mice 
that were aerosol infected with  M. tuberculosis , and CD4 +  T cell 
hybridomas were generated. The specifi city of one ESAT-6 –
 specifi c hybridoma, clone 7, is shown in  Fig. 1 A .  The TCR 
used by clone 7 CD4 +  hybridoma cells was composed of a 
TCR  �  chain generated from V � 10b-D � 1-J � 2.4 gene seg-
ments and a TCR  �  chain generated from V � 11.2-J � 27 gene 
segments (unpublished data). TCR  �  and  �  chain cDNAs 
were cloned into the VA hCD2 cassette vector, which uses the 
human CD2 promoter to drive the expression of cDNAs in 
T cells ( 23 ). 

 Because the TCR used to generate ESAT-6 – specifi c TCR 
tg mice (referred to hereafter as C7 TCR tg mice) was iso-
lated from a CD4 +  T cell, an increased frequency of this 
lineage in tg animals was expected. In both thymocytes and 
splenocytes, an increased percentage of CD4 +  T cells with a 
concomitant decrease in the frequency of CD8 +  T cells was 
observed ( Fig. 1 B ). The majority of CD4 +  thymocytes and 
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and not depicted).  The naive phenotype of these cells, with 
low surface expression of the early activation marker CD69, 
indicates that C7 CD4 +  T cells had not been presented anti-
gen at the day 7 time point. By day 10 after infection, the fre-
quency of C7 CD4 +  T cells among CD4 +  T cells increased 
compared with day 7, and every mouse examined contained 
either recently activated cells (expressing CD69) or divided 
cells, as indicated by CFSE dilution. At day 13 after infection, 
the frequency of the C7 CD4 +  T cells increased to  � 6% of 
total CD4 +  T cells. These cells were mostly CFSE negative 
and displayed an eff ector/memory-like cell-surface pheno-
type, expressing high levels CD44 and low levels of CD62L 
( Fig. 3 A  and not depicted). The temporal change in frequency 
of C7 CD4 +  T cells among the CD4 +  T cells in the pLNs is 
shown in  Fig. 3 B . These experiments indicate that the prim-
ing of naive ESAT-6 – specifi c CD4 +  T cells is delayed com-
pared with other respiratory infections and occurs between 
days 7 and 10 after infection. 

after infection, and these cells reach peak numbers in the 
lungs between 21 and 28 d after infection ( 24 – 26 ). Because 
the delay in recruitment of eff ector cells to the lung is not a 
general characteristic of pulmonary infections, we wanted to 
determine the kinetics of priming of ESAT-6 – specifi c CD4 +  
T cells ( 27, 28 ). 

 To understand when naive ESAT-6 – specifi c CD4 +  T 
cells are fi rst presented antigen after aerosol infection with 
 M. tuberculosis , 10 5  CFSE-labeled naive C7 TCR tg.RAG  � / �   
CD4 +  T cells (CD90.1) were transferred into B6 recipients 
(CD90.2), and recipient mice were infected 1 d later with 
100 CFU  M. tuberculosis . At days 7, 10, and 13 after infection, 
pLNs were recovered and the frequency and phenotype of 
C7 CD4 +  T cells were determined. At day 7 after infection, 
the frequency of C7 CD4 +  T cells in the pLNs was low and 
similar to that seen in uninfected animals. C7 CD4 +  T cells at 
day 7 had a naive phenotype. These cells were CFSE bright, 
CD69 negative, CD44 intermediate, and CD62L high ( Fig. 3 A  

  Figure 1.     C7 TCR tg CD4 +  T cells are specifi c to ESAT-6.  (A) Clone 7 hybridoma cells or hybridoma fusion partner BW5147 cells were stimulated with 

5  μ g/ml of ESAT-6 peptide, or with media in the presence of APCs. Supernatants were collected 2 d later, and IL-2 levels were measured by ELISA. nd, not detect-

able. (B) Splenocytes and thymocytes from B6 or C7 TCR tg mice were stained for CD4 and CD8 expression. Numbers indicate the percentages of cells in each 

gate. (C) V � 10b and V � 11.1/.2 expression after gating on CD4 +  thymocytes or CD4 +  splenocytes from the indicated mice. Shaded gray histograms represent 

CD4 +  T cells from B6 mice; continuous lines represents CD4 +  T cells from C7 TCR tg mice. Black and small gray numbers indicate the percentages of stained 

cells among CD4 +  T cells from C7 TCR tg or B6 mice, respectively. (D) Purifi ed CD4 +  T cells from C7 TCR tg or B6 mice were stimulated with ESAT-6 peptide in 

the presence of APCs. Proliferation was measured by [ 3 H]thymidine incorporation between 48 and 72 h of culture. Error bars in A and D represent SDs.   
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C7 Th1 cells decreased the number of viable bacteria by a fac-
tor of 100, whereas animals that received control Th1 cells 
contained similar numbers of bacteria as mice that received 
no cells ( Fig. 4 B ). Next, we sought to determine if fewer 
C7 Th1 cells could protect animals from  M. tuberculosis  chal-
lenge. Graded numbers of C7 Th1 cells (10 5 , 10 6 , or 10 7 ) were 
transferred into B6 recipients, and bacterial numbers were de-
termined 16, 30, and 90 d after infection. These results show 
that the degree of protection correlates with the dose of C7 
Th1 cells transferred. Administration of as few as 10 5  cells was 
suffi  cient to provide signifi cant protection that was sustained 
for up to 90 d after infection ( Fig. 4, C and D ). Interestingly, 
although the day 30 numbers of bacteria were maintained un-
til day 90 after infection in animals that received low doses of 
cells, bacterial numbers increased in animals that received 10 7  
C7 Th1 cells ( Fig. 4 D ). 

 These studies demonstrate that ESAT-6 – specifi c Th1 cells 
can greatly reduce the numbers of  M. tuberculosis  in the lungs. 
Compared with control mice, animals that received 10 7  C7 
Th1 cells had a 99% reduction in the number of viable bacte-
ria early after infection. 

 C7 Th1 effector cells protect mice from infection 

 Mice immunized with  M. tuberculosis  proteins plus adjuvant, 
BCG variants, or  M. tuberculosis  are, in comparison to naive 
controls, protected from challenge with  M. tuberculosis . These 
immunization protocols induce complex populations of  M. 
tuberculosis  – specifi c CD4  +   and CD8  +   T cells that contribute to 
protection. The CD4 +  T cell populations are mixed and may 
include Th1, Th17, and suppressive regulatory T cell popula-
tions ( 14 – 16 ). In one report, in vitro – generated monoclonal 
Th1 cells (specifi c to ovalbumin) were shown to provide  � 1 
log of protection in animals infected with  M. tuberculosis  ex-
pressing the model antigen ovalbumin ( 29 ). 

 Because ESAT-6 is a native  M. tuberculosis  antigen and a 
target for vaccine development ( 30 ), we wanted to understand 
if a pure population of ESAT-6 – specifi c C7 Th1 cells could 
protect mice from infection. B6 hosts received 10 7  in vitro –
 generated C7 Th1 cells (or control Th1 cells) and were then 
infected with 100 CFU  M. tuberculosis  1 d later. Before transfer, 
the diff erentiation status of the cells was verifi ed by analysis of 
CD44 and T-bet expression ( Fig. 4 A ).  24 d after infection, the 
number of bacteria in the lungs was determined. Surprisingly, 

  Figure 2.     C7 TCR tg CD4 +  T cells respond to  M. tuberculosis  infection in vivo.  (A) 10 4  C7 TCR tg.RAG  � / �   CD4 +  T cells (CD90.1) were transferred into 

uninfected congenically marked B6 recipients (CD90.2), and splenocytes were stained for CD4 and CD90.1 expression 7 d later. The gate marks donor-

derived C7 TCR tg.RAG  � / �   CD4 +  T cells (CD90.1 + ) cells, and the percentages of these cells within total cells (top) or among CD4 +  T cells (bottom) are shown. 

(B – E) As in A, except mice were aerosol infected 1 d after T cell transfer with 100 CFU  M. tuberculosis . pLNs, spleen, and lung were examined 12, 15, and 18 d 

later. (C) Graphic representation of results from three to four mice per time point. Error bars represent SDs. (D) C7 TCR tg.RAG  � / �   CD4 +  T cells from the 

indicated organs were harvested from day 15 – infected mice, and their ability to make IFN- �  and TNF- �  was determined after stimulation with ESAT-6 

peptide or medium alone. (E) Intracellular T-bet (shaded histogram) or isotype control staining (continuous line) of C7 TCR tg.RAG  � / �   CD4 +  T cells taken 

from the indicated organs 15 d after infection. The data presented in this fi gure are representative of two experiments with three to four mice per group.   
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to 7 after infection, whereas both transcripts were induced by 
day 18 after infection. This suggests that C7 Th1 cells were 
not activated to produce high levels of IFN- �  during the fi rst 
week of infection. Collectively, these data do not support the 
hypothesis that C7 Th1 cells are activated during the fi rst 7 d 
of infection. However, these negative data also do not rule 
out the possibility that some C7 Th1 cells (perhaps very small 
numbers)  “ see ”  antigen and are activated during the fi rst week 
of infection. 

 C7 Th1 cells control bacterial replication 

after 1 wk following infection 

 Use of C7 TCR tg cells in the previous experiments demon-
strated that naive ESAT-6 – specifi c CD4 +  T cells were primed 
in the pLNs between 7 and 10 d after infection, and these 
cells diff erentiated into Th1 eff ector cells and traffi  cked to the 
lungs between 12 and 14 d after infection ( Figs. 2 and 3 ). These 
observations are consistent with other studies that have mea-
sured endogenous T cell responses to  M. tuberculosis  and dem-
onstrated that antigen-specifi c T cell responses were detected 
in the pLNs 14 d after infection, and reached peak numbers 
in the lungs  � 28 d after infection, at which time in vivo bac-
terial growth was controlled ( 24 – 26 ). 

 Our experiments with in vitro – generated C7 Th1 cells 
demonstrated that these cells greatly reduced the bacterial num-
bers in the lungs as early as day 16 after infection. In the ensu-
ing experiments, we wanted to look earlier than day 16 after 
infection to determine when C7 Th1 cells manifest protection. 
10 7  C7 Th1 cells were transferred into mice that were infected 
1 d later with  M. tuberculosis , and bacterial numbers in the lungs 
were determined early after infection. Before infection,  � 5  ×  
10 5  C7 Th1 cells were recovered from either spleen or lungs, 
and these cells were functional, producing both IFN- �  and 
TNF- �  after ex vivo stimulation ( Fig. 5, A – C ).  

 To our surprise, despite the high numbers of C7 eff ector 
cells in the lungs, similar numbers of bacteria were recovered 
from animals that received C7 Th1 cells and from control ani-
mals during the fi rst 7 d of infection. In contrast, between days 
7 and 10 after infection, while bacterial growth continued in 
control mice, growth was controlled in animals that received 
C7 Th1 cells. Interestingly, the number of bacteria remained 
constant until day 30 after infection despite the presence of C7 
Th1 cells capable of producing cytokines in the lungs ( Fig. 5, 
D and E ). 

 The fi nding that C7 Th1 cells were in the lungs before 
infection, but did not control bacterial replication until after 
day 7 following infection, led us to investigate whether these 
cells were activated during the fi rst week of infection. Unlike 
our studies using naive C7 cells, we could not determine, us-
ing the activation markers CD69 and CD25, when C7 Th1 
eff ector cells were presented antigen in the lung, because 
 � 60% of C7 Th1 cells expressed these activation markers re-
gardless of whether these cells were harvested from naive or 
infected animals (Fig. S1, available at http://www.jem.org/
cgi/content/full/jem.20080353/DC1). This result is consis-
tent with studies of memory CD8 T cells in the lung and 
suggests that CD69 cannot be used to monitor presentation of 
cognate antigen to antigen-experienced T cells in the lung 
( 31 ). In addition, expansion of C7 Th1 cells was not evident 
in infected animals between days 4 and 13 after infection, be-
cause similar numbers of C7 Th1 cells were recovered from 
naive and infected mice (Fig. S1). As a third attempt to un-
derstand if C7 Th1 cells were activated during the fi rst 7 d of 
infection, message levels for  ifn �   and one target gene,  nos2 , 
were measured in infected mice that received C7 Th1 cells. 
Similar levels of these transcripts were observed from days 1 

  Figure 3.     Naive C7 TCR tg CD4 +  T cells are activated in the pLNs 

between days 7 and 10 after infection.  (A) 10 5  CFSE-labeled C7 TCR 

tg.RAG  � / �   CD4 +  T cells (CD90.1) were transferred into congenically 

marked B6 recipients (CD90.2) that were left uninfected (top row, naive) 

or aerosol infected with 100 CFU  M. tuberculosis  1 d later (bottom three 

rows, after infection). The fi rst column shows CD4 and CD90.1 staining of 

pLN cells. Gate marks donor-derived C7 TCR tg.RAG  � / �   CD4 +  T cells 

(CD90.1 + ), and the percentage of these cells within total pLNs (top) or 

among CD4 +  T cells (bottom) is shown. The second and third columns 

show CFSE intensity and CD69 staining or CD44 staining, respectively, on 

gated C7 TCR tg.RAG  � / �   CD4 +  T cells. Numbers indicate the percentages 

of cells in the indicated gates. (B) Graphic representation of results from 

three to four mice per time point for the experiment described in A. Error 

bars represent SDs. The data presented in this fi gure are representative of 

three experiments of similar design with two to four mice per group.   
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terial growth is unimpaired for the fi rst week of infection de-
spite large numbers of pathogen-specifi c T cells in the lungs. 

 The delay in priming of naive ESAT-6 – specifi c T cells is 
not unexpected and is consistent with the fi nding that  M. tu-
berculosis  – specifi c eff ector T cells are not present at high fre-
quencies in the lungs of mice until  � 3 wk after infection ( 24, 
25 ). Our results are also consistent with a recent study ( 34 ) 
that monitored the priming of TCR tg CD4 +  T cells specifi c 
to the  M. tuberculosis  antigen Ag85B. One notable diff erence 
is that priming of Ag85B-specifi c monoclonal CD4 +  T cells 
occurred at day 12 after aerosol infection, 2 – 4 d later than 
the C7 TCR tg cell response documented in this study. Dif-
ferences in priming between naive Ag85B and ESAT-6 – specifi c 
clones may result from diff erences in the expression patterns 
of these two proteins ( 32 ), diff erences in the presentation of 
these antigens, or diff erences in the sensitivity of the TCRs 
used by Ag85B TCR tg cells and C7 TCR tg cells for their 
cognate antigens. Direct comparative studies will be required 
to distinguish between these possibilities. 

 Our studies with in vitro – generated Th1 cells revealed two 
surprising fi ndings. One is how well monoclonal ESAT-6 –
 specifi c Th1 cells were able to protect mice from  M. tuberculosis  

 In summary, the results show that eff ector ESAT-6 – spe-
cifi c Th1 cells greatly reduce the number of viable  M. tubercu-
losis  in the lungs and that control of bacterial growth occurs 
after day 7 following infection. This delay in protection is un-
likely to be caused by a lack of ESAT-6 synthesis during the 
fi rst week of infection, because ESAT-6 transcript was detect-
able by at least day 5 after infection in the lungs of infected 
mice, and ESAT-6 – defi cient  M. tuberculosis  showed reduced 
growth in the lungs (compared with wild-type  M. tuberculosis ) 
during the fi rst 5 d of infection, demonstrating that ESAT-6 
is synthesized very early after infection ( 32, 33 ). 

  DISCUSSION  

 We generated mice tg for a TCR specifi c to the dominant 
 M. tuberculosis  antigen ESAT-6 to investigate the ability of Th1 
cells to provide protective immunity. Our analysis of adop-
tively transferred C7 TCR tg CD4 +  T cells revealed that prim-
ing of naive ESAT-6 – specifi c TCR tg cells occurred 7 – 10 d 
after aerosol infection with a low dose of  M. tuberculosis . Our 
experiments demonstrated that adoptively transferred Th1 cells 
specifi c for ESAT-6 can provide a high level of protection, as 
measured up to 90 d after infection, but that in vivo mycobac-

  Figure 4.     Adoptive transfer of C7 Th1 T cells confers protection to  M. tuberculosis .  (A) B6 or C7 CD4 +  T cells were stimulated in vitro with 

anti-CD3/CD28 (control Th1 cells) or ESAT-6 peptide (C7 Th1 cells), respectively, in the presence of IFN- �  and anti – IL-4 for 4 d, and were analyzed for 

CD44 and T-bet expression. CD4 +  T cells from naive B6 spleens are shown as a staining control. Numbers represent the percentages of cells in each 

quadrant. MFI, mean fl uorescence intensity. (B) 10 7  Th1-differentiated B6 or C7 CD4 +  T cells were transferred into B6 recipient mice 1 d before aerosol 

infection with 100 CFU  M. tuberculosis . 24 d later, the number of bacteria in the lungs was determined. Each symbol represents data from one mouse, 

and p-values compare the CFU from mice that received no cells compared with mice that received either B6 or C7 Th1 cells. The experiment was per-

formed two times with similar results. Horizontal bars represent the mean. (C and D) Similar experiment as in B, except 10 7 , 10 6 , or 10 5  C7 Th1 cells or 

no cells were transferred and CFU were determined 16, 30, and 90 d after infection. This experiment was preformed one time with four mice per group. 

In C, each circle represents data from one mouse, and p-values compare the CFU from mice that received no cells. In D, each symbol represents four 

mice per group (square, 10 7  cells; inverted triangle, 10 6  cells; triangle, 10 5  cells; and circle, no cells). Error bars represent SDs.   
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tion methods ( 35, 36 ). By using adoptively transferred C7 
Th1 cells, our experiments demonstrate that monoclonal T 
cells specifi c to ESAT-6 can provide a level of early protec-
tion that is comparable to that provided by mixed popula-
tions of  M. tuberculosis  – specifi c CD4  +   and CD8  +   eff ector T 
cells after vaccination. Thus, complex populations of T cells 

infection. The second is the fact that despite high numbers of 
C7 Th1 eff ector cells in animals before infection, bacterial 
replication was not controlled until 1 wk after infection. 

 The 2-log reduction in the number of bacilli in animals 
that received C7 Th1 cells is greater than that observed after 
BCG immunization and comparable to prime-boost vaccina-

  Figure 5.     C7 Th1 cells confer protection to  M. tuberculosis  only after day 7 following infection.  (A – C) 10 7  C7 Th1 cells (CD90.1) were 

transferred into B6 recipient mice (CD90.2), and 1 d later splenocytes or lung cells were harvested and stained for CD4 and CD90.1 expression. 

(A) Gate marks donor-derived cells among total cells in the indicated organs. (B) Graphic representation showing the number of recoverable C7 Th1 

cells from the indicated organs. Each symbol represents data from one mouse. (C) Intracellular TNF- �  and IFN- �  staining of C7 Th1 cells harvested 

from the lungs. bars in B and C represent the mean. (D) Similar experiment as in A – C, except mice were infected 1 d after T cell transfer with 100 

CFU  M. tuberculosis . Bacterial numbers were determined at the indicated days after infection. The data presented is a compilation of fi ve experi-

ments. Each time point includes CFU data from 7 – 12 mice per time point with the exception of days 4 and 5, which have 4 mice per time point. 

Error bars represent SDs. (E) Lung cells were harvested from day 16 –  or day 30 – infected mice and were stained for CD4 and CD90.1 expression 

(left). Gate marks donor-derived cells among total cells. Intracellular TNF- �  and IFN- �  staining of C7 Th1 cells harvested from the lungs is 

shown (right).   
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aerosol infection with  M. tuberculosis . However, this protec-
tion was delayed until after day 7 following infection, and 
bacteria persisted in these animals thereafter. This fi nding 
may help explain why vaccination against  M. tuberculosis  has 
been diffi  cult: immediately after infection,  M. tuberculosis  re-
sides in cells that CD4 +  T cells cannot help. 

 MATERIALS AND METHODS 
 Generation of C7 TCR tg mice.   To generate ESAT-6 – specifi c CD4 +  T 

cell hybridomas, B6 mice were aerosol infected with  � 100 CFU  M. tuber-

culosis  Erdman, and 6 wk after infection, CD4 +  splenocytes were purifi ed and 

stimulated in the presence of irradiated T cell – depleted splenocytes (APCs) 

and 0.5  μ g/ml of ESAT-6 protein (the expression vector used to make ESAT-6 

protein, pMRLB7, was provided by Mycobacteria Research Laboratories 

at Colorado State University). 2 d later, activated CD4 +  T cells were fused 

with the tumor cell line BW5147. Antigen-specifi c CD4 +  T cell hybridomas 

were selected by screening for IL-2 production in response to ESAT-6 pro-

tein and ESAT-6 1-20  peptide. TCR chains were identifi ed by a combina-

tion of surface staining with a panel of TCR V �  and V �  chain monoclonal 

antibodies (BD Biosciences), and by RT-PCR amplifi cation and DNA se-

quencing. Hybridoma clone 7 was chosen to generate TCR tg mice because 

it expressed only one in-frame TCR  �  chain, and monoclonal antibodies 

were available for both TCR chains. The TCR chains conferring the specifi c-

ity of clone 7 hybridoma cells were identifi ed as V � 10b-D � 1.1-J � 2.4 and 

V � 11.2-J � 27. TCR  �  chain variable region (VJ) and  �  chain variable region 

(VDJ) cDNAS were amplifi ed with the following primers: V � 10b-D � 1.1-

J � 2.4, (5 �  primer) 5 � -tgctgccctcgaggatcgacgaattcacaggggccatgcagaggaa-3 �  and 

(3 �  primer) 5 � -agcaggttccggattctggatgtttgg-3 � ; and V � 11.2-J � 27, (5 �  primer) 

5 � -tgctgcctcgaggatcgacgaattcgacccaactatgggctgta-3 �  and (3 �  primer) 5 � -tttct-

cagatcttctagcaccgatagtcgg-3 � . 

 VJ and VDJ cDNAS were subcloned into pBluescript vectors that 

contained TCR  �  or  �  chain constant regions. Complete TCR  �  and  �  

chains were excised and cloned into the VA hCD2 vectors (pBluescript 

and VA hCD2 were provided by E. Huesby, University of Massachusetts 

Medical School, Worcester, MA) ( 23 ). DNA fragments containing the 

TCR cDNAs were injected into fertilized B6 oocysts. Founders and their 

progeny were screened by fl ow cytometry for surface expression of V � 10b 

and V � 11.1/.2. TCR tg founder number 27 was selected and used in all 

experiments presented in this paper. 

 Mice and adoptive cell transfers.   B6 mice were purchased from the 

Jackson Laboratory. All animal procedures were approved by the Memorial 

Sloan-Kettering Institutional Animal Care and Use Committee. C7 TCR 

tg mice were bred to B6.CD90.1 mice to obtain C7 TCR tg.CD90.1 

mice, and to RAG  � / �  .CD90.1 mice to generate C7 TCR tg.RAG  � / �  .

CD90.1 mice. C7 TCR tg mice were maintained at the animal facility 

in the Memorial Sloan-Kettering Research Animal Resource Center. For 

adoptive transfer experiments, C7 TCR tg CD4 +  T cells were isolated 

from the spleen and LNs of TCR tg mice. Cells were injected i.v. into na-

ive recipients 1 d before infection. In some experiments cells were labeled 

with 5  μ M CFSE before transfer. 

 Generation of Th1 cells.   3  ×  10 6  purifi ed C7 TCR tg CD4 +  T cells were 

cultured with 12  ×  10 6  irradiated T cell – depleted splenocytes. 5  μ g/ml of 

ESAT-6 1-20  peptide, 10 ng/ml IL-12, and 5  μ g/ml of neutralizing anti – IL-4 

antibody (R & D Systems) were added at day 0 of culture. At days 2 and 3 of 

culture, the cells were split 1:2, and 50 U/ml IL-2 was added (R & D Sys-

tems). On day 4 of culture, Th1 cell diff erentiation was confi rmed via 

intracellular expression of T-bet. The same protocol was used to make 

polyclonal Th1 CD4 +  T cells, except the CD4 +  T cells were taken from B6 

mice and stimulated in the presence of 1  μ g/ml anti-CD3 (145-2C11) and 

0.5  μ g/ml anti-CD28 (37.51). Th1 cells were washed three times with PBS 

and injected i.v. into B6 mice. 

are not required to control infection, a result that suggests 
that adoptive T cell transfer may provide a therapeutic option 
for drug-resistant  M. tuberculosis  infections. 

 It is presumed that improved vaccines can be designed to 
protect individuals from  M. tuberculosis  infection by eliciting ro-
bust antigen-specifi c T cell responses. This view is supported by 
the observation that after aerosol infection in mice, accumula-
tion of  M. tuberculosis  CD4 +  T cells in the lungs coincides with 
the control of bacterial growth ( 6, 14, 37 ). Several hypotheses 
for a lack of sterilizing immunity to  M. tuberculosis  can be pro-
posed, including a delayed recruitment of eff ector T cells to the 
lungs. Our ability to track adoptively transferred  M. tuberculosis  –
 specifi c C7 Th1 cells allowed us to determine that approx-
imately a half million of these cells were in the lungs before 
infection and allowed us to defi nitively rule out this hypothesis. 

 What accounts for the delayed protection by C7 Th1 
cells? Given the low dose infection used in our studies (100 
bacteria) and the slow doubling time of  M. tuberculosis  during 
the fi rst several days of infection, very few cells may be in-
fected, and the probability of C7 Th1 cells  “ fi nding ”  an in-
fected cell may be low. Although several cell types, including 
macrophages and DCs, are infected by day 14 after infection 
( 38 ), no information exists on the frequency or phenotype of 
infected cells in the lungs during the fi rst week of infection 
(although presumably alveolar macrophages are the fi rst cells 
infected). A recent study using multiphoton microscopy found 
that liver-resident macrophages, Kupff er cells, were the fi rst 
cells infected with BCG after i.v. infection ( 39 ). Recruitment 
of uninfected Kupff er cells and blood-derived monocytes to 
infected cells occurred 2 wk after infection. 

 If similar delays in cell recruitment occur in the lungs after 
 M. tuberculosis  infection, it could take 7 – 10 d until lung resident 
cells (i.e., macrophages, DCs, and eff ector/memory T cells) 
home to infected cells. Before day 7 after infection, C7 Th1 cells 
may randomly encounter infected cells, whereas after day 7, 
migration within the lungs to infected sites could be directed 
by infl ammatory signals. Our studies with naive C7 CD4 +  T cells 
demonstrated that T cell priming in pLNs also occurred only af-
ter day 7 following infection. A similar mechanism may account 
for the delayed priming of naive CD4 +  T cells. After the fi rst 
week of infection, DCs and other APCs may home to infected 
sites within the lung and traffi  c to draining LNs to prime naive 
T cells. This hypothesis requires further investigation. 

 On the other hand, if C7 Th1 cells home to infected cells 
within the lungs promptly after infection, it would suggest 
defective collaboration between CD4 +  eff ector cells and in-
fected cells: infected cells may be unable to present antigen to 
activate eff ector CD4 +  T cells, or infected cells may be un-
able to control bacterial replication after stimulation by IFN- �  
and other factors provided by eff ector CD4 +  T cells. In vitro 
studies support both hypotheses, but in vivo studies to answer 
these important questions are necessary ( 40 – 45 ). 

 The fi ndings reported in this paper have important impli-
cations for understanding immunity to  M. tuberculosis.  In this 
study, we show that high numbers of ESAT-6 – specifi c Th1 
cells provided substantial protection to mice after low dose 
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