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A B S T R A C T

Coronavirus disease (COVID-19) is caused by SARS-COV2 and has resulted in more than four million cases
globally and the death cases exceeded 300,000. Normally, a range of surviving and propagating host factors must
be employed for the completion of the infectious process including RPs. Viral protein biosynthesis involves the
interaction of numerous RPs with viral mRNA, proteins which are necessary for viruses replication regulation
and infection inside the host cells. Most of these interactions are crucial for virus activation and accumulation.
However, only small percentage of these proteins is specifically responsible for host cells protection by triggering
the immune pathway against virus. This research proposes RPs extracted from bacillus sp. and yeast as new
forum for the advancement of antiviral therapy. Hitherto, antiviral therapy with RPs-involving viral infection
has not been widely investigated as critical targets. Also, exploring antiviral strategy based on RPs could be a
promising guide for more potential therapeutics.

Introduction

COVID-19 is an extremely contagious and emerging virus, which
appeared in Wuhan, China in December 2019 [1,2]. Every traveler to
Wuhan, Hubei Province in China, two weeks before the onset of the
symptoms, is believed to be a SARS-COV 2-suspect, according to the
World Health Organization (WHO) surveillance report of January 2020
[3]. In addition, the WHO provided interim guidance to laboratories
performing the tests for the new outbreak and safety guidelines. COVID-
19 viral pneumonia applies to the demand in seafood where an un-
known species is responsible for the outbreak [2]. It is a member of
Betacoronaviruses family [2,6] which includes Severe Acute Re-
spiratory Syndrome Human coronavirus (SARS HCoV) and Middle-East
Respiratory Syndrome Human coronavirus (MERS HCoV) [4,5],
COVID-19 HCoVs, MERS, OC43, SARS and HKU1. While 229E and
NL63 HCoV strains belong to Alphacoronaviruses [2,5].

HCoVs are positive sense virus with very long single-RNA
(30,000 bp) strands. HCoVs are distinguished by two protein classes;
structural proteins, such as Envelope (E), Matrix (M), Nucleocapsid (N),
Spike (S), and non-proteins, such as RNA-polymerase (RdRp)[5]. RdRp
is a necessary enzyme in the RNA virus life cycle including cor-
onaviruses. It is expressed in various RNA viruses, including Cor-
onavirus (CoV), Zika (ZIKV) and Hepatitis C (HCV) [7,8]. Its active site
is strongly conserved, representing two successive aspartate protru-
sions. These protrusions originate from a beta-turn structure which
makes them accessible to the surface via passing-through the nucleotide
channel [9,10].

A ribosomal protein (RP) is one of the proteins that form the ribo-
somal subunits together with rRNA and involved in cellular translation
cycle. Most of the information about these organic molecules was ex-
tracted from the research on E. coli ribosomes [11,12]. Numerous
numbers of antibodies were produced and all the ribosomal proteins

were extracted. The cooperation between these studies and electronic
microscopy revealed the topography of these Ribosomal proteins.
Consequently, Archaea, E. coli and other bacteria were found to have a
50S large subunit and a 30S small subunit. Whereas, yeasts and human
have a 60S large subunit and a 40S small subunit [13]. RPs were pre-
viously isolated from several prokaryotes and eukaryotes such as bac-
teria (E.coil and Bacillus stearothermophilus) [14], archaea (Haloarcula
marismortui) and yeasts (Saccharomyces cerevisiae) [15,16].

RNA polymerase II contributes mainly to the synthesis of ribosomal
proteins in the cytoplasm, and then transported into the nucleus
forming small and large ribosome subunits [17,18]. The small subunit
of the ribosome contains one 18S rRNA and about 32 ribosomal pro-
teins while, the large 60S subunit consists of 47 ribosomal proteins and
one rRNA of 5S, 5.8S, and 28S. Exportin-1 and exportin-5 then export
the 40S and 60S subunits [19] into the cytoplasm, forming the 80S
ribosome after assembling with mRNA. Ribosomes are these organelles
that catalyze protein synthesis, and ribosomal proteins are thought to
promote folding and preserving the optimal configuration of rRNAs,
promoting biogenesis of ribosomes, and likely accelerate and accuracy
to protein synthesis. Ribosomal protein's roles have been involved in
cell proliferation, differentiation, apoptosis, cancer, and gene expres-
sion regulated by NF-κB [20,21].

Current treatments and antiviral function of ribosomal proteins

Currently, attenuation of virus infection is only achieved by broad-
spectrum antiviral drugs like nucleoside analogues and also HIV-pro-
tease inhibitors till the specific and effective antiviral becomes avail-
able. At present, administrating 75 mg oseltamivir, 500 mg lopinavir,
500 mg ritonavir orally and 0.25 g ganciclovir intravenously for
3–14 days are the available treatment doses and protocols [22]. While
other study revealed that a high efficacy in controlling COVID-19
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infection in vitro was reached when antiviral remdesivir [23] and
chloroquine [24] were used.

Compared with positive viral infection-regulating RPs, studies on
antiviral activity of RPs are uncommon and recently occur. Initially,
RPs have two major antiviral mechanisms which have been identified.
First, the RPs directly react with viral proteins to hinder virus's tran-
scription or translation (Fig. 1). For example, the first stage of Rabies
virus (RABV) transcription is inhibited when RPL9 binds to phospho-
protein P which is a vital cofactor of viral RNA polymerase. Then, RPL9
relocates from nucleus to cytoplasm [25]. In the same context, RPS10,
18S rRNA and lesser tRNAs bind HIV-1 to Nef protein diminishing the
synthesis of viral proteins [26]. Second, RPs can act as immune factors
activate signaling pathways for antiviral defense. For instance, RPS20
prevents replication of CSFV (Classical Swine Fever Virus) in cells by
modulating Toll-like receptor 3 (TLR3), which can activate the immune
response [27]. In response to Respiratory Syncytial Virus infection,
RRL13a is released from the 60S subunit and assembles an interferon-
independent antiviral complex to suppress the translation of a parti-
cular viral mRNA(matrix protein M), which represents a novel antiviral
innate immunity model [28]. Additionally, RRL10 serves as an im-
mediate downstream sector of antiviral signaling in the geminivirus
nuclear shuttle protein (NSP)-interacting kinase (NIK)-mediated anti-
viral defense pathway in plants, in which RRL10-a common partner and
substratum of NIK - is phosphorylated and redirected to the nucleus to
modulate viral infection [29,30].

Conclusion

Ribosomal proteins are proteins synthesized naturally by different
bacterial strains and yeasts. These proteins can be used to block the
viral replication by binding to the specific phosphoproteins or act as
activators for the host immune factors. Thus, several ribosomal proteins
such as RPL 9 and RPL 10 could be extracted, purified and tested on

more animal models to evaluate its activity against Covid-19. Another
application of these proteins is that they could be improved as pre-and
post-exposure prophylaxis against Covid-19 such as vaccines or a po-
tential medication.
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Fig. 1. Diagrammatic pathway of SARS-COV-2 in a host cell shows the normal viral replication cycle (a) and the possible blocking of the virus replication process by
RPL9 binding to the virus phosphoprotein P (b).
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