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A B S T R A C T

Rapid urbanization has induced land use and land cover change (LULC) that increases land surface temperature
(LST). Analyzing seasonal variations of LULC and LST is a precondition for mitigating heat island effects and
promoting a sustainable living environment. The objective of this study is to explore the association between the
seasonal LST dynamics and LULC indices for the Dhaka district of Bangladesh. The LULC indices are comprised of
the Normalized Difference Vegetation Index (NDVI), Normalized Difference Built-up Index (NDBI), Normalized
Difference Bareness Index (NDBAI), and Modified Normalized Difference Water Index (MNDWI). The results show
that the LULC effect on LST in Dhaka is significant, with an increase in summer season LST from 34.58 �C to 37.66
�C and in winter season LST from 24.710C to 26.24 �C. Predictably, the highest and lowest LST values were
observed in the built-up and vegetation-covered areas, respectively. Secondly, the correlation values indicate a
significant inverse correlation (R2 > 0.50) between NDVI and LST, as well as MNDWI and LST. On the contrary,
positive correlations were observed between NDBI and LST, and between NDBAI and LST for both the summer
and winter seasons. Finally, subsequent vegetation decline (-69.34%) and increasing built-up area (þ11.30%)
between 2000 and 2020 in Dhaka district were found to be the most significant factors for the increasing trend
and spatial heterogeneity of LST in Dhaka. The methodological approach of this study offers a low-cost efficient
technique for monitoring LST hotspots, which can guide land use planners and urban managers for spatial
intervention to ensure a livable environment.
1. Introduction

Climate and land use are interrelated with each other. Changes in
land use and land cover (LULC) can affect and can be affected by climate.
At various temporal and spatial dimensions, these changes interact;
however, improper LULC change is the primary reason for climate
change (Thakur et al., 2019; Mondal et al., 2021a, b; Fattah and Morshed
2022). The problem is most prominent in urban areas, especially in
emerging cities. With the population growth and development of cities,
city planning and management must confront an increasing number of
challenges, including urban climatic effects. An increase in land surface
temperature (LST) due to manmade and natural reasons is currently one
of the most critical urban climate effects. Furthermore, the effects of
rising LST have been linked to a variety of negative urban effects,
including reduced comfort, deterioration of air and water quality,
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increased mortality rates, and indirect economic losses (Steeneveld et al.,
2018; Kafy et al., 2022). The study of LULC and its impacts has become a
research hotspot in urban planning as well as urban meteorology, ecol-
ogy, and geography. Moreover, for adopting sustainable adaptation
measures, more improved information and knowledge is required about
the magnitude and extent of LST dynamics as well as seasonal LST dy-
namics caused by rapid urban expansion, especially in developing
megacities like Dhaka.

LULC changes can occur as a result of both human and climate-related
factors. Demand for additional settlements, for example, frequently re-
sults in the irreversible loss of working and natural land cover, which can
lead to localized changes in weather patterns, precipitation, and tem-
perature (Morshed et al., 2021; Mondal et al., 2021a, b, 2022; Thakur
et al., 2020a, 2020b; Gazi and Mondal 2018). These changes have the
ability to influence the Earth's climate by modifying local, regional, and
gust 2022
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Figure 1. District map of Dhaka, Bangladesh.
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global circulation patterns, changing the reflectivity of the Earth's sur-
face, and increasing the CO2 in the atmosphere when they are accumu-
lated over huge areas (Fattah et al., 2021a). An increase in built-up areas
decreases the eco-friendly land cover types such as forest land, vegeta-
tion, and waterbodies, which affect the ecosystem and therefore carbon
storage (Kumar et al., 2021; Thakur et al., 2019; Mondal et al., 2018,
2021a, b). The transformation of land cover to built-up areas in the urban
areas accounted for the increased carbon emissions and the decline in
carbon sequestration. This phenomenon is leading to global warming as
well as increases in LST (Fattah et al., 2021b; Thakur et al., 2019; Mondal
et al., 2021a, b). Though different regions across the world have been
facing the adverse impacts of LULC change as well as LST growth, the
Table 1.Details of the utilized Landsat images (https://earthexplorer.usgs.gov/).

Years Acquisition
date

Satellite Sensor Path/
Row

Cloud
coverage

2000
Summer

2000-04-10 Landsat 5 TM 137/44 <10%

2000-04-10 Landsat 5 TM 137/43 <10%

2010
Summer

2010-04-07 Landsat 5 TM 137/44 <10%

2010-04-07 Landsat 5 TM 137/43 <10%

2020
Summer

2020-04-18 Landsat 8 OLI 137/44 <10%

2000 Winter 2000-12-20 Landsat 5 TM 137/44 <10%

2000-12-20 Landsat 5 TM 137/43 <10%

2010 Winter 2010-01-02 Landsat 5 TM 137/44 <10%

2010-01-02 Landsat 5 TM 137/43 <10%

2020 Winter 2020-12-27 Landsat 8 OLI 137/44 <10%
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impacts are more acute in the developed cities. The association between
LULC and LST is attracting increasing attention from the scientific com-
munity, health authorities, urban planners, and environmental engineers
because of its substantial impacts on human health, raised energy de-
mand for colling and altered vegetation phenology (Li et al., 2017; Lowe,
2016; Lemonsu et al., 2013).

User Accuracy¼ cor rectly classified points in each category ðdiagonalÞ
Total reference points in each category ðrow totalÞ *100

(3)

Producer Accuracy¼
cor rectly classifiedpoints ineachcategory ðdiagonalÞ

Total reference points in each category ðcolumn totalÞ*100
(4)
Table 2. LULC classes and corresponding land use types.

Classes Description

Waterbody Wetlands, gully, marshy land, low-lying lands and gully.

Built-up Residential, industrial, commercial areas, settlements, roads, mixed
urban areas, impervious covers.

Bare land Open space, landfill sites, brickfields, barren soil, construction sites,
abandoned land, uncultivated land.

Agriculture
land

Crop fields, fruits and other cultivated lands, fallow lands.

Vegetation Forest and trees, vegetative lands, mixed forest land, gardens.

https://earthexplorer.usgs.gov/


Table 3. The NDVI value ranges indicates different LULC types, used for LST
distribution (Akbar et al., 2019).

Classes NDVI value ranges

Waterbody �0.28 to -0.015

Built-up -0.014 to þ0.13

Bare land þ0.14 to þ0.18

Agriculture land þ0.19 to þ0.27

Vegetation þ0.27 to þ0.36

Dense vegetation þ0.36 to þ0.74
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Overall Accuracy¼Total cor rectly classified points ðdiagonalÞ
Total reference points

*100
(5)
KappaCofficient¼ Total Sample * Total Cor rect Sample �P ðcolumn:total * row totalÞ
ðTotal SampleÞ2 �P ðcolumn:total * row totalÞ *100 (6)
LST is a very important parameter for both local and global energy
and water balances at the surface. Remote sensing sensors made it easier
to study LULC and LST effects more preciously. Currently, many
advanced and effective remote sensing technologies are used to estimate
LST. The impact of LULC on LST has been widely studied in many prior
studies, including Li et al. (2017); Steeneveld et al. (2018); Zhang et al.
(2016); Al-Hameedi et al. (2021). Several researches also focused on the
major cities of Bangladesh like Dhaka (Faisal et al., 2021); Chittagong
Figure 2. Deprived LULC patterns of Dhaka during winter season of (a) 200
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(Gazi et al., 2021), Khulna (Fattah et al., 2021a, b), Sylhet (Kafy et al.,
2022), Cumilla (Kafy et al., 2021). Although these studies focused on the
LULC change effects on LST variations, there is a lack of research that
comprehensively compares the seasonal effects. All these studies quan-
tified the LST for only the summer season. In addition, most of the studies
used only two common land use indices (NDVI—"Normalized Difference
Vegetation Index’ and NDBI– ‘Normalized Difference Built-up Index’)
and comprehended the impacts of vegetation cover loss and built-up
cover increase on LST change. As a result, water bodies and bare land
are frequently overlooked. A limited number of studies explored the in-
fluence of all LULC types on LST dynamics. The distribution of LST varies
seasonally and responds differently to different LULC classes (Huang and
Cadenasso, 2016).

Various land use indices (applied to the Landsat images to charac-
terize different land cover classes) are used to characterize the specific
land cover types. For example, NDVI is used to evaluate vegetation, NDBI
for built-up cover, MNDWI- ‘Modified Normalized Difference Water
Index’ for soil moisture, and NDBaI- ‘Normalized Difference Bareness
Index’ for soil bareness related issues (Imran et al., 2021). However, in
present studies, the use of all these land use indices is rarely explored
comprehensively from the combined perspective of seasonal variations.
Historical LULC and LST change identification, seasonality analysis, and
determining the responses of LST to different land use indices have
important application value and scientific research significance. To fill
the previous study gap, the present study is designed to analyze the
0 (b) 2010 (c) 2020 and summer season of (d) 2000 (e) 2010 (f) 2020.



Table 4. Classified LULC statistics of Dhaka district Summer (S) and Winter (W) (area in %).

2000 2010 2020 Change during 2000 – 2020 (km2)

W S W S W S W S

AL 23.37 24.19 20.95 21.31 17.01 17.6 -93.45 -96.80

BL 8.65 7.77 8.81 8.34 9.38 8.54 10.64 11.30

BU 14.55 14.48 18.03 17.87 23.19 23.08 126.97 126.32

VG 48.86 49.14 47.82 48.23 44.10 44.83 -69.94 -63.20

WB 4.57 4.43 4.39 4.25 6.32 5.96 25.78 22.38

Total 100 100 100 100 100 100

VG ¼ Vegetation, AL ¼ Agricultural Land, BU ¼ Built Up, WB ¼ Water Body, BL ¼ Bare Land.
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historical LULC and LST trends, seasonal (summer-winter) and spatial
distribution of LULC, LST, NDVI, NDBAI, MNDWI, and NDBI from 2000
to 2020 over Dhaka City. Furthermore, the distribution and responses of
seasonal LST change to all the land use indices were statistically
analyzed. The outcomes of the present study can provide a scientific
reference and guidance to urban planners and policy makers to adopt
effective mitigation measures in urban development plans.

2. Methods and materials

2.1. Study area

Dhaka district is located between north latitudes 23�530 and 24�060

and the east longitudes between 90�010 and 90�37’. Dhaka district in-
cludes Dhamrai, Savar, Dhaka city, Keraniganj, Dohar, and Nawabganj
(Imran et al., 2021). The district shares borders with Tangail and Gazipur
in the north, Munshiganj in the south, Rajbari and Manikganj districts on
the west, and Naraynganj district on the east (Figure 1) (Moniruzzaman
et al., 2021). The elevation of Dhaka district ranges from -49 (low) to 55
(high) (according to SRTM 30 m resolution dem) (USGS 200). The
climate of Bangladesh can be divided into four distinct seasons: summer
(March–May), monsoon (June September), post-monsoon (October–No-
vember) and winter (December–February). For being situated in a trop-
ical region, the study area is mostly dry in winter and hot and humid in
summer (Begum et al., 2021; BBS 2017).

Dhaka's population is growing at a rate of about 4% per year, which is
one of the fastest rates in Asian cities (Swapan et al., 2017). Over the last
50 years (1978–2018), the built-up area of Dhaka city and surrounding
areas has increased from 1.7% to 23.8%. Dhaka is the most densely
populated city in Bangladesh with 68,561 people per km2 (Moniruzza-
man et al., 2021).

There has been a lot of migration to the Dhaka region and the city's
boundaries have been expanded, which has led to a rise in the city's
population. In the 1980s, the city added more than a million people to its
population (McGee, 2006). This led to rapid urban expansion towards
upazilas (tertiary urban centers) around DMA, such as Dhamrai, Savar,
Figure 3. LULC variation ranges (standar
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Keraniganj, Dohar, and Nawabganj, which are under Dhaka district
(Figure 1). To attract foreign investments and provide urban service fa-
cilities for people, various types of infrastructure, such as roads and
highways, industry, commercial buildings, factories, and so on, were
developed in these areas for economic development (Arefin et al., 2019).
Though such initiatives will provide communities with economic possi-
bilities and socio-economic benefits, they will result in urban expansions,
LULC modifications, and accelerate urban heat islands (UHI) effects in
the study area. In this regard, this study considered Dhaka district as the
study area to assess the seasonal LST distributions and the influences of
different land use factors.
2.2. Data collection

There are four seasons in Bangladesh, summer, pre monsoon, post
monsoon and winter (Begum et al., 2021). To assess the seasonal di-
versity between summer and winter ten Landsat images were collected
for analyzing the spatiotemporal changes. To identify the spatial and
thermal variations in the summer and winter seasons, different Landsat
images were collected as given in Table 1. For both Landsat 8 and 5,
Landsat collection 1 level-1 images were assembled for this study.
Geographical Information System (GIS) based remote sensing software
ArcGIS 10.5 version was utilized to process and analyze the acquired
data. Landsat imagery helped to extract the LST, LULC types, and land use
indices from Landsat imagery. The shape files of the Dhaka District were
collected from Rajdhani Unnayan Kartripakkha (RAJUK) (RAJUK, 2020).
RAJUK is responsible for coordinating any development project in
Dhaka, Bangladesh.
2.3. Radiometric correction of landsat images

First of all, the mosaic band tool was performed for attaching 2
different landsat-5 images in order to cover the whole study area. On the
other hand, one Landsat 8 image covered the whole study area. So, no
preprocessing techniques were performed on the Landsat 8 image. All
required bands were composited (bands 1 to 5 for the Landsat 5 image).
d deviations) for summer and winter.



Table 5. LULC transition matrix in Dhaka during 2000–2020.

LULC Transition Transformed area
(Summer)

Transformed area
(winter)

km2 % km2 %

Agriculture - Agricultural 56.05 3.82 58.50 3.98

Bare Land - Agricultural 12.50 0.85 14.62 1.00

Built-up - Agricultural 15.22 1.04 13.86 0.94

Vegetation - Agricultural 195.46 13.31 214.40 14.59

Waterbody - Agricultural 3.71 0.25 3.35 0.23

Agriculture - Bare Land 36.12 2.46 37.76 2.57

Bare Land - Bare Land 18.09 1.23 20.13 1.37

Built-up - Bare Land 9.63 0.66 9.33 0.64

Vegetation - Bare Land 95.90 6.53 108.86 7.41

Waterbody - Bare Land 19.61 1.33 16.51 1.12

Agriculture - Built-up 93.66 6.38 96.37 6.56

Bare land - Built-up 49.63 3.38 50.56 3.44

Built-up - Built-up 159.19 10.84 160.70 10.94

Vegetation - Built-up 103.21 7.03 108.20 7.37

Waterbody - Built-up 15.14 1.03 13.99 0.95

Agriculture - Vegetation 27.82 1.89 22.50 1.53

Bare Land - Vegetation 49.88 3.40 48.29 3.29

Built-up - Vegetation 39.84 2.71 36.57 2.49

Vegetation - Vegetation 370.03 25.19 332.40 22.63

Waterbody - Vegetation 4.67 0.32 2.24 0.15

Agriculture - Waterbody 5.02 0.34 9.67 0.66

Bare Land - Waterbody 20.90 1.42 19.46 1.32

Built-up - Waterbody 3.74 0.25 4.13 0.28

Vegetation - Waterbody 36.80 2.51 38.51 2.62

Waterbody - Waterbody 27.18 1.85 28.10 1.91

Total 1469.00 100 1469.00 100

M.A. Sresto et al. Heliyon 8 (2022) e10309
Geometric, atmospheric and radiometric pre-processing techniques have
been used by different researches like Adeyeri et al. (2017) and Nautiyal
et al. (2021). The geometric adjustment was performed with the help of
proper spatial referencing. FLAASH atmospheric correction was used to
reduce noise caused by the atmospheric effect (Abir and Saha, 2021;
Akram et al., 2018; Mondal et al., 2016).

To convert DN (a numerical value of each pixel, called a digital
number) values into radiance while taking into account the gain and bias
of different bands (Eqs. (1) and (2)). We corrected for radiometric errors
and translated digital DN data to reflectance levels (Zhang et al., 2016;
Dhar et al., 2019; Maithani et al., 2020).

Lλ ¼ gain * DN þ bais (1)

where, Lλ ¼ spectral radiance at the sensor; QCAL¼ quantized calibrated
pixel value; gain and bias ¼ the band specific rescaled factor (Adeyeri
et al., 2017). The radiance was converted to reflectance by performing
Eq. (2).

ρλ ¼
Lλ*π*d2

ESUN*sinθE
(2)

where, ρλ¼ reflectance at ToA; d ¼ earth-sun distance in an astronomical
unit on the day of image acquisition; ESUN ¼ the mean solar exo-
atmospheric irradiance; θE ¼ the solar elevation angle in degree
(Adeyeri et al., 2017).

2.4. LULC classification

For image classification and visualization of different land cover
classes, Landsat 5 (TM-30m) and Landsat 8 (OLI-30 m) images were used
(Ahmed et al., 2013). In the ERDAS Imagine 2014 edition, atmospheric
5

and radiometric adjustment has been carried out and increased by
applying majority filter procedures for improved image quality (Thakur
et al., 2019; Mondal et al., 2021a, b). The required bands (band 1 to 5 for
Landsat 5 and band 2 to 7 for Landsat 8) were composited for LULC
classification. A supervised image classification process was performed in
this research to determine the LULC types, as recommended by the
literature (Kafy et al., 2021; Georgiana and Uriţescu, 2019). The LULC is
separated into five different categories (Table 2) (built-up area-BU, bare
land-BL, agricultural land-AL, waterbody-WB, and vegetation-VG) to
recognize the change in land cover pattern (Georgiana and Uriţescu,
2019; Faisal et al., 2021). The elevation data was collected from the
United States Geological Survey (USGS) and the Arc map 10.5 platform
was used to process the elevation data. For preparing the elevation map,
SRTM 30m dem was first collected and then the area of interest was
extracted by using the extract by mask tool. Following the authoring, new
appropriate and quantitative image grouping precision estimate ap-
proaches known as Kappa statistics and confusion matrix were developed
to verify the accuracy of the arrangement (Pal and Ziaul 2017; Morshed
et al., 2022). An equalized stratified random sampling method was used
to generate 160 points of reference for accuracy testing. With Google
Earth photos as a reference point, overall accuracy, user accuracy, and
Kappa Coefficient were examined. The following Eqs. (3), (4), (5), and
(6) were used to determine accuracy. All the images achieved accuracy of
more than 86%.
2.5. Land use indices calculation procedure

2.5.1. Normalized difference built-up index (NDBI)
NDBI quantifies the concentration of built-up area by performing a

function between the portion of near-infrared (NIR) (band 5 for Landsat 8
and band 4 for Landsat 5) and shortwave infrared (SWIR) (band 6 for
Landsat 8 and band 5 for Landsat 5) refracted radiation accumulated by
the Landsat Multi-spectral sensing element under the conditions (equa-
tion 7) (Zhang et al., 2013).

NDBI¼ðSWIR � NIRÞ
ðSWIR þ NIRÞ (7)

NDBI values range from -1 to 1. The higher the value, the more
developed area and construction land, metro area, or created territory
exists. Consequently, the lower the value, the less built-up area, rural
region, or undeveloped terrain exists (Kafy et al., 2021).

2.5.2. Modified Normalized Difference Water Index (MNDWI)
The NDWI is a spatial indicator that responds to changes in leaf

moisture content (Das et al., 2021). NDWI is calculated using the
following Eq. (8).

NDWI¼ðGreen� NIRÞ
ðGreenþ NIRÞ (8)

However, MNDWI is a modified NDWI that has been used in this
study. For the enhancement of open water features, the MNDWI employs
pixel values from green (band 3 for Landsat 8 and band 2 for Landsat 5)
and short-wave infrared (SWIR) bands (band 6 for Landsat 8 and band 5
for Landsat 5). It also reduces built-up area characteristics that are
commonly linked to water in other indexes. The MNDWI estimation
ranges from -1.0 to þ1.0. Calculation of Modified MNDWI is calculated
using Eq. (9).

MNDWI¼ðGreen� SWIRÞ
ðGreenþ SWIRÞ (9)

2.5.3. Normalized Difference Bareness Index (NDBaI)
NDBaI was suggested by Chen et al. (2006) to distinguish bare land

from other land uses (NDBaI). NDBaI has already been used multiple



Figure 4. LULC transition matrix of Dhaka district (a) summer (b) Winter during 2000–2020.
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times in recent studies to estimate vegetation cover. The range of the
NDBaI estimation is -1.0 to þ1.0. The NDBaI is calculated using Eq.
(10) following the research of (Imran et al., 2021).

NDBaI¼ððSWIR Band1– TIRS Band 1ÞÞ
ðSWIR Band1þ TIRS Band 1Þ (10)

where, TIRS 1 (band 10 for Landsat 8 and band 6 for Landsat 5) is the
Thermal Infrared Sensor band 1 and SWIR 1 is the Short-wave infrared
band 1 (band 6 for Landsat 8 and band 5 for Landsat 5).

2.5.4. Normalized difference vegetation index (NDVI)
Pixel values from the Landsat Near-Infrared (band 5 for Landsat 8 and

band 4 for Landsat 7) and Red (band 4 for Landsat 8 and band 3 for
Landsat 5 image) spectral bands are employed to identify the NDVI
(Georgiana and Uriţescu, 2019; Zhang et al., 2016). NDVI is calculated as
given below (equation 11):

NDVI¼ ðNIR Band – Red BandÞ
ðNIR Band þ Red BandÞ (11)

To identify the difference in land cover during the
assessment period, the NDVI was analyzed in real time. The NDVI
ranges from -1.0 (lowest) to þ1.0 (highest). Low NDVI values are
associated with rock land or metropolitan areas as well as
developed areas. Table 3 represents the NDVI value ranges for different
LULC types.
6

2.6. Land surface temperature (LST) calculation process

LST is the radioactive temperature of earth surface which is critical
for understanding the basic science of the land surface via the energy
cycle and aquatic exchange with the environment (Zhang et al., 2013;
Ahmed et al., 2013). LST analysis using satellite thermal data entails a
variety of procedures, including sensor radiometric alignment, correction
of air and surface reflectance and spatial variation of LULC. For calcu-
lating LST thermal band 11 (for Landsat 8) and thermal band 6 (for
Landsat 5) were utilized. The process of calculating LST is explained
below by following the method of Thakur et al. (2020a, b) and Kafy et al.
(2021) (Eqs. (12), (13), (14), (15), and (16)):

Lλ ¼ AL þ ML � QCAL (12)

where, Lλ ¼ TOA Spectral Radiance (W/(m2 � sr � μm)); ML ¼ Radiance
multiplicative scaling factor for the band;

AL ¼ Band's Radiance additive scaling factor; QCAL ¼ Digital
Numbers (DN) of band 10.

After that, TOA spectral radiance (Lλ) values are converted into At-
Satellite Brightness Temperature (TB).

TB¼
PðK2Þ

ðlnðK1 =Lλþ 1Þ (13)

where, TB¼ At-Satellite Brightness Temperature, in Kelvin (K); K1, K2 ¼
Thermal conversion constants for the band.



Figure 5. NDBAI profile of the study area during winter season of (a) 2000 (b) 2010 (c) 2020 and summer season of (d) 2000 (e) 2010 (f) 2020.
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Then, Proportion of vegetation cover (PV) and surface
emissivity (ε) is calculated according to equation as below (equation 14
&15)-
Figure 6. MNDWI profile of the study area during winter season of (a) 200

7

Pv¼
� ðNDVI � NDVIminÞ
ðNDVImax � NDVIminÞ

�2
(14)
ε ¼ (0.004 � Pv) þ 0.986 (15)
0 (b) 2010 (c) 2020 and summer season of (d) 2000 (e) 2010 (f) 2020.



Figure 7. NDBI profile of the study area during winter season of (a) 2000 (b) 2010 (c) 2020 and summer season of (d) 2000 (e) 2010 (f) 2020.

Figure 8. NDVI profile of the study area during winter season of (a) 2000 (b) 2010 (c) 2020 and summer season of (d) 2000 (e) 2010 (f) 2020.
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Table 6. Percentage of areas under different ranges of land use indices.

2000 2010 2020

NDBAI Winter Summer Winter Summer Winter Summer

-0.80 to -0.60 9.96 5.96 8.03 5.26 9.75 4.05

-0.60 to -0.40 7.75 8.75 22.9 22.9 26.11 35.11

-0.40 to -0.20 32.03 32.97 26.55 31.65 24.4 23.9

-0.20 to 0.00 32.98 33.41 22.16 24.56 32.41 25.41

0.00 to 0.20 17.28 18.91 20.36 15.63 7.33 11.53

MNDWI

-0.60 to -0.35 44.32 32.32 22.63 34.63 19.62 38.59

-0.35 to -0.10 19.33 27.33 32.96 29.96 30.65 25.41

-0.10 to 0.15 26.38 33.67 35.55 27.55 35.52 26.69

0.15 to .40 2.75 2.62 2.85 2.9 6.75 3.75

0.40 to 0.64 7.22 4.06 6.01 4.96 7.46 5.56

NDBI

-0.50 to -0.30 36.98 36.96 24.18 32.03 28.75 33.75

-0.30 to -0.10 11.89 17.81 25.95 16.55 15.07 13.15

-0.10 to 0.10 15.1 12.15 10.45 10.45 8.34 7.34

0.10 to 0.30 29.8 25.8 25.62 26.62 13.43 10.43

0.30 to 0.50 6.23 7.28 13.8 14.35 34.41 35.33

NDVI

-0.30 to -0.10 5.6 3.93 14.45 9.8 25.75 19.47

-0.09 to 0.10 23.5 20.17 7.6 8.41 9.41 14.35

0.11 to .30 12.8 15.8 10.8 11.03 7.69 6.52

0.31 to 0.50 20.65 19.65 34.65 33.6 26.65 28.65

0.51 to 0.70 37.45 40.45 32.5 37.16 30.5 31.01
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Lastly, the TOA Brightness Temperature was converted to LST values
in Kelvin (K).

LST ¼

2
664 TB
1þ �

λ �TB
α

�
lnε

3
775 (16)

where
Figure 9. Min, max and mean value for NDBI, NDVI
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λ ¼ the wavelength of emitted radiance
α ¼ hc/k (1.438 � 10�2 mK)
h ¼ Planck constant (6.626 � 10�34 J s-1)
c ¼ velocity of light (2.998 � 108 m s�1)
k ¼ Boltzmann constant (1.38 � 10�23 J/K)
2.7. Correlation analysis

To determine the interlinkage between two different variables or
variable of interest correlation analysis is very effective (Obilor and
Amadi, 2018; Sedgwick, 2014). So, for assessing the nexus between land
use indices and LST, regression models namely linear regression, Pear-
son's correlation coefficient (Pr) was calculated using: xi ¼ values of the
x-variable in a sample, x’ ¼ mean of the values of the x-variable yi ¼
values of the y-variable in a sample and y’ ¼ mean of the values of the
y-variable (equation 17) (Obilor and Amadi, 2018).

Pr¼
P ðxi � x0 Þðyi � y 0 ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðxi � x0 Þ2 � ðyi � y0 Þ2

q (17)

Spearman's rank correlation coefficient (SC) (Sedgwick, 2014) was
also calculated for all the seasons and years. Where di ¼ difference be-
tween the two ranks of each observation, n ¼ number of observations
(equation 18).

SC¼ 1� 6
P

d2i
nðn2 � 1Þ (18)

3. Results

3.1. Seasonal variability of LULC distribution between 2000 and 2020

The outcome of the supervised image classifications is presented in
Figure 2 and the statistics of the classified LULC types for both the
summer and winter seasons (area in %) and change (in km2) are pre-
sented in Table 4. Figure 3 shows the LULC variation ranges (standard
deviations) for summer and winter season. The LULC analysis shows that,
in 2000, the vegetation (VG) covered the largest areas, accounting for
48.14% in winter and 49.14% in summer.
, NDBAI, MNDWI of 2000, 2010 & 2020.



Figure 10. Derived LST profile of the study area during winter season of (a) 2000 (b) 2010 (c) 2020 and summer season of (d) 2000 (e) 2010 (f) 2020.
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The second largest, the agricultural land (AL), covered 23.37% of
areas in winter and 24.19% in summer. Water body (WB) cover was the
lowest (4.57% in winter and 4.43% in summer). Rapid population
growth, higher urbanization and migration rates, and the transformation
of other LULC types into built-up areas have all increased over the last
two decades. In 2020, the built up (BU) cover was the second largest,
increasing by 126.97 km2 (59.40%) during 2000–2020. About 27.24%
(95.13 km2) of agricultural AG covers declined, while VG covers
decreased by 66.57 km2 (8.76%) (Table 5).

Table 5 represent the seasonal LULC transformation matrix of the
study area during 2000–2020. The data in Table 5 shows the consid-
erable increase in built-up areas (103.21 km2 from VG, 15.14 km2 from
WB, 49.6.3 km2 from BL and 93.66 km2 from AL). Again, a large portion
of VG (195.46 km2) was transformed into AL. The conversion of VG, AL
and WB to BL was also significant (Figure 4). Dhaka is the capital city
and the most advanced city in Bangladesh with the most employment
and service facilities. Factors like migration from better living stan-
dards, unplanned urbanization, higher population density and
increasing rates and unplanned urban expansions are responsible for
the notable transformation of VG and AL in Dhaka. Such increase in
built-up area is responsible for unplanned LULC transformation which
led to an increase in LST and decrease in the environmental sustain-
ability of Dhaka district.
Table 7. Observed seasonal LST variations during the study period.

LST ranges 2000 2010 2020

Winter Summer Winter Summer Winter Summer

15–20 �C 61.48 0 30.21 0 42.60 0

20–25 �C 38.02 7.85 68.50 6.40 52.85 9.35

25–30 �C 0.50 51.15 1.29 33.35 4.55 33.65

30–35 �C 0 28.50 0 41.00 0 20.50

35–40 �C 0 12.50 0 19.25 0 36.50
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The results of the LULC types evaluated in Table 4 show that the
overall percentage and total area of the water body have increased over
time. But previous research findings, for example, Imran et al. (2021),
Kafy et al. (2021), and Moniruzzaman et al. (2021) suggest that water
bodies have decreased and small water bodies have turned into built-up
areas or other types of land cover over time in Dhaka city and sur-
rounding areas. The analysis results of the present study show such re-
sults because the study area is on the bank of the Padma River, which is
one of the largest rivers in Bangladesh. Over the past few decades, the
Padma River has changed its tidal flow, resulting in river erosion and
several river training works taking place (CEGIS, 2005; Neill et al., 2010;
Hassan and Akhtaruzzaman, 2010; Ophra et al., 2018). However, the
transformation of water bodies into built-up land or other land cover
types (vegetation, agricultural, bare land) can be better understood by
observing the LULC transition matrix (Table 5).

3.2. Seasonal variability and intensity of land use index analysis,
2000–2020

For both the winter and summer season, the health status of built-up
areas, bare land, soil moisture and vegetation in the study area were
measured using the NDBAI, MNDWI, NDBI, and NDVI indices, respec-
tively. The outcomes of these indices are presented in Figures 5, 6, 7, and
8. The value range of each index is divided into five groups, and the area
of each group (area in %) of all the indices is presented in Table 6. The
details seasonal statistics of the land-use indices are presented in
Figure 9.

3.3. Seasonal variability of LST, 2000–2020

Figure 10 represents the (a–c) winter season and (d – f) summer
season LST of the study area during 2000–2020. Table 7 shows the areas
(in percentage) witnessed different LST values over the study period. The
seasonal outcomes of the LST analysis shows a huge variation in summer
and winter. Figure 10 shows the land covers of the study area witnessed



Figure 11. Distributions of LST in different LULC types.

Table 8. Derived average LST in different LULC types.

Years WB BU BL AL VG

Summer 2000 30.93 33.73 26.81 25.57 23.84

2010 31.38 34.95 26.93 25.79 24.26

2020 33.36 35.49 28.54 26.76 24.98

Winter 2000 20.81 20.04 16.71 16.06 14.8

2010 19.94 20.11 17.01 16.73 15.92

2020 21.88 25.72 18.01 16.95 14.94
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an increasing trend of LST over the study period (2000–2020). The
winter season LST range was observed between 11.81 �C–24.71 �C in
2000, 12.62 �C–26.89 �C in 2010 and 13.31 �C–26.24 �C in 2020. The
mean winter season LST was observed 17.30 �C, 18.64 �C and 19.91 �C,
respectively in 2000, 2010 and 2020. The mean LST for summer season
was found to be more than 10 �C than the mean LST in winter season
(27.74 �C, 28.81 �C and 30.74 �C in three distinct years). The summer
season LST ranged from 27.56 �C to 34.59 �C in 2000, 21.62 �C–32.65 �C
in 2010, and 23.66 �C–37.66 �C in 2020.

The statistics of spatial distributions of the LST are presented in
Table 7. Analysis shows that 61.48% of areas LST was between 15
�C–20 �C during winter in 2000, whereas it decreased to 42.60% in
winter 2020. In winter 2000, about 0.50 of total areas LST was above
25 �C, and in winter 2020, about 4.55% of areas LST was observed
above 25 �C. Substantial change in LST was also observed for the
summer season also. In summer 2000, about 12.50% of areas exhibited
LST above 35 �C, this percentage increased to 19.25% in summer 2010
and to 36.50% in summer 2020. Figure 10 shows that the increasing
trend of LST was scattered throughout the district, but increased mostly
in Dhaka Metropolitan area. The regions that exhibited LST between 25
�C–30 �C were distributed mostly in the suburban regions of Dhaka
district, with areas of 51.15% in 2000, 33.35% in 2010, and 33.65% in
2020.
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3.4. Nexus between LULC and LST

3.4.1. Distribution of LST under different LULC types
To assess the dynamics of LST in different LULC classes, we

randomly selected 1250 points, and extracted the LST, NDVI,
NDBAI, NDBI, and MNDWI values of these points. Figure 11 represents
the distributions of LST in different LULC classes, which were classi-
fied based on the NDVI value ranges. Table 8 shows the observed
mean LST in different LULC classes over the study period. In accor-
dance with Table 8, in summer 2000, the highest mean LST was
observed 33.73 �C in BU, and lowest in VG cover. The BU cover areas
had the highest average LST in both seasons, followed by WB, BL, AL
and VG. The highest mean LST was observed 35.49 �C in summer
2020, followed by 34.95 �C in summer 2010 and 33.73 �C in summer
2000.

Figure 11 shows that the LST in some VG covers was also high in 2000
(in both seasons) and in winter 2010, and we also observed high LST in
BL and AL in all the seasons. The average LST in all the LULC has
increased over the courseof the investigation. Analysis shows that the
minimum average LST was observed in VG cover in both seasons over the
study period. This is because vegetation cover provides shade and helps
evapotranspiration, which lowers the temperature. Also, sequestration of
CO2 by vegetation reduces temperature. Although the mean differences
between the LST in BU and WB are small, between BU and other three
land covers were very high in both seasons, especially between the BU
and VG was more than 9 �C.
3.5. Regression analysis

In this section, we assessed the nexus between the seasonal LST and
land use indices by using the linear regression model, Pearson's corre-
lation model, and Spearman's rank correlation method. Figure 12 and
Figure 13 represent the outcomes of the regression analysis for the
summer season and winter season, respectively.



Figure 12. Correlation between the summer season land use indices and LST during 2000–2020.
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Among the land use indices, MNDWI (Fig. 12a–c, Fig. 13a–c) and
NDVI (Fig. 12j–l, Fig. 13j–l) showed inverse correlations, while NDBI
(Fig. 12g–i, Fig. 13g–i) and NDBAI (Fig. 12d–f, Fig. 13d–f) showed pos-
itive correlations. Among the land use indices, the NDVI had the
maximum correlation value in both seasons.

The R2 value for NDVI vs LST is 0.7435, 0.7821 and 0.82774,
respectively; and Pearson's r were -0.8623, -0.8844 and -0.9098,
respectively in the years 2000, 2010 and 2020 indicates the strong
negative correlation between the LST and vegetation health dynamics.
The Pearson's correlation coefficient values of -0.6837, -0.6302 and
-0.7130 indicate strong negative correlation between LST and water
health during the summer season. For NDBI vs LST, the summer season
LST value was calculated 0.60132, 0.64243 and 0.7764, respectively,
which indicates strong positive correlations between built-up expansion
and LST. The linear regression, Spearman correlation coefficients and
Pearson's coefficients demonstrate that the increase in LST in Dhaka
district was mostly influenced by the decline of vegetation and increase
in built-up areas.

Figure 13 shows that all the land cover dynamics have significant
influences on the LST dynamics during the winter season. The Spearman
coefficient values -0.5005, -0.4540 and -0.4640 (Pearson's r ¼ -0.5196,
-0.450, -0.4944) for the years 2000, 2010 and 2020 indicate moderate
12
negative correlations between MNDWI and LST dynamics. The correla-
tion coefficient between NDVI and LST also indicates strong negative
influences on LST dynamics. Previous studies have confirmed the sig-
nificant inverse influences of water and vegetation dynamics on surface
temperature (Zhi et al., 2020). The positive correlations between the
NDBAI and LST (Pearson's r ¼ þ0.4643, þ0.4899 and þ0.47701) indi-
cate that the increase of bare lands has been accelerating the surface
temperature of Dhaka. Transformations of AL and VG to bare lands
decrease the soil's heat absorption capacity and thus increase the surface
temperature. On the other hand, increase of the built-up areas helped to
accelerate the average LST of Dhaka district significantly. This is re-
flected in the association between NDBI and LST. The R2 value between
both seasons' NDBI and LST shows the positive significant influences of
the built-up expansions on the rise of LST in the study area. Imran et al.
(2021) found that the NDBI and NDBI are positively correlated with LST
dynamics of Dhaka Metropolitan area, while NDVI is negatively
correlated.

4. Discussion

This research quantifies the nexus between seasonal diversity of
LULC indices and LST in Dhaka district of Bangladesh for the period



Figure 13. Correlation between the winter season land use indices and LST during 2000–2020.
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between 2000 and 2020. The population of Dhaka district increased
from 10.285 million to 12.04 million between 2000 and 2011. In
2011, the population density of Dhaka district was 8229 people per sq.
km., whereas it was 30551 per km2 in the Dhaka Metropolitan area
(Faisal et al., 2021). This higher population increase in Dhaka wit-
nessed a substantial decline of AL and VG in the study area. A large
portion of the AL and VG covers have slightly disappeared and
transformed into built-up covers. The outputs show that LST increased
over the last 20 years significantly; in the summer of 2000, around
12.50 percent of places had LSTs exceeding 350 degrees Celsius. This
number grew to 19.25 % in the summer of 2010 and to 36.50 % in the
summer of 2020. Similar seasonal variation was observed by (Mallick,
2021) in India. A comparable result was also reported by Kafy et al.
(2021) in Comilla, Bangladesh. However, the mean LST of WB was
observed relatively high in this study, the direct disposal of industrial
wastes into river water is the possible reason behind this higher mean
LST of WB (Bashar and Fung, 2020). Akter et al. (2021) observed the
lowest LST in the vegetation covers and highest in the built-up areas
and river side areas across the northwestern region of Bangladesh
during 1990–2018.
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Previous research findings suggest that water bodies have diminished
and water bodies have transformed into built-up areas or other types of
land cover through time in Dhaka city and neighboring areas, according
to Imran et al. (2021), Kafy et al. (2021), and Moniruzzaman et al.
(2021). Similarly, the present study suggests that small water bodies have
decreased due to excessive urbanization (Figure 4 & Table 5). But this
study shows the overall percentage of water bodies has increased over
the past few decades (Table 4). The reason behind such findings is the
Padma River, alongside Dhaka district, and the river's tidal flow has
shifted, resulting in river erosion and river training projects (CEGIS,
2005; Neill et al., 2010; Hassan and Akhtaruzzaman, 2010; Ophra et al.,
2018). The study area for this research includes the Padma River, which
was hardly considered by other researchers. So, the findings explain that
waterbodies inside Dhaka city and surrounding areas have decreased, but
due to the shift in the tidal flow of the Padma River, the overall per-
centage of waterbodies has increased a little over time.

The results of this research indicated a substantial negative associa-
tion between the LST and vegetation health trends. On the other hand,
positive correlation was observed between NDBI and LST. The regression
results were strong enough to justify the correlations and researchers
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such as Kafy et al. (2020) and Zhang et al. (2022) also evaluated such
correlation results.

Figure 2 and figure 10 clearly explains that build up area and bare
land is producing more LST than other types of land cover. Urban
expansion, centralization, decrease of vegetation and water bodies are
particularly responsible for the increasing trend of LST. In the study of Fu
and Weng (2016), Trenberth (2011) and Hassan and Southworth (2018)
explained how mega urbanization, vegetation and agglomeration in-
fluences the dynamics of surface temperature. Despite the fact that the
aforementioned findings are informative, they should be interpreted with
caution because they were obtained from satellite images taken at
various times. More in-situ data needs to be incorporated to confirm and
validate the findings of this study.

5. Conclusion

LULC through increasing built-up and decreasing vegetation area is
one of the most important contributors to the rising LST. Knowledge of
seasonal LULC and LST dynamics has the potential to be used for miti-
gating LST hotspots and ensuring ecological balance for the living envi-
ronment. This study explored the impacts of seasonal dynamics of landuse
indices on the LST between 2000 and 2020. Four land use indices –

MNDWI, NDVI, NDBAI, and NDBI –were used to measure the spatial and
seasonal variation of LULC and LSC in the Dhaka District of Bangladesh.
The findings of this paper are as follows: First, about 126.32 km2 of built-
up area was increased in Dhaka district by replacing 96.80 km2 of agri-
cultural land and 63.20 km2 of vegetation cover. The built-up areas
increased rapidly in the sub-urban areas in comparison to the Dhaka city
area. Second, the spatial distribution of mean summer and winter season
LST in Dhaka district showed an increase of 3.07 �C and 1.89 �C, respec-
tively. Besides, areas of higher LST (summer season) between 350C–40 �C
increased from12.50% to 36.50%,whereas areas of the lowest LST ranges
between 150C–20 �C decreased from 61.48% to 42.60% over the study
period. Finally, the MNDWI and NDVI indices were inversely correlated
with LST dynamics, while the NDBI and NDBAI indices were positively
correlated. Furthermore, the decline of vegetation cover has been identi-
fied as the most influential factor for the rise of LST in the study area.

First, 126.32 km2 built-up area increased in Dhaka district by
replacing 96.80 km2 of agricultural land and 63.20 km2 of vegetation
cover. The built-up areas increased rapidly in the sub-urban areas in
comparison to the Dhaka city area. Second, the spatial distribution of
mean summer and winter season LST in Dhaka district showed an
increase of 3.07 �C and 1.89 �C, respectively. Besides, areas of higher
LST (summer season) between 350C–40 �C increased from 12.50% to
36.50%, whereas areas of the lowest LST ranges between 150C–20 �C
decreased from 61.48% to 42.60% over the study period. Finally, the
MNDWI and NDVI indices were inversely correlated with LST dy-
namics, while the NDBI and NDBAI indices were positively correlated.
Furthermore, the decline of vegetation cover has been identified as the
most influential factor for the rise of LST in the study area.

The study has several limitations. First, freely available low-resolution
images were used for the study. Secondly, remote sensing techniques on
low-resolution images covering vast areas result in limited accuracy.
Therefore, we have very little justification for the increase in waterbody
area over the study period. However, the methodological approach of this
studyproposesa low-cost andefficientmethod forcontinuousmonitoringof
LULC and LST. Therefore, land use planners and urban managers can
continuously monitor the LULC and LST change patterns and employ sub-
sequentmitigating aswell as policymeasures for guiding landdevelopment.
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