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Delayed graft function (DGF) in kidney transplantation is associated with ischemic injury
and carries long term functional and immunological risks. Extracellular vesicles (EV)
released from allografts may signal a degree of ischemic stress, and are thought to play
an important role in the development of anti-donor immunity. Here, we show that kidney
perfusate-derived extracellular vesicles (KP-EV) express donor-specific human leukocyte
antigen. KP-EV from kidneys that experience DGF increase the T-helper 17 (Th17) to
T-regulatory (Treg) ratio in third party peripheral blood mononuclear cells to a greater
degree than those from kidneys with immediate function. We report miR-218-5p
upregulation in KP-EV of kidney transplant recipients with DGF. Levels of miR-218-5p
in KP-EV inversely correlated with recipient eGFR at multiple time points following
transplantation. Additionally, the degree of increase in Th17/Treg ratio by KP-EV
positively correlated with miR-218-5p expression in KP-EV samples. Taken together,
these data provide evidence that KP-EV may contribute to modulating immune responses
in transplant recipients. This could lead to novel intervention strategies to inhibit DGF in
order to improve graft function and survival.

Keywords: kidney transplantation, extracellular vesicles, delayed graft function (DGF), microRNA, T cell responses
INTRODUCTION

Kidney transplantation is the preferred treatment for patients with end stage renal disease,
improving both quality of life and survival. Some kidneys are more susceptible than others to
ischemic injury, which manifests as delayed graft function (DGF), the temporary need for ongoing
dialysis after transplantation (1–3). Furthermore, DGF places the recipient at risk of poorer long
term outcomes and is associated with higher rates of acute rejection (4–6). While there are known
risk factors for DGF, including donor age, there is a poor understanding of the mechanisms that
influence the added immunological risk which accompanies the condition. The emergence and
advancement of mechanical preservation systems offers the opportunity to study signals released
from the kidney which may contribute to priming of the recipient immune system. Recently, several
groups have explored donor-derived signals to predict DGF, including ex vivo kidney perfusion fluid
assessment prior to transplantation and have identified graft-derived risk factors for DGF (7–11).
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In the past 10 years, extracellular vesicles (EV) have emerged as
important mediators of cellular signaling and as carriers of potent
immunomodulatory signals. EV are unique as they package a
variety of protein, lipid, RNA and microRNA (miRNA) signals
that can be transferred to target cells in a cell-specific manner.
Several studies have demonstrated that EV are implicated in innate
and adaptive immunity associated with allograft dysfunction (12–
14).More recently, EV-containingmiRNAhavebeen shown toplay
important roles in multiple pathologies; accumulating evidence
suggests that EV content may vary under specific conditions and
disease states (15–18). Additionally, alterations inmiRNA and EV-
miRNA have been reported in kidney transplant recipients across
outcomes (19–22). Recent evidence further suggests that miRNA-
containing EV are released by human kidneys under hypothermic
machine perfusion and that theymay be an important tool to assess
graft function in kidney transplantation (23).

In this study, we isolate donor ex vivo kidney perfusion fluid
extracellular vesicles (KP-EV) and explore their potential
immunological role. We document a potential role for
miRNA-containing KP-EV in modulating immune responses
in vitrowhich may be associated with DGF and poor outcomes in
kidney transplant recipients. Our findings suggest that altered
miRNA expression in kidney perfusion fluid EV may be
associated with DGF and alteration of the balance between
Th17 and Treg in kidney transplantation.
METHODS

Study Approval
The study was approved by the Research Ethics Board of the
Research Institute of the McGill University Health Centre (2018-
3831) and was conducted in accordance with the principles set
out in the declaration of Helsinki. Written informed consent was
received from participants before inclusion in the study. Donor
samples and patient information were all coded and identified
by number.

Hypothermic Kidney Machine Perfusion
and Fluid Collection
Human kidneys were recovered from adult deceased donors and
flushed with KPS-1 (Belzer solution, Organ Recovery Systems).
Kidneys were placed on the LifePort Kidney Transporter device
(Organ Recovery Systems) and perfused with KPS-1
supplemented with mannitol (2.5 g/L) at a systolic pressure of
30 mmHg at 4°C. All kidneys were perfused in 1 L of KPS-1.
Samples of perfusion fluid were collected under sterile conditions
at the end of perfusion, immediately prior to transplantation, and
frozen at -80°C. To reduce selection bias, kidney perfusion fluid
samples (from recipients with either DGF or IGF) were selected at
random from samples collected and stored between 2017 and 2020
at the McGill University Health Centre Transplant Program.

Human Subjects and Blood Samples
Peripheral blood samples (10 to 40 mL) were collected from HC
(n = 15) in heparin-coated tubes. Peripheral blood mononuclear
cells (PBMC) were isolated with Lymphocyte Separation
Frontiers in Immunology | www.frontiersin.org 2
Medium (Wisent). Isolated PBMC were frozen in fetal bovine
serum with 10% dimethyl sulfoxide (DMSO) and stored in liquid
nitrogen. PBMC were cultured in RPMI 1640 (Gibco)
supplemented with 5% human serum (GemCell), 2 mM
glutamine (Wisent) and penicillin/streptomycin (100 U/mL
penicillin, 100 mg/mL streptomycin; Wisent).

Extracellular Vesicle Isolation
and Labelling
KP-EV were enriched by sequential centrifugation; 40 mL of
human kidney perfusion fluid was spun at 1,200 g for 15 minutes
to pellet cells and debris. The supernatant was transferred to
ultracentrifuge tubes and was spun at 150,000 g for 2 hours.
Pellets were washed once and resuspended in 500 µL of PBS. EV
samples were frozen at -80°C until further use. For controls,
KPS-1 was processed identically and run in parallel.

For KP-EV PBMC interaction experiments, KP-EV or control
EV were labeled with 1 µM of CellTracker™ Deep Red (CTDR)
(Thermo Fisher) and incubated for 30 minutes at 37°C. KP-EV
were washed at 150,000 g for 18 hours, pelleted, resuspended in
culture medium and exposed to PBMC (12, 24). Unless
otherwise specified, 5 µl of KP-EV or control EV was used in
each experiment.

RNA Isolation
Total RNA was isolated from 10 µl of enriched KP-EV (n=37)
using the Qiagen miRNeasy micro kit (Qiagen) as per the
manufacturer’s instructions. RNA was frozen at -80°C until
further use.

miRNA Sequencing
Libraries were generated from 1.5 µl of total KP-EV RNA (n=19,
8 IGF, 11 DGF) using the NEBNext Multiplex Small RNA
Library Prep Set for Illumina (New England Biolabs), as per
the manufacturer ’s recommendations. The following
modifications were made: 21 PCR cycles were performed as
well as a double cleanup. A size selection (between 125 bp and
180 bp) was performed on a Pippin Prep instrument (SAGE
Science). Final libraries were quantified using the Kapa Illumina
GA with Revised Primers-SYBR Fast Universal kit (Kapa
Biosystems). Average size fragment was determined using a
LabChip GX (PerkinElmer) instrument. The libraries were
normalized and pooled at 3 nM, denatured in 0.05 N NaOH
and neutralized using HT1 buffer. ExAMP was added to the mix
following the manufacturer’s instructions. The pool (at 200 pM)
was loaded on an Illumina cBot and the flowcell was run on a
HiSeq 4000 for 2 x 100 cycles (paired-end mode). A phiX library
was used as a control and mixed with libraries at 1% level. The
Illumina control software HCS HD 3.4.0.38 and the real-time
analysis program RTA v. 2.7.7 were used. Bcl2fastq2 v2.20 was
then used to demultiplex samples to generate fastq reads.

miRNA Sequencing Analysis
Reads were trimmed using Trimmomatic v0.36 to remove low
quality bases and adapter contamination. Quantification of
miRNA features was calculated using mirdeep2 v0.0.8 by
mapping to all human miRNA sequences available in miRBase
February 2022 | Volume 13 | Article 784374
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Release 22.1. The mirdeep2 output was collated to produce a
table of counts for each of the known miRNA. Read processing
was coordinated using custom Nextflow pipeline. Feature counts
were normalized to the size of the libraries using edgeR v3.26.8,
including removal of miRNA with insufficient abundance and
estimation of dispersions. Moderated t-statistics was used to
measure differential expression between IGF and DGF using the
eBayes function from limma. Identified miRNA for the DGF
group were considered differentially expressed if their
normalized expression fold changes were ≥1.4 relative to IGF
group with unadjusted p-values <0.05. Pathway analyses were
performed using Reactome to identify biological pathways of
interest. GO analysis, network analysis and visualization were
performed using STRING (25, 26).

Quantitative Real-Time PCR
6.5 µl of KP-EV RNA (n=18, 9 IGF, 9 DGF) was converted to
cDNA using the miRCURY LNA Universal RT microRNA PCR
kit (Qiagen) according to the manufacturer’s protocol. Prior to
cDNA synthesis, synthetic RNA spike-in UniSp6 was added to
each sample for normalization. 10 µl of cDNA was diluted 5-fold
and quantitative real-time PCR was performed using the
miRCURY LNA SYBR Green PCR Kit (Qiagen) using the ViiA
7 real-time PCR system (Applied Biosystems). The expression of
miR-218-5p (YP00206034) was normalized to the RNA spike-in
UniSp6 (YP00203954). Samples were analyzed in duplicates and
differences in miRNA expression were calculated using the
DDCt method.

Electron Microscopy
KP-EV were fixed in 2.5% glutaraldehyde in 0.1M sodium
cacodylate buffer. 5 ml were adsorbed to Formvar carbon-
coated copper grids and contrasted for whole mount negative
staining. Samples were observed using the FEI Tecnai G2 Spirit
120 kV Transmission Electron Microscope. Images were
captured on the Advanced Microscopy Techniques XR80C
CCD Camera System with AMT Image Capture Engine V601.

Nanoparticle Tracking Analysis
Kidney perfusion fluid samples were analyzed by the Nanosight
NS500 system (Nanosight Ltd) to quantify the mean size and
concentration of particles. Kidney perfusion fluid samples were
diluted (1:50) in PBS and analyzed with the Nanoparticle
Analysis (NTA) System & 1.4 Analytical Software. At least 5
recordings of 30 seconds each were obtained at 37°C with the
camera shutter speed set to 30.0 ms, a camera level of 14 and
detection threshold set to 9.

Small Particle Flow Cytometry
25 µl of kidney perfusion fluid samples diluted 1:200 in sterile-
filtered PBS (n=10) were incubated with CTDR (1 mM,
ThermoFisher Scientific) and anti-CD9 PE (Biolegend), anti-
CD63 PE (Biolegend), anti-HLA-DR BV421 (Biolegend), anti-
HLA-DQ PE (Biolegend) or anti-HLA-A2 PE (Biolegend) for 30
minutes at room temperature. Small particle flow cytometry was
performed using the CytoFLEX system (Beckman Coulter)
Frontiers in Immunology | www.frontiersin.org 3
equipped with 3 lasers (405, 488, and 640 nm wavelength).
The 405 nm violet laser for SSC (V-SSC) was selected with
1,800 of manual threshold settings in V-SSC height channel
specifically for small particle analysis. Samples were loaded and
run with a slow flow rate (10 ml/minute) for 2 minutes until the
event rate stabilized; 15 µl of each sample was acquired, with a
maximal abort rate of 2.5%. Data were acquired using Cytexpert
2.0 software (Beckman Coulter) and analyzed using Flowjo.

Flow Cytometry
For interaction and activation assays, PBMC (250,000) were plated
in 96-well flat bottom plates and cultured with CTDR labelled EV
(or CTDR labelled control EV) for 24 hours at 37°C unless
otherwise specified. PBMC were collected and stained for cell
surface markers using the following antibodies: anti-CD4 Alexa
Fluor 405 (eBioscience), anti-CD8 PE-Cy7 (eBioscience), anti-
CD11c PE (Biolegend), anti-CD14 PE-CF594 (BD Bioscience),
anti-CD19 Alexa Fluor 488 (eBioscience), anti-CD56 PerCP
(eBioscience) and anti-CD69 BV 650 (BD Bioscience).

ForTcell assays, culture plateswere coatedwith1mg/mLof anti-
CD3mAb(OKT3; eBioscience) for 2 hours. Plateswerewashed and
250,000 PBMC from healthy controls (HC) (n=4) and 2 mg/mL of
anti-CD28mAb (eBioscience) were co-cultured with KP-EV (n=6-
10). At day 7, PBMC were re-stimulated with Cell Stimulation
Cocktail (including protein transport inhibitor) (eBioscience) for
the final 5 hours of culture and stained for cell surfacemarkers anti-
CD4 Alexa Fluor 405 (eBioscience), anti-CD25 BV786 (BD
Bioscience). After fixation and permeabilization with the FoxP3
Transcription Factor Fixation/Permeabilization set (eBioscience),
PBMC were stained intracellularly for anti-FoxP3 PE-Texas Red
(BD Bioscience), anti-IL4 APC (eBioscience), anti-IFNg APC-
Alexa750 (eBioscience) and anti-IL17 PE (eBioscience).

All samples were stained with Fixability Viability Dye eFluor
506 or 780 (eBioscience), to facilitate live-cell gating before cell
surface and intracellular staining. Doublets were excluded with
forward scatter height against forward scatter area and
subsequently side scatter height against side scatter area.
Fluorescent minus one controls were used for gating for
intracellular cytokine assays. All data were acquired on an
LSRFortessa cytometer and analyzed with FlowJo software
(Tree Star, Inc.).

Statistical Analyses
All data are expressed as means +/- SEM. Data were analyzed by
two-tailed Student t-test. Correlations were performed with
Pearson’s correlation coefficient. Statistical analyses were
performed in Prism 7 (GraphPad software Inc.). For all data
analyses, p ≤ 0.05 was considered statistically significant.
RESULTS

Human Kidneys Release HLA-Expressing
EV Under Hypothermic Machine Perfusion
In order to determine whether human kidneys under
hypothermic machine perfusion release EV, machine perfusion
February 2022 | Volume 13 | Article 784374
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fluid samples were collected immediately prior to transplantation
and analyzed by NTA. NTA revealed a particle size distribution
with a peak at 150 nm and a mean number of particles of 2.9 x
1010 per ml of perfusion fluid (Figures 1A, B). Using small
particle flow cytometry via Cytoflex, EV were labelled with
CTDR and CD9, CD63, HLA-DQ, HLA-DR or HLA-A2. The
gating strategy first selected for CTDR+ EV in order to include
only membrane bound structures in the analysis; CTDR+ KP-EV
were used as negative controls or FMO to gate for positive
Frontiers in Immunology | www.frontiersin.org 4
populations for all markers (Supplementary 1A, B). We show
that KP-EV express conventional markers CD9 and CD63
(Figure 1C). KP-EV were then phenotyped for HLA-specific
markers; we show that KP-EV express common tissue HLA
markers HLA-DQ and HLA-DR (Figure 1D). Next, samples
were selected from HLA-A2 positive donors and HLA-A2
negative donors; levels of HLA-A2 were detectable in KP-EV
of donors expressing HLA-A2 (Figure 1E). KP-EV were then
isolated by sequential ultracentrifugation to obtain an EV-
BA

DC

FE

FIGURE 1 | Characterization of KP-EV in human donor kidney perfusion fluid samples. (A) Quantification and (B) size distribution of kidney perfusion fluid
particles by nanoparticle tracking analysis (n=5). (C) KP-EV CD9-PE and CD63-PE expression quantification by Cytoflex (n=4). (D) KP-EV HLA-DR-BV421 and
HLA-DQ-PE expression quantification by Cytoflex (n=4). (E) HLA-A2-PE expression of KP-EV derived from HLA-A2 negative donors (n=4) and HLA-A2 positive
donors (n=4) by Cytoflex. (F) Representative transmission electron microscopy images of KP-EV enriched fractions by whole mount negative staining. Each
image represents EV from a different human kidney donor. LEFT: scale bar: 200 nm, magnification: 13 000X. RIGHT: scale bar: 100 nm, magnification: 50 000X.
*represents p-values <0.05.
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enriched fraction; this enriched fraction was used for all
experiments going forward. Electron microscopy of these
purified KP-EV reveal membrane vesicles in a size range of
100 nm, characteristic of EV (Figure 1F). Taken together, these
data demonstrate that human kidneys under machine perfusion
prior to transplantation release EV expressing common EV
markers and donor-specific class I and class II HLA.

KP-EV Interact With PBMC, Specifically
Monocytes and B Cells and
Trigger Activation
To investigate the immunological potential of KP-EV, we first
co-cultured KP-EV with PBMC from HC. KP-EV were labelled
with the fluorescent membrane dye CTDR. KPS-1 preservation
solution was stained and processed in parallel as a negative
control. We show that upon co-culture with KP-EV, PBMC
became EV+, as measured by CTDR+ cells. This response was
reduced at 4°C, suggesting an energy dependent process
(Figure 2A). To determine which specific cell types in PBMC
preparations respond to KP-EV, CTDR labelled KP-EV were
cultured with PBMC (24 hours) and analyzed using specific
Frontiers in Immunology | www.frontiersin.org 5
markers for T cells (CD4+, CD8+), monocytes (CD14+), B cells
(CD19+) and NK cells (CD56+). CD14+ monocytes were found
to be EV+, CD19+ B cells to a lesser extent, and no significant
changes were observed in other cell types (CD4, CD8, CD56)
(Figures 2B, C). These data suggest that HC PBMC interact
directly with specific antigen presenting cells (APCs). The
activation of PBMC in response to KP-EV was then
investigated as measured by CD69 mean fluorescence intensity
(MFI), an activation marker for lymphocytes and monocytes
(27–30). Upon exposure to KP-EV, we detected an increase in
CD69 MFI in CD4+ T cells, CD14+ monocytes and in CD19+ B
cells, consistent with their activation (Figure 2D). These data
demonstrate that KP-EV are taken up by CD14+ and CD19+ cells
and lead to the activation of not only CD14+ monocytes and
CD19+ B cells but also CD4+ T cells.

KP-EV Suppress the Induction of Treg and
Increase Th17/Treg Ratio, to a Greater
Extent With KP-EV of Recipients With DGF
Next, in order to further examine the effect of KP-EV on T cells,
PBMC from HC were treated with anti-CD3 and anti-CD28 and
BA

DC

FIGURE 2 | KP-EV interact with PBMC, specifically monocytes and B cells. (A) HC PBMC (n=4) were incubated with CTDR (1 mM) labelled KP-EV for 24 hours at
either 4°C or 37°C and KP-EV+ PBMC were measured by flow cytometry. (B, C) HC PBMC (n=4) were incubated with CTDR (1 mM) labelled KP-EV (n=4) for 24
hours and KP-EV+ PBMC were measured by flow cytometry. As a negative control, KP-EV from KPS-1 were labelled and co-cultured in parallel. Cell surface
markers for T cells (CD4+ and CD8+), B cells (CD19+), monocytes (CD14+) and NK Cells (CD56+) and KP-EV+ cells were analyzed. Representative dot plots show
the percentage of cells that are KP-EV+. (D) CD69 MFI was measured in gated CD4+, CD8+, CD14+, CD19+ and CD56+ cells upon PBMC (n=4) exposure to KP-EV
(n=4) for 24 hours. *represents p-values ≤0.05.
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stimulated with KP-EV; on day 7, cells were collected and stained
with cell surface markers CD4 and CD25 and intracellular FoxP3,
IFNg, IL4 and IL17 to assess T cell responses to KP-EV. No
changes were detectable in CD4+IFNg+ (referred to as Th1),
CD4+IL4+ (referred to as Th2) and CD4+IL17+ (referred to as
Th17) cell percentages upon exposure to KP-EV (Figures 3A–D).
However, following culture with KP-EV, percentage of
CD4+CD25hiFoxP3+ cells (referred to as Treg) was significantly
reduced (Figure 3E). As a result, the Th17 to Treg ratio was
increased by approximately 2-fold (Figure 3F). Next, we evaluated
whether KP-EV derived from donors of recipients with IGF and
DGF could differentially downregulate Treg induction and Th17/
Treg ratios. Interestingly, KP-EV derived from the donor kidneys
of recipients who suffered from DGF downregulated Treg to a
greater extent than KP-EV from donor kidneys of recipients with
IGF (Figure 4D), with no changes in Th1, Th2 or Th17
percentages (Figures 4A–C). In addition, the Th17/Treg ratio
increased in these cultures (Figure 4E). Taken together, these data
reveal that kidneys which suffer from DGF release KP-EV which
suppress the induction of Treg and increase the Th17/Treg ratio to
a greater extent than KP-EV associated with IGF. These results
suggest that KP-EV may have inherent features that modulate
Frontiers in Immunology | www.frontiersin.org 6
immune cell responses in vitro independent of recipient
PBMC characteristics.

miR-218-5p Expression Is Increased in
KP-EV of Recipients With DGF
EV are known to transport miRNA cargo, in particular, which
may account for varying responses in the function of target cells.
We next examined potential differences in the miRNA content of
KP-EV from kidneys with IGF and DGF which could be
associated with these downstream functional changes. No
significant differences were found in donor and recipient
demographic characteristics in the IGF and DGF groups
(Table 1). RNA was isolated from 19 KP-EV samples (8 IGF,
11 DGF) and was subjected to miRNA sequencing. Due to low
RNA yields, typical for EV preparations, 21 PCR cycles were
performed as well as a double cleanup followed by size selection.
The average number of reads was 11.9 million. A differential
expression analysis of the miRNAwas performed between KP-EV
of recipients with IGF and DGF. We identified miRNA
upregulated in KP-EV of recipients with DGF meeting the
criteria of a fold change ≥1.4 and a p-value ≤0.05 (Figures 5A,
B). miRNA sequencing analyses revealed 3 miRNA that were
B CA

FED

FIGURE 3 | KP-EV increase Th17/Treg ratios in PBMCs. (A–F) For T cell activation assays, PBMC were stimulated with 1 mg/mL of anti-CD3 mAb (OKT3) and
2 mg/mL of anti-CD28 mAb; PBMC from HC (n=4) were seeded with KP-EV (n=10). On day 7, cells were stained for CD4, CD25, IFNg, IL4, IL17 and FoxP3.
(A) Representative flow cytometry plots and percentages of subpopulations of (B) Th1 (CD4+IFNg +), (C) Th2 (CD4+IL4+), (D) Th17 (CD4+IL17+), (E) Treg (CD4+CD25hi

FoxP3+) and (F) the ratio of Th17 to Treg. Each data point represents a KP-EV (n=10) or control EV exposed to HC PBMC (n=4) (technical duplicates). *represents p-
values ≤0.05.
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elevated in KP-EV of recipients with DGF as compared to IGF;
miR-218-5p, miR-151-b and miR-675-3p (Figures 5C–E). We
then evaluated whether a relationship may exist between the
expression levels of these miRNA and recipient eGFR following
transplantation. KP-EV miR-218-5p expression levels inversely
correlated with respective recipient eGFR at day 7, 14, 30, 90 and
180 following transplantation, indicating that elevated miR-218-
5p could be associated with DGF and poorer transplant outcomes
(Figures 6A–F). Potential associations between recipient eGFR
and miR-151-b or miR-675-3p were also examined, however, the
only significant correlation detectable was betweenmir-151-b and
day 7 eGFR (Supplementary Figures 2A–F, 3A–F). Furthermore,
no correlations were found with respect to parameters such as
cold ischemic time, pump time and donor eGFR (Supplementary
Figures 4A–C). However, a positive correlation was found
between miR-218-5p and donor age (Supplementary
Figure 4D). qPCR was then performed with a different set of
18 donors which validated miR-218-5p upregulation in KP-EV of
kidney recipients with DGF (Figure 5F). Taken together, these
data suggest that miR-218-5p is elevated in donor KP-EV of
recipients with DGF.
Frontiers in Immunology | www.frontiersin.org 7
Enriched Biological Processes and
Molecular Functions of miR-218-5p
Involved in Immune Activation
To uncover the functions and mechanisms of miR-218-5p,
pathway enrichment analysis was performed to explore the
relationship between the specific gene targets. A total of 900
genes were predictably targeted by miR-218-5p. Reactome
pathway analysis of miR-218-5p target genes revealed
enrichment of pathways involved in Class I MHC antigen
presentation and processing (R-HAS-983170 and R-HAS-
983169, Figure 7A). GO analysis revealed enrichment of
several pathways involved in immune system development and
regulation, as well as T and B cell activation (Figure 7B).
Furthermore, network analysis of the genes involved in Class I
MHC mediated antigen processing and presentation (R-HSA-
983169) were found to belong to the E3 ubiquitin ligase and E2
ubiquitin conjugating system (Figure 7C), which play a role in
antigen presentation and T cell activation. Lastly, several of the
miR-218-5p target genes identified were critical regulators of T-
cell activation such as transcription factors Forkhead Box P1
(FOXP1) and Runt-related transcription factor 2 (RUNX2).
BA

EDC

FIGURE 4 | KP-EV suppress the induction of Treg and increase Th17/Treg ratio, to a greater extent in patients with DGF. (A–E) For T cell assays, culture plates
were coated with 1 mg/mL of anti-CD3 mAb (OKT3) and 2 mg/mL of anti-CD28 mAb; PBMC from HC (n=5) were seeded with KP-EV derived from recipients with
IGF (n=6) or DGF (n=6). At day 7, cells were stained for CD4, CD25, IFNg, IL4, IL17 and FoxP3 and percentages of subpopulations of (A) Th1 (CD4+IFNg+), (B) Th2
(CD4+IL4+), (C) Th17 (CD4+IL17+), (D) Treg (CD4+CD25hiFoxP3+) and (E) the ratio of Th17 to Treg were measured by flow cytometry. Each data point represents
a KP-EV (n=6 IGF, n=6 DGF) exposed to HC PBMC (n=4) (technical duplicates). *represents p-values ≤0.05.
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These data demonstrate that miR-218-5p may act to regulate T
cells responses through several mechanisms including antigen
presentation and immune cell activation.

Degree of Upregulation of Th17/Treg by
KP-EV Correlates With KP-EV
miR-218-5p Expression
Next, we evaluated whether a relationship may exist between miR-
218-5p expression in KP-EV and the induction of Th17 and Treg,
as well as their ratio, following stimulation with respective KP-EV.
The expression of miR-218-5p in KP-EV samples positively
correlated with Th17/Treg ratio. No significant correlation was
observed in Th17 or Treg cell frequency alone (Figures 8A–C).
These finding suggest that miR-218-5p KP-EV expression may be
associated with phenotypic profiles favoring a proinflammatory
environment in transplant recipients with DGF.
DISCUSSION

To understand the role of donor KP-EV in kidney transplantation
and in modulating immune responses in the context of DGF, we
phenotyped EV released by human donor kidneys under
hypothermic machine preservation, examined their effects on
primary human PBMC and performed miRNA sequencing on
their cargo.We provide evidence of donor HLA expression on KP-
EV and show that preparations of EV from kidneys which suffered
from DGF downregulate Treg induction and upregulate Th17/
Treg ratios, potentially favoring a proinflammatory environment.
We demonstrate miR-218-5p upregulation in KP-EV of kidney
transplant recipients with DGF and show that miR-218-5p
expression levels inversely correlated with recipient eGFR. We
further show that miR-218-5p expression in KP-EV are associated
with their ability to increase Th17/Treg ratio in third party PBMC
in vitro. To our knowledge, this is the first study to demonstrate an
Frontiers in Immunology | www.frontiersin.org 8
association between KP-EV miRNA, Th17/Treg imbalance and
DGF in kidney transplantation.

DGF is a common manifestation of ischemia-reperfusion
injury in kidney transplantation, where ongoing dialysis is
temporarily required. Although it eventually resolves, it has
long lasting consequences to the outcomes of the transplant.
DGF has been associated with higher rates of acute cellular
rejection and shorter graft survivals (2, 3, 6, 31). Both humoral
and cellular immune processes have been shown to play essential
roles in allorecognition and graft injury. Allorecognition occurs
through two distinct pathways: the “direct” pathway whereby
recipient T cells recognize intact donor HLA on the surface of
donor APCs and the “indirect” pathway where recipient T cells
recognize processed donor HLA-peptides by self-HLA molecules
(32–34). Recently, the concept of “semi direct” antigen
presentation has emerged in the context of EV; allograft-
derived EV can interact with recipient APCs, which then
present donor HLA molecules on their surface, a phenomenon
known as HLA “cross-dressing” (14, 35–39).

In this study, we show that KP-EV are released by human
kidneys under machine perfusion and express EV-specific
markers CD9 and CD63 as well as both HLA class I and class
II antigens. Other groups have similarly demonstrated that
allografts release EV that carry donor HLA to the recipient’s
lymphoid organs to trigger alloimmune response (14, 37, 40–42).
Gunasekaran et al. showed expression of donor HLA and lung
associated self-antigens on EV from serum and bronchoalveolar
lavage fluid of lung transplant recipients with acute rejections but
not in recipients with stable transplant (43, 44). Few studies in
various transplant models have shown that transfer of donor
HLA to recipient APCs via EV is involved in the perpetuation of
alloresponses by T cells leading to graft dysfunction (14, 37, 45).

Knowing that KP-EV express donor-specific HLA and may
contribute to modulating immune responses, we examined the
functional role of KP-EV on primary human PBMC. Our findings
TABLE 1 | Donor and recipient characteristics in IGF and DGF cohorts.

Parameter IGF (n=8) DGF (n=11) P value

Donor
Age (yr) 47.2 54.6 0.22
Sex (% male) 62.5 (n=5) 82 (n=9) 0.37
BMI (kg/m2) 28.8 28.55 0.47
Creatinine (mmol/L) 71.1 76.4 0.35
eGFR (mL/min/1.73m2) 101.1 93.2 0.24
KDRI 1.1 1.3 0.27
CIT (hr) 15.3 17.3 0.13
Pump time (hr) 9.5 7.9 0.28

Recipient*
Age 53.3 55.6 0.38
Sex (% male) 63 (n=5) 73 (n=8) 0.19
BMI (kg/m2) 24.9 28.7 0.08
Transplant # 1.2 1.1 0.41
Dialysis type (% HD) 75 (n=6) 91 (n=10) 0.08
Creatinine (mmol/L) 587.2 735.5 0.16
eGFR (mL/min/1.73m2) 10.9 9.5 0.11
February 2022 | Volume 13 | Article
*Pre transplant values.
IGF, immediate graft function; DGF, delayed graft function; BMI, body mass index; eGFR, estimated glomerular filtration rate; KDRI, kidney donor risk index; CIT, cold ischemic time;
HD, hemodialysis.
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suggest that KP-EV interact directly with CD14+ monocytes and
CD19+ B cells. Uptake of EV from other sources, by these cell
types, has been shown by other groups and is an intuitive finding
as both monocytes and B cells act in the innate immune response
as APCs upon antigen exposure (24, 46–48). Although CD4+ T
cells did interact directly with KP-EV, we found that they were
activated in response to EV exposure, as were CD14+ and CD19+

cells, as measured by CD69 expression. Previous studies have
shown that professional APCs readily acquire and present EV
Frontiers in Immunology | www.frontiersin.org 9
antigens or proteins, leading to downstream T cell stimulation
(49–51).

Next, we explored the effect of KP-EV on T cell subsets in
PBMC. We show that in vitro stimulus with KP-EV reduces the
frequency of Treg and increased the ratio of Th17 to Treg.
Notably, these responses were greater with KP-EV of recipients
with DGF as compared to IGF. The Th17/Treg balance is
indispensable for homeostatic immune responses; Treg and
Th17‐mediated cellular immune response are important
B

C D E F

A

FIGURE 5 | KP-EV miRNA profile differentiates kidney transplant recipients with IGF and DGF. (A) Heat map of miRNA expression profile of donor KP-EV of
recipients with DGF (n=11) as compared to IGF (n=8). RNA was extracted from KP-EV, which were enriched from the perfusion fluid of human kidney deceased
donors. (B) Volcano plot of miRNA expression of KP-EV of kidney recipients with DGF as compared to IGF. The fold change of each miRNA is plotted on the X
axis in log2 scale and their significance level (–log10-p-value) is plotted on the Y axis. Orange dots represent miRNA with a fold change ≥1.4 and red dots
represent miRNA with p values ≤0.05. Three miRNA pointed by arrows (red dots) were identified as candidate miRNA upregulated in patients with DGF with a
fold change ≥1.4 and p values ≤0.05. (C–E) Bar graphs of expression values of candidate miRNA levels of the top three hits that were found to be upregulated
in recipients with DGF. (F) qPCR quantification of miR-218-5p expression in a different set of KP-EV samples of patients with IGF (n=9) and DGF (n=9).
*represents p-values ≤0.05.
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mechanisms accounting for graft failure following renal
transplantation (52). Decreased ratio of Th17/Treg can induce
immune tolerance and prolong allograft survival whereas
elevation of Th17/Treg ratio can lead to allograft rejection (53–
57). Elevated Treg are associated with allograft tolerance whereas
lower levels are associated with DGF and rejection (58–64);
higher levels of Th17 are associated with graft dysfunction and
lower levels are protective (65–70). In several other pathological
conditions, EV have been shown to have similar effects on Th17
and Treg (71, 72).

It is well documented that EV carry defined cargo which
reflect the physiological and pathological features of the organ or
tissue of origin. EV represent an efficient and targeted method to
exchange specific signals between cells (15, 73). Several groups
have identified different miRNA in kidney perfusion fluid that
were associated with DGF (20, 74, 75). We demonstrate
Frontiers in Immunology | www.frontiersin.org 10
upregulation of 3 miRNA in KP-EV of grafts that ultimately
experience DGF: miR-218-5p, miR-151-b and miR-675-3p. Of
the three top candidates, miR-218-5p expression level was found
to be the highest and was the sole miRNA to correlate with
recipient eGFR at day 7, 14, 30, 90 and 180 following
transplantation. Several studies have reported aberrant miR-
218 expression under ischemic conditions; miR-218 is highly
expressed in renal cells under inflammatory conditions, and
inhibition of miR-218 alleviates renal injury (76–78).
Overexpression of miR-218 has been shown to trigger
apoptosis and pro-inflammatory cytokine production by renal
tubule cells (79). In human renal arteries, ischemic injury has
been associated with miR-218 upregulation, with increasing
levels of miR-218 seen with longer periods of hypoxia (80),
identifying miR-218 as pro-inflammatory. Furthermore, through
pathway enrichment analysis, we show that miR-218-5p
BA

DC

FE

FIGURE 6 | Expression of miR-218-5p in KP-EV negatively correlates with kidney transplant recipient eGFR. (A-F) Correlation of KP-EV miR-218-5p expression
levels as measured by miRNA sequencing with respective recipient eGFR at (A) day 7 (B) day 14 (C) day 30 (D) day 90 (E) day 180 and (F) day 360 following
transplantation. *represents p-values ≤0.05.
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regulates several pathways involved in antigen presentation and
immune system regulation, further suggesting its involvement
in allorecognition.

We then examined whether a relationship may exist between
KP-EV miR-218-5p expression levels and the ability of KP-EV to
exert an effect in vitro on Treg and Th17. Recent studies have
revealed critical functions of several miRNA in influencing
differentiation and function of T cells, promoting or
suppressing certain T cell subtypes, with several studies
identifying correlations between T cell phenotypes and specific
miRNA expression (81–88). Similar to our findings, several other
studies have shown that EV-miRNA can have an effect on T cells
and specifically modify Th17/Treg ratios (72, 89–96). We point
towards a functional role of KP-EV in increasing Th17/Treg
ratios in vitro, however, the underlying mechanisms and
relationship between miR-218-5p and regulation of Th17/Treg
ratios remains to be explored.
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Several limitations in our study hinder our understanding of
the true immunomodulatory potential of kidney derived EV in
the pathogenesis of DGF. A larger sample size would certainly
refine the analysis of the precise effects associated with miR-218-
5p expression, as well as T cell responses. Although our results
show an association between miR-218-5p expression and the
ability of KP-EV to increase Th17/Treg ratios, the association
between the two remains unknown. Further in vitro and in vivo
testing must be conducted to establish this. Finally, although our
results focused on Th17 and Treg, it is plausible that KP-EV exert
an effect on other immune cell types, whether by miR-218-5p or
as yet uncharacterized EV cargo. A precise and well understood
link between transmitted miRNA, and the observed clinical
characteristics in transplant recipients, remains a distant goal.

Taken together, these findings suggest that miR-218-5p
expression in KP-EV as well as the capacity of KP-EV to
regulate Th17/Treg ratios may be implicated in processes of
B

C

A

FIGURE 7 | Pathway analysis of miR-218-5p target genes reveal enrichment of pathways involved in immune development and T cell activation. (A) Reactome
pathway analysis of top 10 of enriched pathways from miR-218-5p target genes. (B) Biological processes (Gene Ontology) analysis of pathways involved in immune
system development and regulation from miR-218-5p target genes. (C) Network analysis of proteins involved in Class I MHC antigen presentation and processing as
determined by Reactome analysis. An adjusted p-value ≤0.05 was used as a threshold to select significant terms and pathways.
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graft dysfunction. Targeting these EV or miRNA represent an
attractive approach for ex-vivo organ manipulation that may
improve transplant outcomes.
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FIGURE 8 | Expression of miR-218-5p in KP-EV positively correlates with Th17/Treg ratios. (A) Correlation analysis between miR-218-5p expression in KP-EV and
the percentage of Th17 (CD4+IL17+) upon induction of PBMC with respective KP-EV (n=12). (B) Correlation analysis between miR-218-5p expression in KP-EV and
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Supplementary Figure 1 | Representative plots for Cytoflex small particle flow
cytometry. (A) CTDR+ KP-EV were gated, followed by gating for CD9-PE, CD63-
PE, HLA-DQ-PE, HLA-A2-PE and HLA-DR. (B) HLA-A2-PE expression in KP-EV of
an HLA-A2 negative donor and HLA-A2 positive donor.

Supplementary Figure 2 | Expression of miR-151-b in KP-EV correlations with
recipient eGFR. (A–F) Correlation of KP-EV miR-151-b expression levels as
Frontiers in Immunology | www.frontiersin.org 13
measured by miRNA sequencing with respective recipient eGFR at (A) day 7 (B)
day 14 (C) day 30 (D) day 90 (E) day 180 and (F) day 360 following
transplantation.

Supplementary Figure 3 | Expression of miR-675-5p in KP-EV correlations
with recipient eGFR. (A–F) Correlation of KP-EV miR-675-5p expression levels
as measured by miRNA sequencing with respective recipient eGFR at (A) day 7
(B) day 14 (C) day 30 (D) day 90 (E) day 180 and (F) day 360 following
transplantation.

Supplementary Figure 4 | Expression of miR-218-5p in KP-EV correlations with
donor parameters. (A–D) Correlation of KP-EV miR-218-5p expression levels as
measured by miRNA sequencing with (A) cold ischemic time (B) pump time (C)
donor eGFR and (D) donor age.
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