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Abstract: Elastic waves, especially guided waves, generated by a piezoelectric 

actuator/sensor network, have shown great potential for on-line health monitoring of 

advanced aerospace, nuclear, and automotive structures in recent decades. Piezoelectric 

materials can function as both actuators and sensors in these applications due to wide 

bandwidth, quick response and low costs. One of the most fundamental issues surrounding 

the effective use of piezoelectric actuators is the quantitative evaluation of the resulting 

elastic wave propagation by considering the coupled piezo-elastodynamic behavior between 

the actuator and the host medium. Accurate characterization of the local interfacial stress 

distribution between the actuator and the host medium is the key issue for the problem. This 

paper presents a review of the development of analytical, numerical and hybrid approaches 

for modeling of the coupled piezo-elastodynamic behavior. The resulting elastic wave 

propagation for structural health monitoring is also summarized. 

Keywords: piezoelectric actuators; coupled piezo-elastodynamic behavior; elastic waves; 

structural health monitoring 
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1. Introduction 

Elastic waves, particularly guided waves (GWs), have shown great promise to identify damage in 

aerospace, aircraft and marine structures. In these applications, piezoelectric materials can be 

employed as actuators to generate high-frequency elastic waves that carry the structural information, 

based on the converse piezoelectric effect [1-4]. Building a model for the structures integrated with 

piezoelectric actuators (piezo-actuators) to understand their electromechanical dynamic behavior and 

simulate their resulting wave propagation is a prerequisite for the design and optimization of elastic 

wave based-structural health monitoring (SHM) systems. Piezoelectric materials attached to or 

embedded in structures may largely influence local structural behavior. The efficiency of actuation is 

related to not only the material properties of piezoelectric materials but also those of the host structure 

and the applied loading frequency. The most important parameters should be identified and analyzed 

to qualify the proposed actuators technology [5-7]. Due to the presence of the material discontinuity 

between the actuators and the host structure, a complicated stress field is generated, especially for the 

position near the edges of the actuators, where stress concentration occurs. For example, the induced 

stress concentration near the tips of an actuator may result in undesired peeling-off of the actuator 

from the host structure, which may result in a reduction of the load transfer capability of the structure, 

and hence the actuator may lose its ability to perform its role [8-10]. An accurate assessment of the 

coupled electromechanical behavior of piezoelectric structures would, therefore, necessitate the 

detailed study of the load transfer between the piezo-actuators and the host structure. 

To avoid the difficulties associated with the complicated interfaces between the actuators and the 

host medium, some simplified actuator models have been used to simulate the actuation process of 

embedded and bonded thin sheet actuators. The uniform strain model was first developed for a 

cantilever beam with a layer of PVDF bonded on one side only [11]. The modeling was based on force 

equilibrium between the actuator and the beam. A constant actuator force output proportional to the 

applied voltage was obtained. A more extensive model was later proposed by Crawley and his 

coworkers [12,13] to analyze a beam-like structure with bonded and embedded thin sheet piezoelectric 

actuators to study the load transfer between the actuators and the host beam. In this analysis, the axial 

stress in the actuator was assumed to be uniform across its thickness and the host structure was treated 

as a Bernoulli-Euler beam. Im and Atluri [14] modified the actuator model presented by Crawley and 

de Luis [12] by considering both the axial and the transverse shear forces in the beam. A refined 

actuator model based on a second order axial normal stress field was presented for a beam structure 

with symmetrically bonded actuator patches [15,16]. This model was based on the plane stress 

formulation and solved by the principle of stationary complementary energy. Richard and Cudney [17] 

presented an analytical model for multiple layer piezoelectric actuators in which Timoshenko's beam 

theory led to equations of motion for lateral vibration that included rotary inertia and shear 

deformation effects. Twist, shear and torsion can be generated for the piezoelectric actuator applied to 

an anisotropic composite structure. An integrated theory was used to model the 

bending/twisting/shearing actuation of laminated beams [18]. 

Plate and shell models have also been extensively developed in modeling the piezoelectric 

structures. Lee and Moon [19] applied the classical laminate plate theory to the design of piezoelectric 

laminate for bending and torsion modal control. An analytical model for multi-layered thin shells with 
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distributed piezoelectric actuators was proposed by Tzou and Gadre [20]. In the work, the theoretical 

development was based on Love's thin shell theory in which the transverse shear deformation and the 

rotary inertia were neglected, and the governing equations were established based on Hamilton's 

principle. A consistent plate model was developed by Crawley and Lazarus [21]. This model is a 

simple extension from the one-dimensional beam model to the two-dimensional plate model. Wang 

and Rogers [22] modified the classical laminated plate theory to model actuator-induced bending and 

extension of laminated plates under static loading. This work provided a theoretical basis of general 

application of induced strain actuators. The vibration control of a simply supported rectangular plate 

was studied by Batra et al. [23]. Thin layers of PZT ceramic were attached to the top and bottom of the 

rectangular plate, which was assumed to be vibrated at a frequency close to one of its natural 

frequencies, to achieve the control. For structures with curvatures such as rings and shells, analytical 

models based on layered shell theory have been proposed to consider the coupling between the in-

plane and out-of-plane displacements. An analytical model for thick composite piezoelectric shells was 

proposed by Tzou and Zhong [24]. Other typical examples for modelling piezoelectric actuators 

include the works in [25-40]. For more complex structures, analytical modelling becomes strenuous, 

and numerical methods, such as finite element analysis, should be considered to resolve such problems.  

The beam and plate models operate with the lowest fundamental (bending and longitudinal) guided 

wave modes, and thus they provide a simple description of the elastodynamics wave processes in the 

host structure. Their application is, however, restricted, since they are valid only in a low frequency 

range where the characteristic wavelength is much greater than the plate or shell thickness. Therefore, 

models based on the Rayleigh-Lamb equations for an elastic layer and/or a half-space have been 

attracting much attention to capture the high-order Lamb wave modes or Rayleigh surface waves. 

Giurgiutiu [41] proposed a simplified analytical model for an isotropic plate under plane strain 

assumptions to obtain the harmonic Lamb wave responses. In the study, the interfacial shear transfer 

was assumed to be localized only at the tips of the actuator as the simplified pin-force model. 

Following the similar theoretical procedure, Raghavan and Cesnik [42] has extended the  

two-dimensional model to the three-dimensional elasticity model for bonded circular and rectangular 

piezoelectric actuators. Double Fourier transform was used to obtain high-frequency Lamb wave 

propagation. In the work, both harmonic and transient wave responses were studied and the predicted 

waveforms were found to agree well with the experimental results in shape for low frequency cases. In 

above studies, the actuation mechanism of the actuators is still based on the assumption that actuation 

shear traction exerted by the actuators is independent of frequency. The coupled piezo-elastodynamic 

behavior between the actuator and the host medium is not considered to provide the quantitative 

dynamic interfacial stress distribution and its resulting wave propagation. 

Various numerical simulation tools, such as commercially available finite element (FE) codes, have 

allowed users to conduct coupled multi-physical field solutions in a relatively convenient way. 

Nieuwenhuis et al. [43] simulated guided wave generation, propagation and reception in an isotropic 

plate bonded with PZT (lead-zirconate-titanate) wafers by the FE modeling. The coupled electrostatic 

solution was analyzed. However, the FE simulation has its own limitations for large structures, since it 

operates within spatially restricted discretization. Hybrid numerical-analytical approaches provide an 

alternative solution for this problem, where numerical simulation is only performed to treat the 

coupled piezoelectricity problem. The interfacial stresses due to the piezoelectric element are 
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numerically obtained as prescribed excitation, and the resulting wave propagation in the host structure 

is then analytically described. Following this idea, Moulin et al. [44-46] proposed a hybrid approach to 

model integrated Lamb wave generation with piezo-acuators/sensors. A coupled finite element-normal 

modes expansion method was used for the simulation of piezoelectrically induced Lamb wave 

propagation.  

Compared with the numerical simulation, the analytical approach to consider the coupled dynamic 

behavior can give quantitative study of the interfacial stress and its resulting wave propagation. Liu et al. 

[8] studied the static shear stress distribution between a partially electroded thin piezoelectric film and 

a semi-infinite elastic substrate. In the study, the shear stress was governed by a pair of  

integro-differential equations. An integral equation based model for a system of piezoelectric flexible 

patch actuators bonded to an elastic substrate (layer or half-space) was proposed to consider the 

interaction between piezoelectric patches and the host medium [47]. An analytical formulation to 

couple actuators dynamics with axisymmetric guided wave excitation models for an isotropic plate 

was recently reported [48]. In the work, the piezo-actuator was modeled using coupled piezoelectricity-

elasticity equations. The actuation mechanism was represented by the interfacial shear force only at the 

tips of the actuator. The amplitude of the shear force was calculated by matching the traction and 

displacement at the actuator’s edge with the same position of the structure. All possible guided wave 

modes were considered and the limitation of the model for high-frequency guided waves was also 

discussed. Wang and Meguid [49] developed a one-dimensional actuator model to examine the static 

coupled electromechanical behavior of a thin piezoceramic actuator embedded in or bonded to an 

elastic medium under in-plane mechanical and electrical loadings, in which the load transfer and the 

local stress field around the actuator were studied. This actuator model was further extended and 

modified by Wang and Huang [50] to consider dynamic electromechanical behavior of actuators 

bonded to and/or embedded in elastic half-space. The advantage of the proposed model is that the local 

interfacial stress distribution between the actuator and the host medium can be fully captured, even for 

high wave frequencies. The harmonic wave propagation generated by bonded and embedded 

piezoelectric actuators was then analytically studied and the interaction between multiple actuators 

was also simulated by using the developed pseudo-incident wave method [50].  

This paper presents a comprehensive review on the state of the art of modeling techniques for 

piezoelectric wafer actuators bonded to the elastic medium, particularly some representative analytical, 

numerical and hybrid approaches to model the coupled piezo-elastodynamic behavior, and some 

resulting ultrasonic wave phenomenon and applications relevant to SHM are also summarized. 

2. Review of the Bonded Piezo-Actuator Models  

In this section, the approaches that aim to achieve the coupled electromechanical behavior of the 

piezo-actuators bonded to the host structure are reviewed and summarized. These methods include 

both analytical, numerical and hybrid schemes.  

 

 



Sensors 2010, 10                

 

 

3685

2.1. Analytical Approaches  

2.1.1. The shear-lag theory based on the Euler-Bernoulli model 

The Euler-Bernoulli model is one of the earliest models developed for beams actuated by the 

piezoelectric wafers. The widely used analytical model [12] was first developed to obtain the 

interfacial shear stress by using shear-lag theory. In their work, the configuration of two thin 

piezoelectric elements bonded on both sides of the elastic beam was studied. In the model, only  

non-zero stress within the adhesive layer is the interfacial shear stress, which is assumed as constant 

through the thickness of the adhesive layer and varies along the longitudinal direction of the adhesive 

layer. The actuator is modeled as a beam with only the axial stiffness, whereas the passive beam is 

modeled as an Euler-Bernoulli beam. Basically, the model assumes (i) uniform strain in the bonded 

piezo-actuator, and (ii) uniform strain for axial motion and linear strain distribution for flexural motion 

across the thickness in the beam. A shear-lag solution can be then derived for the static interfacial 

stress between the piezoelectric actuator and the beam as:  
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the effectiveness of the shear transfer. Γ is affected by the stiffness and thickness of the bonding layer tb. 

This initial work was further extended by Crawley and Aderson [13] to illustrate the extension, 

bending, and localized shear deformations induced. The shear-lag parameter Γ also depends on a 

constant α, and α relies on the stress and strain distribution across the beam thickness. If two 

piezoelectric actuators are installed, and only extensional wave motion is generated, then α = 1; if only 

the flexural wave motion is generated, then α = 3. By calculating the total effect as a superposition of 

symmetric and anti-symmetric contributions, α = 4 was found for a single-sided piezoelectric wafer 

actuator configuration [41] as shown in Figure 1, where both extensional and flexural wave motion are 

equally excited. Crawley and de Luis’s model [12] can be also enhanced by assuming linear strain 

distribution in both the actuator and the beam, and thus the flexural stiffness of the actuator can be 

considered in the resulting global behavior of the system [51], which may become more important for 

modeling thicker actuators. Some other modifications include the extension of Euler-Bernoulli beam 

models to Timoshenko beam models considering the shear deformation and rotary inertia, and the 

extension of one-dimensional beam models to two-dimensional plate models [52-54]. 

However, the shear-lag theory has its intrinsic limitations: (i) the theory assumes linear strain 

distribution across the beam thickness, and this approximation only applies for low values of the 

frequency-thickness product of the lowest symmetric (S0) and anti-symmetric (A0) modes, and (ii) the 

theory cannot capture more than two lowest S0 and A0 modes with the increase of frequency. 
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Figure 1. Illustration of a piezoelectric wafer actuator bonded to the host structure. Taken 

from Giurgiutiu [41]. 

 

To overcome these critical limitations, Giurgiutiu and Bottai-Santoni [55] extended the classic 

shear-lag theory [12] by taking into account the nonlinear stress distribution along the beam thickness 

for the S0 and A0 modes as:  

         yxayxayx AASS  ,  (2)

Where σs (y) and σA (y) are the stresses induced by the nonlinear S0 and A0 modes, respectively, and σs (x) 

and σA (x) are x-dependent modal participation factors. Following the similar manner, the value of the 

parameter α can be then derived as: 
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Equation (3) can be regarded as a direct extension of Crawley and de Luis’s work [12] in which the 

value of α is dependent on low-frequency beam theory assumption and is not necessarily applicable to 

high frequency times plate thickness product.  

2.1.2. The simplified pin-force model 

When the bonding layer becomes thinner and stiffer, Crawley and de Luis’s [12] and Giurgiutiu [41] 

demonstrated that the interfacial shear stress transferred from the piezo-actuator to the host structure 

could confine more at the edges of the actuator as shown in Figure 2.  
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Figure 2. Variation of interfacial shear stress with respect to bond thickness. Taken from 

[41]. 

 

For a perfectly bonded actuator with the limiting case of an infinitely stiff bonding layer, the shear 

lag parameter Γ approaches infinity. In this case, a sharp rise in the shear stress exists at the tips of 

piezo-actuator, indicating that the strain is transferred between the piezo-actuator and the host structure 

over an infinitesimal distance near the edge of the actuator. These idealized assumptions yield the 

concept of the simplified pin-force model [41]. Consequently, the shear stress distribution along the 

actuator-host structural interface was expressed using Dirac function δ (x) as [41]: 

      axaxxa   0  (4) 

where τ0 is the pin force magnitude applied at the piezoelectric actuator edges. 

The two-dimensional pin-force model for the bonded piezo-actuator was proposed in [42] as:  

           22221111031 axHaxHaxaxx ee    (5) 

           22221111032 axaxaxHaxHx ee    (6) 

The simplified pin-force model can be readily applied in the host structure as traction boundary 

conditions to obtain the dynamic response of the system. Under plain strain assumption, Giurgiutiu 

[41] coupled the pin-force model with the Rayleigh-Lamb equations [56] to simulate the resulting 

harmonic guided wave propagation in an isotropic plate. Raghavan and Cesnik [42] extended 

Giurgiutiu’s work [41] by using the three-dimensional elasticity theory and conducted transient 

analysis for the induced guided wave signals. Lin and Yuan [57] studied diagnostic transient waves in 

an infinite isotropic plate generated by a pair of bonded circular actuators. The actuation mechanism 

was represented by bending moments along the actuator edges, which is similar as the concept of the 

simplified pin-force model.  
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Major limitations of the simplified pin-force model are summarized as follows: (i) The model is a 

good approximation only if the Young’s modulus and thickness of the actuator are small compared to 

those of the host structure or the bonding layer is very thin and stiff, (ii) the model can only provide 

qualitative estimation about the actuation mechanism for low-frequency cases, which needs to be 

calibrated by either numerical simulation or experimental testing, and (iii) piezoelectric resonance 

effects cannot be captured in the model [48].  

Recently, Dunn et al. [48] attempted to couple actuator dynamics with axisymmetric guided wave 

excitation model for isotropic plates. In the work, the piezo-actuator dynamics are modeled using 

piezoelectricity-elasticity equations, and bonded-actuator is assumed to cause shear traction on the 

structural substrate along the actuator edge. The free body diagram of this approach is shown in  

Figure 3, in which a thin piezoelectric disk is driven on the edge using a radial force FAct (t), with a 
resulting velocity  tuAct  and excited with a voltage VAct (t) with a induced current  tiAct

 . 

Figure 3. Free body diagram of the actuator/host structural system. Taken from Dunn et al. 

[48]. 

 

The relationship between the edge force, edge velocity, voltage, and current for the piezo-actuator 

in the spectral domain can be expressed as [48]: 
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where the impedance Act
ijZ (i, j = 1,2) is related to the planar piezoelectric material properties. An 

outward radial force FAct is assumed to apply on the edge of the actuator, which leads to a velocity at 
the actuator edge Actu . On the top surface of the structure at r = a is the shear traction τStr, which 

results in the reaction velocity of Stru . Summation of forces at the actuator edge yields: 

   tatF StrAct 2  (8) 
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The application of the continuity of the displacement at the edge leads to:  

   tutu StrAct    (9) 

However, this model is still based on the pin-force model, which cannot capture the 

electromechanical interfacial stress distribution between the actuator and the host structure, especially 

for high-frequency cases.  

2.1.3. The elasticity equation-based model 

One major disadvantage of using plate/beam theory is that it can only approximately model the 

lowest A0 Lamb wave modes when the excitation frequency-plate thickness produce is sufficiently 

low. Therefore, the models employing the Rayleigh-Lamb equations for the elastic host medium 

attracts more attention to consider high-frequency Lamb waves and Rayleigh surface waves [58-60]. 

Under the plain strain assumption, Lanza di Scalea and Salamone [61] coupled shear-lag theory of 

Crawley and de Luis [12] with the Rayleigh-Lamb equations as traction boundary condition and 

obtained the piezoelectrically induced Lamb waves in the plate. However, due to the limitation of the 

shear-lag solution [12], this model is also not suitable for the high frequency times plate thickness 

products. To consider the coupled piezo-elastodynamic behavior, Wang and Huang [50, 62-65], and 

Huang and Sun [66] developed an one-dimensional electroelastic actuator model bonded to the elastic 

half-space medium. In the model, the geometry, loading frequency and material combination effects on 

the interfacial shear stress were captured. Therefore, the model can provide the quantitative prediction 

of dynamic load transfer. The illustration of this model is plotted in Figure 4.  

Figure 4. The actuator model with coupled piezo-elastodynamics. Taken from Huang and 

Sun [66]. 

 
 

 

The solution of the host structure is based on the elasticity theory. In the model, the actuator 

thickness is assumed to be very small in comparison with its length, the applied electric filed primarily 

results in an axial deformation, and the following assumptions can be made: (i) σy and uy are uniform 

across the thickness of the actuator; (ii) the interfacial shear stress (τ) transferred between the actuator 
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and the host can be replaced by a distributed body force along the actuator, and (iii) σz and σvz in the 

actuator can be ignored. Also, bonding layer effects between the actuator and the host medium are 

neglected in this model. Based on these assumptions, the equations of motion of the actuator along the 

axial direction under plane strain analysis can be expressed as:  

 
02  a

ya

a
y u

h

y

dy

d


 (10) 

where the superscript “a” represents the actuator, h is the thickness of the actuator, ρa is the mass 

density of the actuator, and ω is the circular loading frequency. The axial strain of the actuator can be 

then obtained in terms of the interfacial shear stress τ by solving Equation (10) as:  
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where Ea and ea are effective elastic and piezoelectric material constants [50],  
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aa ck / , and aaa Ec /  with ka and ca being the wave number and the axial wave velocity of the 

actuator, respectively. The continuity between the actuator and the host structure at z = 0 can be 

described as:  

   0,yya
y   , ay   (12) 

where ε (y,0) is the induced surface elastic strain in the host medium in the actuation area. Equation (12), 

which is used to couple the actuator dynamics with the structural dynamics, results in a first kind of 

singular integral equation involving a square-root singularity of τ at the tips of the actuator. The 

general solution of τ can be solved using Chebyshev polynomial expansions. The induced wave 

propagation in the host medium can be obtained by using elasticity equations [50]. The advantage of 

this developed model is that it includes the coupled dynamic interaction between the actuator and the 

host medium, and hence can quantitatively predict the piezoelectrically induced electromechanical 

behavior.  

Figure 5 shows comparison of the normalized static interfacial shear stress distribution along the 

interface between the actuator and the infinite host medium predicted by the developed model with 

that obtained from FE analysis using ANSYS/Multiphysics [50]. Very good agreement between the 

current model and FE simulation is observed in the figure. Figure 6 demonstrates the load frequency 

influences on the normalized dynamic shear stress distribution predicted by the developed model (ka is 

the normalized wavenumber), and the significant effect of the loading frequency upon the interfacial 

shear stress can be observed. So it is very important to consider this coupling effect especially for the 

cases with high frequency times plate thickness products. Figure 7 shows the comparison of the 

resulting Lamb waves predicted by the integral model [50] and the finite element method. In the 

simulation, PZT4 actuator is bonded to the aluminum plate. The excitation is 300 kHz five-peak tone 

burst ultrasonic signal, and the response is calculated at distance 226.3 mm away from the actuator. As 

evidenced in the figure, both the S0 and A0 modes predicted by the integral model [50] have an 

excellent agreement with the FE simulation results in phase and magnitude, which verifies the 

capability of the current actuator model for the resulting guided wave simulation.  
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Similar approaches to consider the coupled electromechanical behavior can be also found in the 

literatures [8,47,67]. 

Figure 5. The normalized interfacial shear stress. Taken from Wang and Huang [50]. 

 
 

Figure 6. The loading frequency effects on the normalized interfacial shear stress. Taken 

from Wang and Huang [50]. 
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Figure 7. The comparison of the resulting Lamb waves predicted by the integral model 

[50] and the finite element simulation. 

 

2.2. Numerical and Hybrid Approaches  

Numerical simulation techniques have been widely utilized to analyze the elastic wave behavior 

induced by the piezo-actuators [43,68,69]. In modeling the electromechanical interaction between the 

actuator and the host structure, some commercially available FE codes, e.g., COMSOL/Multiphysics 

and ANSYS/Multiphysics, provide researchers convenient tools to conduct the coupled physical 

problem. Figure 8 shows an example FE modeling and meshing of a circular piezo-actuator bonded to 

a plate structure using ANSYS/Multiphysics, in which the SOLID5 element with eight nodes and six 

degree of freedoms (DOF) at each node is selected for the piezo-actuator, and the SOLID45 element is 

used to model the plate structure. The additional DOF in this coupled field element is electrical 

voltage. Input voltage can be applied on the top nodes of the piezo-actuator, and zero voltage is usually 

assigned for all the bottom nodes of the piezo-actuator to simulate the grounding operation. The 

disadvantages of FE simulation are summarized as: (i) classical FE analysis cannot be directly applied 

to simulate infinite open waveguides, since it works within spatially restricted discretization domains 

[47], (ii) FE simulation lacks of the capability to provide a very clear physical explanation of the 

numerically predicted results, and (iii) coupled filed analysis may become extremely burdensome in 

computational effort for solving the responses of three-dimensional large structural models at high 

frequency, since a huge number of elements (at least ten elements per wavelength) are usually required 

to guarantee the numerical convergence. 
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Figure 8. FE modeling and meshing of a circular piezo-actuator bonded to a host plate. 

 

Hybrid approaches provide potential solutions to compensate for the disadvantages of pure FE 

simulation. In the hybrid schemes, the FE solution using piezoelectric elements is only conducted in 

limited areas (e.g., the piezo-actuation area) to obtain the prescribed excitation, and then combined 

with analytical guided wave excitation model in the host structure, as shown in Figure 9. In the 

approach, the FE calculation is conducted to determine only the surface stresses or the volume forces 

created by the piezoelectric elements, which are used as the prescribed excitation for the analytical 

solution in the host medium [44-46]. The hybrid schemes enable the calculation of piezoelectrically 

induced wave response in the infinite host medium with less computational effort, since the host 

structural model usually consumes much more elements than does the piezo-actuator model. However, 

like FE simulation, this approach still lacks of the capability to provide a very clear physical 

explanation of the predicted results, especially connection between the prescribed excitation and its 

resulting wave propagation which is important for the SHM design and optimization. 

Figure 9. Illustration of the scheme of the hybrid approach. 
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3. Structural Health Monitoring Application 

3.1. Dynamic Responses of the Host Structure Induced by the Piezo-Actuator 

The most fundamental issue surrounding the effective use of piezo-actuators in SHM is the 

evaluation of the generated wave propagation. Based on the solution of the interfacial stress, the local 

dynamic response of the host medium generated by the piezo-actuator can be solved by using Fourier 

transform technique and solving the resulting integral equations in terms of the interfacial stress.  

For its simplicity, the pin-force model [41,42] has been extensively used to predict the elastic wave 

fields induced by the piezo-actuator in isotropic or composite plates [41,42,60,70,71]. The 

representative work among them was conducted by Raghavan and Cesnik [42] based on the  

three-dimensional linear elasticity theory, and the piezo-actuator was modeled to induce uniform 

magnitude in-plane traction along its perimeter. Figure 10 shows the harmonic out-of-plane 

displacement patterns due to excitation of the A0 Lamb wave mode at 100 kHz in an aluminum plate 

by rectangular and circular actuators. It is found that the wave field excited by a rectangular actuator 

tends to a circular crested wave filed with angularly dependent amplitude at large distances from the 

actuator, while the circular actuator wave filed spatially attenuates with equally spaced peaks and 

troughs in the far field. The transient responses to a time-limited signal can be obtained by conducting 

the inverse Fourier transform of the integral of the product of the harmonic response [42]. Figure 11 

displays the comparison of normalized theoretical and experimental sensor signals at certain central 

frequencies in the time domain [42].  

 

Figure10. Downward view of normalized harmonic radiation field for out-of-plane surface 

displacement in an aluminum plate at 100 kHz, the A0 mode by a pair of (a) (left) square 

actuators and (b) (right) circular actuators. Taken from Raghavan and Cesnik [42]. 
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Figure 11. Comparison between the normalized sensor signals obtained analytically and 

experimentally for the circular actuator: (a) the S0 mode at central frequency of 200 kHz 

and (b) the A0 mode at central frequency of 50 kHz. Taken from Raghavan and Cesnik 

[42]. 

 

 
(a)      (b)     

Figure 12. Lamb wave mode tuning with varying excitation frequencies (a) the simplified 

pin-force model and (b) the experimental testing. Taken from Giurgiutiu [41]. 

 
(a) 

 
(b) 
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3.2. Wave Mode Tuning with Piezo-Actuators 

From the point of view of guided wave based SHM, the tuning of a particular mode is quite 

important, since it allows researchers to address the detection of specific damages with specific wave 

modes. To find the Lamb strain induced in the plate, Giurgiutiu [41] showed that it is possible to tune 

wave modes through the maxima and minima of the sin ka function with ka being the normalized wave 

number. Two important factors for the design of piezo-based guided wave SHM were further 

demonstrated: (i) the variation of kasin  with frequency for each Lamb wave mode, and (ii) the 

variation of the surface strain with frequency for each Lamb wave mode. Figure 12 shows the Lamb 

wave tuning realization in a 1.6 mm aluminum plate by using both the actuator model [41] and the 

experimental testing for the frequency range up to 600 kHz [41]. It can be found that theoretical 

prediction of the frequency tuning trend is fairly consistent with the experimental observation. It can 

be also seen that the A0 mode is excited very strongly at low frequencies, while the S0 mode is barely 

observed. A preferential excitation spot of the S0 mode can be identified around 300 kHz for the 

current actuator/structural configuration. More detailed description was given in refs. [41,60].  

3.3. Quantitative Evaluation of Damage Using Elastic Waves 

Elastic waves have been successfully used in the nondestructive evaluation (NDE) of materials and 

structures. Since elastic guided waves are sensitive to the material parameters of the host medium and 

can propagate over long distance, they can be used to detect surface/embedded damages in structures [72]. 

Many researchers have attempted to propose various methods to investigate the change in the data of 

sensors due to the damages and illustrate the possible detection of the presence of the damage [73-80]. 

Preliminary method of interpreting wave signals is to directly compare characteristic parameters of the 

signals from a structure with that of the virgin structure to identify potential damage. These parameters 

could be wave speed, arrival time, amplitude, attenuation, etc., either in time domain or in frequency 

domain [81]. Giurgiutiu [82] used Lamb wave technique to compare amplitude changes in thin 

aluminum aircraft skins after various levels of usage to detect changes, and utilized finite element 

technique to attempt to predict the level of damage with some success. Su and his coworkers [79,83] 

utilized the time of flight (TOF) between the incipient fundamental symmetric Lame waves and 

delamination-induced fundamental shear horizontal mode to triangulate the delaminations in 

composite laminates. Using modally selective Lamb wave transducers, Petculescu et al. [77] 

demonstrated that the accumulated time delay of modal group velocity may be a reliable damage 

parameter for quantitative monitoring of delaminations for quasi-isotropic woven and cross-ply 

composites.  

To establish the quantitative relation between the surface signals and the embedded damages in 

materials, efforts have been made both theoretically and experimentally by “propagating” elastic 

waves back to the damages from the surface. The idea is based on that the wave field is reversible 

[84,85]. Thus if one is able to use sensors to record a complete scattering wave field and find a method 

to back propagate the recorded waves, the energy of these waves will progressively converge back to 

the scattering source and indicates the existence of damage. Migration is a geophysics exploration 

technique to form the image of subsurface reflectors by moving or “migrating” the recorded wave field 

to their actual spatial locations, topology of the earth’s interior. Over the past thirty years, research on 
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the migration technique has attained a maturity and is indispensable as an advanced interpretation 

method for reflection wave field [86,87]. Lin and Yuan [88,89], and Wang and Yuan [90] performed 

prestack reverse-time migration technique to image the damage in isotropic plate/composite laminates 

with a linear PZT disk array, and both the location and size of the damage were quantitatively 

obtained.  

Similarly, a reverse wave technique using high-frequency piezo-induced elastic bulky wave 

propagation was presented to interpret the received elastic wave signals and detect embedded cracks 

[91,92] in the elastic medium. In the study, FE was used to simulate the elastic wave propagation in the 

cracked elastic medium with tone burst excitation applied on the piezo-actuator. As shown in Figure 

13, the final image of the structure can predict not only the position of the crack with complicated 

shape but also the dimension of it. Moreover, it is demonstrated that multiple embedded cracks can be 

also visualized with a high resolution, which facilitates the application of this technique to interpret the 

elastic wave signals collected in the practical SHM systems. 

Figure 13. Image of embedded cracks with various shapes. (a) The linear crack (b) the 

wedge crack (c) the inclined crack and (d) two collinear cracks. Taken from Wang and 

Huang [91]. 

 

4. Conclusions and Summary 

Among the various schemes being considered for SHM, elastic waves generated by piezoelectric 

actuators have particularly shown great promise. In these applications, piezoelectric materials are 

usually employed as actuators to generate the high-frequency diagnostic elastic waves. To effectively 

use bonded piezo-actuators in these integrated SHM system, the quantitative evaluation of the induced 

elastic wave propagation is strongly needed. Accurate characterization of the coupled  

piezo-elastodynamic behavior between the actuator and the host medium is the key issue for the 

problem. This paper reviews the state of the art and recent advance of different modeling approaches 

for piezoelectric wafer actuators bonded to the elastic medium, including analytical, numerical, and 

hybrid approaches to model the coupled piezo-elastodynamic behavior. Some resulting ultrasonic 

wave phenomenon and applications relevant to SHM are also summarized. It is demonstrated that the 

integral model approach [50,62-66] is a good approach to consider the coupled piezo-elastodynamic 
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behavior between the piezoelectric actuator and the host medium and simulate the resulting guided 

wave propagation, especially for high-frequency cases. 
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