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Dendritic cells (DCs) ‘pulsed’ with an appropriate antigen may elicit an antitumour immune response in mouse models. However,
while attempting to develop a DC immunotherapy protocol for the treatment of breast cancer based on the tumour-associated
MUC1 glycoforms, we found that unpulsed DCs can affect tumour growth. Protection from RMA-MUC1 tumour challenge was
achieved in C57Bl/6 MUC1 transgenic mice by immunising with syngeneic DCs pulsed with a MUC1 peptide. However, unpulsed
DCs gave a similar level of protection, making it impossible to evaluate the effect of immunisation of mice with DCs pulsed with the
specific peptide. Balb/C mice could also be protected from tumour challenge by immunisation with unpulsed DCs prior to challenge
with murine mammary tumour cells (410.4) or these cells transfected with MUC1 (E3). Protection was achieved with as few as three
injections of 50 000 naı̈ve DCs per mouse per week, was not dependent on injection route, and was not specific to cell lines
expressing human MUC1. However, the use of Rag2-knockout mice demonstrated that the adaptive immune response was required
for tumour rejection. Injection of unpulsed DCs into mice bearing the E3 tumour slowed tumour growth. In vitro, production of IFN-g
and IL-4 was increased in splenic cells isolated from mice immunised with DCs. Depleting CD4 T cells in vitro partially decreased
cytokine production by splenocytes, but CD8 depletion had no effect. This paper shows that naı̈ve syngeneic DCs may induce an
antitumour immune response and has implications for DC immunotherapy preclinical and clinical trials.
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The growth and metastatic spread of tumours depends in part on
their ability to evade host immune surveillance and overcome host
defences. All tumours express antigens that can be recognised by
the immune system, but in most cases an inadequate immune
response is elicited because of ineffective activation of effector cells
by downregulation of major histocompatibility (MHC) molecules
or inhibition of their function by factors produced by the tumour,
such as TGF-b or IL-10 (Cheng et al, 2004; Houghton and Guevara-
Patino, 2004; Campoli et al, 2005).

Immunotherapy using autologous dendritic cells (DCs) pulsed
with tumour-specific antigens has been proposed as a therapeutic
strategy for the treatment of a wide variety of tumours, and many
preclinical and clinical trials of this approach using different
antigens – including peptides and RNA – are underway
(Meidenbauer et al, 2001; Schuler et al, 2003; Wierecky et al,

2006). Dendritic cells are potent antigen-presenting cells (APCs),
which initiate and regulate innate and antigen-specific responses
(Reis e Sousa, 2006). They originate from the bone marrow and
their precursors home in via the bloodstream on almost all organs,
where they are found in an immature state with high endocytic
and phagocytic capability, continuously sampling the antigenic
environment. Upon contact with an antigen, such as bacterial
DNA, viral dsRNA, microbial products or with inflammatory
cytokines, these interstitial DCs change their phenotype and
function and migrate to the germinal centres of regional lymph
nodes, where they present antigens to the resting or naı̈ve T cells
and induce antigen-specific T-cell responses.

MUC1, a highly glycosylated transmembrane glycoprotein, is
overexpressed and aberrantly glycosylated by breast cancer cells
resulting in changes in the antigenic profile of the tumour-
associated glycoforms. In addition, T cells reactive with an HLA-
A2*0201 class I epitope overlapping the MUC1 signal sequence
(M1.2 epitope) have been demonstrated in breast cancer patients
with this HLA type (Brossart et al, 1999; Beckhove et al, 2004;
Correa et al, 2005). Mouse MHC class I epitopes particularly for
H2b, as well as for other allotypes, have also been shown to be
present in MUC1 (Apostolopoulos et al, 1998; Heukamp et al,
2001). Furthermore, it has been shown that lysate-pulsed DCs can
cross-present the M1.2 epitope effectively and cross-prime CD8þ
T cells in vitro (Bohnenkamp et al, 2004). Although it is not
completely clear which components of the innate or adaptive
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immune system can be mobilised by different MUC1 immunogens
and which are crucial for tumour rejection, evidence is accumula-
ting that inhibition of tumour growth in mice and humans can be
achieved. There are several reports presenting data from mouse
models that suggest that loading DCs with MUC1-based immuno-
gens can result in tumour rejection in MUC1 transgenic
(MUC1.Tg) mice (Koido et al, 2000; Chen et al, 2003).

It has previously been reported that loading murine bone
marrow-derived DCs with a MUC1 peptide and injecting them into
mice protects the animals from subsequent challenge with
MUC1-expressing breast tumours (Soares et al, 2001). In this
paper, we present data that were obtained while attempting to
pursue these observations and which show that protection from
tumour challenge can be obtained using DCs that have not been
loaded with any tumour-specific antigen. Using a different model
system, a similar observation has been reported by the group of
Berzofsky (van den Broeke et al, 2003). This phenomenon has
important implications for the design of both pre-clinical and
clinical DC-based protocols.

MATERIALS AND METHODS

Cell lines

Murine 410.4 (murine epithelial breast tumour cells derived from
Balb/C mice) cells were a gift from Bonnie Miller (Michigan Cancer
Foundation, Detroit, MI, USA) and were cultured in DMEM
medium supplemented with 10% FCS and 25 mg ml�1 insulin. E3
cells, which express human MUC1 from its own promoter, were
generated from 410.4 cells as described by Lalani et al (1991). RMA
(murine leukaemia virus-induced T-cell lymphoma) cells were
transfected with human MUC1 under the control of a cytomega-
lovirus (CMV) promoter and cultured as described previously
(Plunkett et al, 2004).

Mouse strains

Female Balb/C and C57Bl/6 mice and transgenic mice (approxi-
mately 10 weeks of age) were used for bone marrow harvest and
tumour challenge. MUC1.Tg mice expressing human MUC1 from
the human MUC1 promoter, homozygous for the transgene
expression, were originally developed on an H2-k background
(Peat et al, 1992). These mice have been backcrossed onto C57Bl/6
and Balb/C strains for 15 generations to give a pure C57Bl/6 (H2b)
or pure Balb/C (H2d) backgrounds. Recombination activation gene
2 (Rag2)–knockout (Rag2�/�) mice are on a C57Bl/6 background.

Generation of DCs

Bone marrow was isolated from the femurs and tibias of 8– 12
weeks old female mice. Cells were resuspended in AIM-V medium
in plastic culture dishes for 45 min; adherent cells were then
discarded. Non-adherent and loosely adherent cells were resus-
pended in AIM-V medium supplemented with 50 mM b-mercap-
toethanol and 10 ng ml�1 IL-4 and GM-CSF (R&D Systems,
Abingdon, UK). Fresh cytokines were added after 2 days culture.
After 3 days of culture, non-adherent cells were removed and fresh
medium supplemented with cytokines was added to the adherent
cells. After a further 4 days, during which fresh cytokines were
added every 48 h, non-adherent cells were collected and, where
appropriate, primed with peptide. Dendritic cells were washed
three times in endotoxin-free PBS prior to injections.

Flow cytometry

FITC- and PE-labelled mAbs against DC markers (BD Biosciences
Pharmingen, San Jose, CA, USA) and isotype-matched labelled

controls were used to characterise cell surface phenotypes by flow
cytometry.

For staining, cells were washed and resuspended in PBS
supplemented with 1% heat-inactivated FBS and 0.01% NaN3.
Antibodies were diluted in this buffer and used at a final
concentration of 25 mg ml�1. Incubations with antibodies were
carried out for 45 min on ice. Following washing, labelled cells
were fixed with 1% formaldehyde solution and 10 000 cells were
analysed by flow cytometry.

Pulsing DCs

DCs were washed and resuspended in fresh medium with cytokines
at a density of 106 cells per ml. Dendritic cells were ‘pulsed’
overnight with a 60-mer peptide consisting of three tandem repeats
of MUC1 (20 mg ml�1). After pulsing, cells were washed three times
in PBS.

Immunisation and tumour challenge

For protection experiments, mice received three subcutaneous
injections (a week apart) of PBS containing (unless otherwise
indicated) 5� 104 DCs into the flank. A control group of mice were
injected with PBS only. A week after the final DC injection, 0.1 ml
PBS containing tumour cells (5� 105 410.4 or E3 cells; 5� 104

RMA-MUC1 cells) was injected subcutaneously into the flank of
Balb/C (E3 and 410.4) or C57Bl/6 WT or transgenic mice (RMA-
MUC1). For ethical reasons, mice were sacrificed when tumours
reached 1.44 cm2. UKCCCR guidelines were followed at all times
and all animal work was performed under Home Office Project
licence No. PPL 70/4701.

Microchemotaxis assay

Chemotaxis was examined using a 48-well microchemotaxis
chamber (Neuro Probe, Cabin John, MD, USA). The lower wells
were filled with RPMI supplemented with 250 ng ml�1 chemokine
and covered with an 8-mM-pore polycarbonate membrane. Cell
suspension (100 000 DCs in 100ml serum-free medium) was added
to each upper well. After incubation for 2 h at 371C for 90 min, the
membrane was removed and the cells attached to the upper surface
of the membrane were removed by washing with PBS. The
membrane was fixed in methanol and stained with Diff-Quik. Cells
attached to the lower surface of the membrane or in the lower well
of chamber were counted.

Splenocyte preparation

Spleens were disaggregated and the cells suspended in RPMI
medium before centrifugation at 1500 rpm for 10 min. Splenocytes
were isolated using a Ficoll –Paque gradient (GE Healthcare UK
Ltd, Buckinghamshire, UK), and cell clumps were removed by
filtering the cells through 30 mM filters. Cells were washed twice
with RPMI and resuspended (107 cells per ml) in RPMI
supplemented with 5% FCS and 10mM b-mercaptoethanol, before
being plated in a 96-well culture plate (100 ml per well) with or
without 106 unpulsed DCs. CD4- or CD8-positive cells were
removed in vitro prior to culture using commercially available BD
IMag Particles (BD Biosciences Pharmingen) according to the
manufacturer’s instructions.

Cytokine determination

Cytokine (IFN-g and IL-4) concentrations in cell culture super-
natants were measured by ELISAs from R&D Systems according to
the manufacturer’s instructions.
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RESULTS

Phenotypic and functional analysis of murine DCs

DCs were cultured from the bone marrow of wild-type or MUC1.
Tg mice on Balb/c and C57Bl/6 backgrounds in serum-free
medium. The phenotype of the cells was analysed by flow
cytometry: cells from all strains of mice were CD11bþ ve,
CD11cþ ve, CD80þ ve, CD86þ ve, MHC class IIþ ve, CXCR4weakly þ ve

and CD8a�ve. Figure 1A shows the phenotype of DCs derived
from C57Bl/6 MUC1.Tg mice. Dendritic cells derived from the
bone marrow of wild-type C57Bl/6 and Balb/c mice had a similar
phenotype (data not shown). The DCs used in this study were
therefore phenotypically mature and functionally active as shown
by their ability to migrate towards chemokines (Figure 1B) and to
take up FITC-dextran (Figure 1C). Pulsing cells with MUC1
peptide did not alter DC phenotype (data not shown). Stimulating
cells with either LPS or prostaglandin E2/tumour necrosis factor a
increased cell surface CXCR4 but did not increase in vitro
migration (data not shown).

Vaccination with pulsed or unpulsed DCs can protect mice
from tumour challenge

To investigate the ability of DCs pulsed with MUC1 peptides to
protect mice from challenge with MUC1-expressing tumours, we
vaccinated C57Bl/6 MUC1.Tg. mice with MUC1 peptide-pulsed
DCs, similar to the experiments described by Soares et al (2001).
C57Bl/6 MUC1.Tg mice were vaccinated with three injections, 3
weeks apart, of syngeneic MUC1.Tg DCs, pulsed or unpulsed with

MUC1 peptide. One week after the last injection, the mice were
challenged with RMA tumour cells expressing human MUC1 under
a CMV promoter. Although peptide-pulsed DCs significantly
increased the survival of the mice compared with the buffer
control group, unpulsed DCs also gave significant protection so
that by day 56, the protection from naı̈ve DCs was indistinguish-
able from that obtained with the pulsed DCs (Figure 2A). This
made it impossible to evaluate the effect of immunisation of mice
with DCs pulsed with the specific peptide.

To ascertain whether the protection from tumour challenge
provided by unpulsed DCs was limited to this model, we changed
the mouse strain and the tumour cell line. Wild-type Balb/C mice
were treated with three weekly subcutaneous injections of
unpulsed wild-type DCs (50 000 cells per mouse per week). A
week after the final DC injection, the mice were challenged with
E3 tumour cells (the murine mammary tumour cell line 410.4
transfected with human MUC1; Figure 2B). In the PBS control
groups, all mice had a tumour within 3 weeks of tumour challenge.
However, unpulsed DCs significantly increased the tumour-free
survival of the mice, with 60% of the mice remaining tumour-free
until the termination of the experiment at 140 days. Thus, in two
different murine models, immunisation with naı̈ve DCs can protect
mice from tumour challenge.

Protection is dependent on the number of injected DCs

We analysed the effects of different numbers of DCs on tumour
protection in two different mouse strains. Wild-type Balb/C mice
were vaccinated with zero to 500 000 DCs per week and after three
DC injections, mice were challenged with the E3 tumour. Injections
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of 5000 DCs per mouse per week did not protect the mice from
subsequent tumour challenge (Figure 3A). However, injection of
50 000 or 500 000 resulted in a significant number of mice
remaining tumour-free up until the termination of the experiment
at day 140. Increasing the number of DCs above 50 000 did not
further improve tumour protection.

Protection is not compromised by route of injection

In the previous experiments, immunisation injections were at the
same site as tumour challenge (ie, subcutaneous injections in
the left flank). We next tested whether the tumour challenge in the
same site as DC injection effectively ‘pulsed’ the DCs in vivo, or
whether an inflammatory effect at the tumour challenge site was
‘activating’ DCs, by varying the route of injection. Balb/C mice
were given three injections of unpulsed DCs or PBS into either the
right or left flank; DCs were also injected intravenously. The
subsequent E3 tumour challenge was injected into the left flank of
all groups. Injection of unpulsed DCs gave a similar level
of tumour protection whether the injection site was left flank or
intravenous (Figure 3B), indicating that tumour protection does
not derive from the synergy of the DCs and an inflammatory
response or from ‘in vivo pulsing’.

Protection from tumour challenge is not dependent on
MUC1 but does require T or B cells

The E3 murine mammary tumour cell line expresses human
MUC1. To test whether DC-mediated protection from tumour

challenge depended on the presence of a foreign antigen in the
tumour cells (ie, human MUC1), we tumour challenged naı̈ve DC
immunised mice with E3 cells or parental wild-type 410.4 cells.
Wild-type Balb/C mice were immunised with unpulsed DCs
derived from wild-type Balb/C bone marrow prior to tumour
challenge. As previously observed, naı̈ve DCs protected Balb/C
mice from E3 tumour challenge. However, mice were also
protected from challenge with the syngeneic parental cell line,
410.4 (Figure 4A).

To investigate the mechanism involved in the tumour protec-
tion, we immunised Rag2�/� mice with naı̈ve DC and tumour
challenged with RMA cells. The phenotype of Rag2�/� mice, which
are on a C57Bl6 background, is mature T- and B-cell deficiency.
Although the Rag2�/� mice developed tumours more quickly than
the wild-type C57Bl6 mice, by day 13 all the Rag2�/�mice in the
control group and the naı̈ve DC group had developed tumours and
there was no difference in the tumour growth between the two
groups (Figure 4B). In contrast, in the wild-type mice, vaccination
with naı̈ve DCs reduced the take and growth of the RMA tumour
cells compare with the wild-type controls (Figure 4B).

These data suggest that either T or B cells are involved in the
tumour protection observed with naı̈ve DC cells and that the
protection is not dependent on the presence of a foreign antigen.

Naı̈ve DCs induce the production of IFN-c and IL-4 by
splenocytes, which is dependent on T-cell function

To investigate the immune response induced by naı̈ve DCs, wild-
type C57Bl/6 mice were immunised three times with naı̈ve DCs; 1
week after the final injection, the spleens were removed and the
splenocytes cultured for 48 h in the presence or absence of
syngeneic DCs. Incubation of naı̈ve DCs with splenocytes from
mice vaccinated with unpulsed DCs resulted in the secretion of
high levels of IFN-g and IL-4 (Figure 5A and B). No IFN-g or IL-4
was detected when DCs were incubated with splenocytes from mice
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injected with PBS. Thus the vaccination of mice with DCs cultured
for 7 days in vitro, without exposure to specific antigen, was
sufficient to induce the in vitro secretion of IFN-g and IL-4. It
should be noted that the DCs used to immunise the mice were
cultured in serum-free medium, thus eliminating any artefacts due
to the foetal calf sera.

To determine the source of the cell producing the IFN-g and
IL-4, the CD4þ or CD8þ T cells were depleted prior to the
incubation with DCs. The efficacy of depletion was analysed by
flow cytometry and shown to be 93.0±0.5% for CD4þ ve and
68.4±10.4% for CD8þ ve T cells (data not shown). Depleting the
splenocytes of CD4 cells partially but significantly decreased the
induction of IFN-g (Figure 5C) and IL-4 (Figure 5D) release,
whereas depleting CD8 cells had no effect.

Therapy of E3 tumour with unpulsed DCs

Although protection from tumour challenge has been attained
using immunotherapy and vaccination methods, therapy of
established tumours is usually less effective. Therefore, having
shown induction of protection against the E3 tumour using
unpulsed DCs, we tested whether naı̈ve DCs had any effect on the
more stringent system of the established tumour. Balb/C mice were

challenged with E3 tumour cells and then given three weekly
subcutaneous injections of naı̈ve DCs or PBS.

Immunisation with DCs did not prevent tumour growth
(Figure 6A), but tumour growth was significantly less in mice
immunised with naı̈ve DCs (Figure 6B and C).

DISCUSSION

Immunotherapy using autologous DCs pulsed with a tumour-
specific antigen has been proposed as a therapeutic strategy for the
treatment of a wide variety of tumours, and many preclinical and
clinical trials of this approach are underway (Meidenbauer et al,
2001). Indeed, several studies have shown an encouraging clinical
response in both clinical trials and numerous animal models
(Schuler et al, 2003; Wierecky et al, 2006). One of the critical
factors shown to influence the efficacy of DC immunotherapy has
been the preparation and differentiation of DCs (Josien et al, 2000;
Liu et al, 2002; Schuler et al, 2003). In this study, we have cultured
murine bone marrow cells in the presence of IL-4 and GM-CSF
to yield high-quality CD11bþ ve CD11cþ ve CD8�ve myeloid mature
DCs that express high levels of stimulatory MHC class II
molecules, as well as CD80, CD86 and the chemokine receptor
CXCR4. Furthermore, it was demonstrated that the generated DCs
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are functionally active by migrating effectively towards CCL19 and
CXCL12, the ligands for CCL7 and CXCR4, respectively. We show
that injection of mice with DCs pulsed with a MUC1 tandem repeat
peptide (60-mer corresponding to three tandem repeats) can
protect wild-type and MUC1.Tg mice from subsequent challenge
with a MUC1-expressing tumour. However, we also demonstrated
that injection of unpulsed ‘naı̈ve’ DCs are equally efficient at
protecting mice from tumour challenge. We have shown that the
protection gained by injection of naı̈ve DCs in our studies is not
due to (1) the expression of a foreign (human) antigen, (2) a high
number of DCs being injected, (3) the route of immunisation,

suggesting the induction of systemic protection, (4) strain of
mouse, or (5) tumour model. Using Rag2�/� mice we have
demonstrated that the protection observed with naı̈ve DCs was
dependent on elements of the adaptive immune response, that is
T or B cells.

Moreover, in vivo priming with syngeneic unpulsed DCs
resulted in the secretion of large amounts of IFN-g and IL-4 upon
a single in vitro stimulation with naı̈ve DCs.

Interestingly, it has been shown that DCs isolated from mouse
spleens spontaneously produce IL-12 and TNF-a, upregulate co-
stimulatory molecules and induce the activation of antigen-specific
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IFN-g-producing CD4þ T cells in vivo (Schlecht et al, 2006).
The responses were similar to those induced by DCs activated
by CpG, a strong Th1-promoting adjuvant (Klinman, 2006).
Moreover, DCs derived in vitro from bone marrow have been
shown to secrete type I IFNs that act in an autocrine manner to
activate the DCs enabling them to activate T cells (Montoya et al,
2002). The DCs used in this study express relatively high levels of
CD80, CD86 and class II and possibly were more activated than
those used in other studies. Dendritic cells can induce tolerance or
immunity according to their activation state (Moser, 2003; Reis e
Sousa, 2006); it is possible that DCs activated in vitro by the
culture conditions could present self-antigens – common to the
tumour cells – to T cells resulting in their activation. Certainly,
effector T cells have been shown to respond to a lower ligand
affinity threshold than naı̈ve T cells, and effector T cells have been
shown to respond to endogenous self-peptide presented by APCs
(Kimachi et al, 2003). Further experiments will be needed to
investigate whether there is evidence of induced autoimmunity in
our models.

To minimise the exposure of the DCs to foreign proteins, the
DCs were cultured in serum-free AIM V medium. However, it
cannot be ruled out that the DCs presented proteins found within
the medium to T cells in vivo and that the in vitro cytokine
production observed with unpulsed DCs resulted from a stimula-
tion of these cells by the DCs. This could be possible for although
the splenocytes were incubated with DCs in a completely different
medium (RPMI 10% FCS), the DCs used for the in vitro assay
were derived from bone marrow in AIM-V medium. However, this
cannot explain the ability of naı̈ve DCs to protect mice from
tumour challenge, and other groups have used AIM-V to generate
bone marrow-derived DCs (Soares et al, 2001).

There are many reports in the literature of the use of primed
DCs to induce tumour protection in murine models. Most of these
(Zitvogel et al, 1996; Ashley et al, 1997; Boczkowski et al, 2000;
Irvine et al, 2000; Nair et al, 2000; Shimizu et al, 2001; Koido et al,
2002; Chen et al, 2003) have included control DC groups, whereas
others have not (Soares et al, 2001). In reports that included a
control group of unpulsed DCs, no significant protection was seen
with these cells. However, in agreement with our data, the study by
van den Broeke et al (2003) showed that unpulsed DCs induced
protection against tumour lung metastases. As we have found, this
protection was independent of the strain of mouse, tumour source
or route of injection of the DCs. Moreover, they showed that
CD4þ T cells were necessary for protection together with NK

cells. The authors conclude that the DC-mediated NK cell
activation was likely to be through an intermediate interaction of
DCs with CD4þ T cells rather than a direction effect on the NK
cells. Furthermore, although small in number there have been
other reports that unpulsed DCs can induce tumour protection
(Yang et al, 1997; DeMatos et al, 1998). Interestingly, early studies
by Knight (Knight et al, 1985) also suggested that normal
syngeneic DCs could induce tumour regression or delayed tumour
growth.

From the results presented here it is clear that manipulation of
DCs in vitro can result in their ability to stimulate an immune
response without actively pulsing the DCs with antigen. One of the
hurdles in cancer immunotherapy has been to show a connection
between any clinical benefit and the antigen with which the DCs
were pulsed. In a stage IV melanoma clinical phase I study using
four melanoma antigens with BM-derived DCs, none of the
patients analysed showed an expansion of melanoma-peptide-
specific circulating effector memory T cells, and there were no
objective clinical responses (Banchereau et al, 2005). However, in
other studies, there were detectable levels of CD4-specific Th1 cells
and specific CD8 T cells in most but not all of the patients (Schultz
et al, 2004; Fay et al, 2006).

The fact that unpulsed DCs can induce T cells to produce large
amounts of cytokines (IFN-g and IL-4) and protect mice from
tumour challenge has implications for the use of DCs in
immunotherapy. Understandably, unpulsed DCs have not been
included in the early clinical trials investigating the efficacy of DCs
for the treatment of cancer patients. It is possible that some of the
promising results reported are not dependent on the antigen used
to pulse the DC ex vivo. More importantly, if injection of naı̈ve
‘culture-activated’ DCs could induce T cells to self-antigens, there
is a possibility of inducing autoimmunity in patients undergoing
such therapy and therefore further research into the results
reported here is required.
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