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Synapses may undergo variable changes during plasticity because of the variability of

spike patterns such as temporal stochasticity and spatial randomness. Here, we call

the variability of synaptic weight changes during plasticity to be efficacy variability. In this

paper, we investigate how four aspects of spike pattern statistics (i.e., synchronous firing,

burstiness/regularity, heterogeneity of rates and heterogeneity of cross-correlations)

influence the efficacy variability under pair-wise additive spike-timing dependent plasticity

(STDP) and synaptic homeostasis (the mean strength of plastic synapses into a neuron is

bounded), by implementing spike shuffling methods onto spike patterns self-organized

by a network of excitatory and inhibitory leaky integrate-and-fire (LIF) neurons. With the

increase of the decay time scale of the inhibitory synaptic currents, the LIF network

undergoes a transition from asynchronous state to weak synchronous state and then

to synchronous bursting state. We first shuffle these spike patterns using a variety of

methods, each designed to evidently change a specific pattern statistics; and then

investigate the change of efficacy variability of the synapses under STDP and synaptic

homeostasis, when the neurons in the network fire according to the spike patterns before

and after being treated by a shuffling method. In this way, we can understand how the

change of pattern statistics may cause the change of efficacy variability. Our results are

consistent with those of our previous study which implements spike-generating models

on converging motifs. We also find that burstiness/regularity is important to determine the

efficacy variability under asynchronous states, while heterogeneity of cross-correlations

is the main factor to cause efficacy variability when the network moves into synchronous

bursting states (the states observed in epilepsy).
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1. INTRODUCTION

Variability is a prominent feature of the neuronal activities. The
neurons in the same population may respond quite differently to
the same stimulus (structural variability), and the responses of a
neuron to the same stimulus can also differ in different trials (trial
variability). Structural variability comes from the heterogeneity
of neuronal responsive properties and the randomness of inter-
neuronal connections. It is found that even the same type of
neurons may have different responsive properties due to the
difference in the gene expression of membrane ion channels
(Schulz et al., 2006; Padmanabhan and Urban, 2010); and the
strengths of synapses may span several magnitudes (Song et al.,
2005; Buzsáki and Mizuseki, 2014), continuously changing with
time (Zucker and Regehr, 2002; Keck et al., 2008). Trial variability
partly comes from biomolecular noises such as the open and
close of ion channels and the release of synaptic vesicles (see
Faisal et al., 2008 for review). Such noises may enter any stage
of information processing in the brain, from perception and
decision making to motion generation (Faisal et al., 2008),
influencing the reliability and timing of action potentials (Allen
and Stevens, 1994; Zador, 1998; Dorval and White, 2005; Faisal
and Laughlin, 2007), especially in neurons with thin axons
(Faisal et al., 2005). Additionally, a neuronal network may have
internal states such as slow synaptic currents, the strengths
of the synapses under short-term plasticity, and the phase of
the internal oscillation (Mongillo et al., 2008; Buonomano and
Maass, 2009; VanRullen et al., 2011); and its response may vary
depending on these internal states (Cohn et al., 2015; Daie et al.,
2015), combined with being modulated or gated by inputs from
the other brain areas (Masquelier, 2013; Lin et al., 2015). If
the dynamics of the network exhibits deterministic chaos, such
as theoretically suggested for the networks under excitatory-
inhibitory balanced state (van Vreeswijk and Sompolinsky, 1998;
Monteforte and Wolf, 2010; Ostojic, 2014), then the responsive
variability will be exacerbated due to the high sensitivity to noises
and initial conditions.

The nervous system is able to adapt its response to external
stimuli by changing the strengths of its synapses. As the
synaptic changes depend on the spike timings of the pre-
and post-synaptic neurons (Dan and Poo, 2006; Caporale and
Dan, 2008; Markram et al., 2012), the variability of neuronal
activities must result in variability of synaptic changes. Besides,
synaptic plasticity is also influenced by other factors such as
neuromodulators (Bailey et al., 2000; Berke and Hyman, 2000)
and series of pre- and post-synaptic biomolecular mechanisms
(Graupner and Brunel, 2010; Yang and Calakos, 2013), and
variability may come into any of these factors. Overall, synaptic
plasticity is a “noisy” process, and we call the variability of the
synaptic changes during plasticity induced by the stochasticity
and randomness of neuronal networks to be the efficacy
variability. See Section 2.1 for more discussions on the definition
of efficacy variability.

In this paper, we focus on discussing the influence of
variability of neuronal activities on efficacy variability, in the
context of spike-timing dependent plasticity (STDP) (Gerstner
et al., 1996; Dan and Poo, 2006; Caporale and Dan, 2008;

Markram et al., 2012). Under STDP, synaptic plasticity is driven
by spike trains, so the efficacy variability is caused by the temporal
stochasticity and spatial randomness of spike trains. Additionally,
spike trains may exhibit a variety of statistical features, which
form rich spike pattern structures. Groups of neurons may
spurt firing activity (synchronous firing) (Kamioka et al., 1996;
Buzsáki and Draguhn, 2004; Bartos et al., 2007), the spike train
of a single neuron can be bursty or regular (auto-correlation
structure) (Softky and Koch, 1993; Schwindt and Crill, 1999;
Jacob et al., 2012), firing rates of cortical neurons are typically
heavily-skewed distributed in vivo (heterogeneity of rates) (Shafi
et al., 2007; O’Connor et al., 2010; Buzsáki and Mizuseki, 2014),
and the spike trains of different neurons also display rich inter-
dependences (heterogeneity of cross-correlations) (Funahashi and
Inoue, 2000; Schneidman et al., 2006; Ostojic et al., 2009;
Trousdale et al., 2012). See Figure 1A for the concepts above.
Under STDP, synaptic plasticity is induced by spike trains, so
these spike pattern structures must have strong influence on
efficacy variability, inducing neuronal networks with sharply
different structures even under the same population rate.
How these spike pattern structures may influence the efficacy
variability is the topic we are interested in.

Theoretical and experimental results suggest that the dynamic
pattern of a neuronal network during plasticity may strongly
influence the functional performance of the resulting network
after plasticity by influencing the efficacy variability. For example,
large efficacy variability may blur the connection patterns that
are required to successfully embed memory into the network
(Figure 2A), thereby destroying memory. Experimentally, it
is found that gamma oscillations are important for memory
formation under normal physiological conditions (Sederberg
et al., 2007; Jutras et al., 2009; Yamamoto et al., 2014); but too
strong synchrony, such as that in epilepsy (Gulyás and Freund,
2015), is instead detrimental to memory (Butler and Zeman,
2008). These observations suggest that efficacy variability may
get its smallest value under weak synchrony, and get larger at
both asynchronous and strong synchronous states. As another
example, the efficacy variability may influence the competition-
and-elimination process of the synapses under development
(Cancedda and Poo, 2009), resulting in networks with different
sparsities and synaptic strengths (Figure 2B). Experimentally, it
is found that if the spontaneous activity of the medial nucleus
of the trapezoid body (MNTB) in the auditory pathway during
early development is modified using genetic methods, then
its feedforward projection to the lateral superior olive (LSO)
becomes denser and weaker, which hinders the refinement of
receptive fields of the LSO neurons, thereby destroying the
hearing of the animal (Clause et al., 2014). This suggests that the
genetically modified spontaneous activity in Clause et al. (2014)
induces smaller efficacy variability than the normal one.

In our previous paper (Bi and Zhou, 2016), we studied
how the four aspects of spike pattern structure shown in
Figure 1A influence the efficacy variability under a conventional
pair-wise additive STDP (Figure 1B) using converging motifs
(Figure 1D). Additionally, we also added synaptic homeostasis
which conserves the mean strength of the synapses input to
a neuron (Figure 1C), which may be physiologically used to
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FIGURE 1 | Schematic of the key concepts in our modeling work. (A) The four aspects of pattern structure studied in this paper. “Synchronous firing” typically

means the spurt of firing activity of a population; in this paper, it also represents the time fluctuation of the population rate in asynchronous spike patterns. For

asynchronous spike patterns, “auto-correlation structure” reflects the burstiness/regularity of the spike trains, which is quantified by coefficient of variance (CV ) in this

paper. Here, by “burstiness,” we typically mean the irregular structure of spike trains, instead of the regular burstiness in the spike patterns of, say, central pattern

generator. For spike trains in synchronous states, we consider three types of “auto-correlation structure” to reflect the burstiness/regularity features of the spike

patterns (see Figure 4). By “heterogeneity of rates,” we mean that the time-averaged firing rates are different for different neurons. By “heterogeneity of

cross-correlations,” we mean that different pre-synaptic neurons of a neuron tends to fire spikes at different times relative to the spikes of the neuron. For example, in

the right-bottom subplot, before a spike of neuron 2, neuron 1 tends to fire before neuron 3. (B) The STDP time window used in our work. Note that the axons in our

work have time delay τdelay , and the synapses are updated according to the spike time of the post-synaptic neuron and the time that the pre-synaptic spike arrives at

the terminal. The STDP updatings of all spike pairs are summed together. (C) Synaptic homeostasis. The synapses input to a neuron are subject to a bound on their

mean strength: when their mean strength is different from this bound, all the incoming synapses of that neuron will undergo an adjustment. (D) Converging motif, on

which we conducted all the simulations in the previous paper (Bi and Zhou, 2016). Modeling details are presented in Section 2.

maintain the activity level in a plastic network (Turrigiano
and Nelson, 2004; Turrigiano, 2011). In that paper, we first
generated spike patterns using statistical models with tunable
parameters, and then investigated how the efficacy variability
of the converging motifs would change if the neurons fire
according to the generated spike patterns with different statistics.
We separated the efficacy variability (TotalV, short for “total
variance”) into two parts:

TotalV = DriftV+ DiffV, (1)

with DriftV (short for “drift variance”) being the drift part
induced by the heterogeneity of change rates of different synapses
caused by the spatial heterogeneity of spike trains (mainly related
to heterogeneity of rates and heterogeneity of cross-correlations
shown in Figure 1A), and DiffV (short for “diffusion variance”)
being the diffusion part induced by the weight diffusion caused by
stochasticity of spike trains (mainly related to synchronous firing
and auto-correlation structure shown in Figure 1A). Our main
conclusions are that (1) synchronous firing generally increases
DiffV, except for spike-to-spike synchrony with good temporal
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FIGURE 2 | Biological implications of efficacy variability. (A) A network of excitatory neurons stores a memory using its attractor dynamics after the

intra-connections within a sub-population (here, neurons 1–4) are strengthened (the inhibitory population that keeps the total activity of the network is not shown).

When the efficacy variability is small (upper row), this subpopulation will exhibit persistently high activity if a sufficiently large number of neurons in the subpopulation

have high activities initially, so the memory is retrieved. When the efficacy variability is large (lower row), this memory retrieval will fail even if the mean strength of the

intra-connections (red) is stronger than that of the other ones (blue). The widths of arrows represent synaptic strengths. The subplots on the right represent the weight

distributions of the blue and red synapses shown in the subplots on the left. (B) Efficacy variability causes different network structures by controlling the degree of

synaptic competition. When the efficacy variability is small (upper), only a few synapses are weaker than the elimination threshold (black dashed vertical line) and get

eliminated during neural development, so most synapses are left and their strengths tend to be uniform; when the efficacy variability is large (lower), more synapses

are eliminated, and the left ones are more heterogeneous and also stronger than the upper case on average. Dashed arrows represent eliminated synapses. The

subplots on the right represent the weight distributions of the synapses before the elimination process.

precision, (2) burstiness of auto-correlation structure tends to
increase DiffV, (3) heterogeneity of rates induces DriftV when
potentiation and depression in STDP are not balanced, and (4)
heterogeneity of cross-correlations induces DriftV together with
heterogeneity of rates.

However, the research strategy of our previous paper has
its limitations. For example, the spike patterns were generated
by statistical models, which prevents us from understanding
the contributions of different pattern statistics to the efficacy
variability under biologically more plausible spike patterns.
Additionally, in practice, people may want to know how the
spike trains experimentally observed may influence the efficacy
variability of a local neural circuit, thereby understanding the
functional meanings of the statistical features of the spike trains
during learning or neural development. Therefore, it is desirable
to develop an approach to manipulate the spike pattern statistics
in the recorded spike patterns. In this paper, we propose to use
spike shuffling methods to solve this problem.

Spike shuffling methods are commonly used experimental
techniques to destroy inter-spike, inter-neuron or inter-trial
dependencies of spike patterns, thereby establishing significance
of dependencies. It has been used when, for example, studying
functional interactions between neuronal population (Narayanan
and Laubach, 2009), investigating replay of spike sequence
(Nádasdy et al., 1999; Ji and Wilson, 2007), identifying

spatio-temporal correlations on the background of noises
(Amarasingham et al., 2012), and discovering information-
containing spatio-temporal correlations in neural codes (Panzeri
et al., 2002; Nirenberg and Latham, 2003; Ganmora et al., 2011).
For example, in Ji and Wilson (2007), to validate the replay
of hippocampal and cortical neuronal activities during sleep
to the pre-sleep activities, the authors compared the pre-sleep
neuronal firing sequences to those during sleep as well as to
the shuffled during-sleep sequences in which the neuronal firing
orders are randomized. They found that the pre-sleep sequences
have a higher similarity with the original during-sleep sequences
than with the shuffled ones. As another example, in practice,
correlations between neurons may come either from the external
stimuli or from the inter-neuronal connections. In Ganmora
et al. (2011), the authors assessed these two contributions by
comparing the inter-neuronal correlations in the original spike
pattern and in the spike pattern after trial-shuffling: here, trial-
shuffling means that the authors repeated the stimulus for
several trials, and different neurons in the shuffled pattern fired
according to the spike trains in different trials. They found
that inter-neuronal connections contribute significantly to the
high-order neuronal correlations.

Spike shuffling methods may provide a good opportunity
for understanding the influence of spike pattern statistics to
synaptic plasticity under experimental conditions. For example,
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people can treat the recorded spike patterns using a spike
shuffling method, to evidently change a specific pattern statistical
feature while keeping the others largely intact, and then get
understanding on the impact of the statistical feature on
plasticity by comparing the synaptic changes after optically
stimulating the neuronal population according to the spike
patterns before and after shuffling. For pre-synaptic neurons,
people may straightforwardly stimulate their axons. For post-
synaptic neurons, to observe the synaptic changes caused
by the post-synaptic neuronal activities controlled by optical
stimulations instead of evoked by synaptic couplings, people
may have to inject perisomatic shunting inhibition while at the
same time stimulate the dendritic arbors to mimick the back-
propagated action potentials caused by the imaginary firing
of the post-synaptic neurons. Recent progress on the spatio-
temporal precision of optogenetics prospects the feasibility of this
operation simultaneously onto a number of neurons at present
time or in the near future (see e.g., Fenno et al., 2011; Peron and
Svoboda, 2011; Hochbaum et al., 2014).

To manifest this idea and also get understanding on the
efficacy variability in biologically plausible spike patterns, in this
paper, we implement a variety of spike shuffling methods to
the spike patterns self-organized by an excitatory-inhibitory LIF
network model. It is known that the LIF network can generate
synchronized oscillations through two mechanisms (Tiesinga
and Sejnowski, 2009; Buzsáki and Wang, 2012), which may
depend on the excitatory and inhibitory synaptic time scale τE
and τI (Brunel and Wang, 2003). When τE ≪ τI , oscillations
come from the interaction of the excitatory and inhibitory
populations (E-I mechanism): neuronal firing is first driven up
by fast excitation, and then dragged down by slow inhibition;
when the excitation driving the interneurons wanes, the network
recovers from inhibition and the next oscillation cycle starts.
When τE ≫ τI , oscillations come from the interaction within
the inhibitory population (I-I mechanism): in this case, the
excitation driving the inhibitory interneurons can be regarded
as constant in a relatively small time scale, and the interneurons
may synchronously oscillate due to the interactions among them
(Wang and Buzsáki, 1996; Brunel and Hakim, 1999), which
in turn entrains the excitatory population into oscillation. In
this paper, we focus on the synchronized oscillation induced
by E-I mechanism, which is suggested to be the mechanism
of the fast oscillation in the cortex (Salkoff et al., 2015), the
hippocampal ripple oscillations (Stark et al., 2014), and the spike-
and-wave electroencephalography (EEG) pattern observed in
absence seizures (Destexhe, 2007, 2008). To do this, we fixed the
time scale of the excitatory synapses, and increased the decay
time scale τ I

d
(see Equation 8) of the inhibitory synaptic currents;

and then found this network transits from asynchronous state
to weak synchronous state and at last to synchronous bursting
state (Figure 3A). In reality, the dynamics of a plastic network
co-evolve with the synaptic weights. To only investigate the
influence of the network dynamics onto the efficacy variability
without worrying about the feedback to network dynamics from
synaptic changes (Figure 3B), we take the following stategy
in this paper (Figure 3C): We first record the spike patterns
of the excitatory population of the LIF network, then shuffle

the recorded spike patterns using different methods to change
different statistical features, and at last evolve the E-E links under
STDP (Figure 1B) and synaptic homeostasis (Figure 1C) when
the excitatory population are supposed to fire according to the
recorded or shuffled spike patterns. By comparing the statistics of
the patterns as well as the efficacy variability under the patterns
before and after implementing a spike shuffling method, we
can gain understanding on how different aspects of the pattern
structure may influence the efficacy variability.

We have three aims in this paper. Firstly, we would like
to develop a systematic spike-shuffling approach to alter the
statistical features of a given spike pattern. Secondly, we will
apply this approach to investigate how different pattern statistics
(Figure 1A) influence the efficacy variability under STDP and
synaptic homeostasis (Figures 1B,C) in the spike patterns self-
organized by the LIF network. Thirdly, we will estimate the
contributions of different pattern statistics to the efficacy
variability under the spike patterns generated by our LIF network,
both in asynchronous and synchronous states. For example, we
would like to know which spike pattern statistics influences
significantly to the efficacy variability, and which statistics is the
main reason for the change of the efficacy variability with τ I

d
.

In the Results section, we will first illustrate the statistics of the
spike patterns generated by the LIF network (Section 3.1), and
then study the impact of the four statistical features (Figure 1A)
onto the efficacy variability by implementing spike shuffling
methods onto the spike patterns in both asynchronous and
synchronous states (Sections 3.2–3.4). Finally, we will understand
the contributions of different pattern statistics to the efficacy
variability under these spike patterns (Section 3.5). In the
Discussion section, we will discuss the connections of our results
to known theoretical and experimental results. We compare the
results of this paper with the results of our previous paper (Bi
and Zhou, 2016) in Supplementary Materials Section S5, and find
their consistency.

2. MATERIALS AND METHODS

2.1. The Definition of Efficacy Variability
Suppose the weights of a set of synapses W are to be changed
by almost the same value during a plasticity process to make
the network function normally. We run the plasticity process
on the network for several trials, and construct a matrix 1W,
each column of which represents the synaptic changes of W in
one trial at a given time point t, and different columns represent
different trials. To quantify the variability of synaptic changes
during plasticity, we define efficacy variability ofW at time t to be
the variance of the elements of the matrix 1W, i.e., VarS,T(1W).
Here, the subscript S represents integrating over row index, i.e.,
structural index, and T represents integrating over column index,
i.e., trial index. Using the law of total variance (Weiss, 2005), it
can be shown (see Section 2.1 in our previous paper Bi and Zhou,
2016) that

VarS,T(1W) = VarS(ET(1W))+ ES(VarT(1W)), (2)

and that
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FIGURE 3 | Overview of our research. (A) Spike patterns of our LIF network (Section 2.3) at asynchronous (left, τ I
d
= 3ms), weak synchronous (middle, τ I

d
= 7ms)

and synchronously bursting (right, τ I
d
= 14ms) states. In weak synchronous states (middle), a neuron usually fires no more than one spike in a synchronous event;

and if a neuron fires in a synchronous event, it may be silent in another one. In synchronously bursting states (right), a neuron typically fires more than one spikes

burstly in a synchronous event. (B) In a plastic network, dynamics and synapses interact and co-evolve with each other. We would like to cut this loop to only

investigate the influence of dynamics onto efficacy variability under STDP and synaptic homeostasis without worrying about the change of dynamics caused by

synaptic changes. (C) To achieve the strategy shown in (B), we first record the spike patterns of the LIF network when the synapses are fixed, then shuffle the spike

patterns with a variety of methods to change specific pattern statistics, and at last let the neurons in the network fire according to the recorded or shuffled patterns

with STDP and synaptic homeostasis being imposed onto the synapses.

VarS,T(1W) = VarT(ES(1W))+ ET(VarS(1W)), (3)

with E and Var representing mean and variance respectively.
In Equation (2), ET(1W) represents the trial expectations

of the changes of all the synapses in W ; and VarS(ET(1W))
is the variance of these trial expectations, representing DriftV.
VarT(1W) represents the trial-to-trial variances caused by
diffusion, and ES(VarT(1W)) is the average of these variance over
all the synapses, representing DiffV. This equation is the formal
writing of Equation (1) in the introduction.

In Equation (3), VarT(ES(1W)) represents the trial-to-trial
variability of the mean synaptic change of the whole network. But
a real biological process only allows a single trial, so this trial-to-
trial variability cannot contribute to biological functions except
for individual differences. Additionally, in this paper, we aim to
understand the influence of spike pattern structures onto efficacy
variability, so the firing rates and second-order statistics of spike
patterns need to be controlled in our model. In this theoretical
context, under STDP, VarT(ES(1W)) is presumably of the order
of O(1/|W|), with |W| being the number of synapses in W . So
when |W| is large enough, Equation (3) becomes

VarS,T(1W) ≈ ET(VarS(1W)). (4)

This tells that we can approximate the efficacy variability by
the trial average of the variance of the synaptic changes in
the network, which, as shown in Figure 2, may have strong
biological implications. In this paper, we use ET(VarS(1W)) to
quantify the efficacy variability in our simulations. As we show in
Supplementary Figure 1, VarT(ES(1W)) is negligible comparing
to ET(VarS(1W)), so ET(VarS(1W)) is indeed nearly the same
with the full version VarS,T(1W) in our simulations.

2.2. STDP and Synaptic Homeostasis
The STDP updating caused by a pair of pre- and post-synaptic
spike at tpre and tpost is

1w(tpre, tpost) =







Ap exp(−
tpost−(tpre+τdelay)

τSTDP
), tpost > tpre + τdelay

−Ad exp(−
(tpre+τdelay)−tpost

τSTDP
), tpost < tpre + τdelay

(5)

with τdelay being the axonal delay. The contributions of all pairs of
pre- and post-synaptic spikes are added together. τSTDP = 20ms,
τdelay = 1ms throughout the paper, and Ap = Ad = 1 by default.

As explained in Figures 3B,C, we did not directly embed
STDP and synaptic homeostasis into the self-organizing
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dynamics of the LIF network, but instead evolved the E-E links
under STDP and synaptic homeostasis according to the recorded
or shuffled spike patterns of the LIF network with fixed synaptic
weights.We recorded the variance of synaptic weights during this
evolution every 1 s of biological time, and before each recording,
we implemented synaptic homeostasis onto the synapses within
excitatory population as

wab → wab + (wbound −
1

Na

Na
∑

c= 1

wac), (6)

with wab being the weight of the synapse from excitatory neuron
b to a, Na being the excitatory in-degree of the ath neuron, and
wbound = 0 being the ground line of synaptic homeostasis. In this
way, themean excitatory synaptic input to each excitatory neuron
was fixed at wbound = 0 before each recording.

2.3. The LIF Neuronal Network
The network consists of 2000 excitatory and 500 inhibitory
conductance-based LIF neurons, with the links being randomly
connected with probability 0.2. Each neuron in the network also
receives excitatory external inputs.

The dynamics of the sub-threshold membrane voltage Vα
i of

the ith neuron in the αth (α = E, I representing excitatory or
inhibitory) population is (see e.g., Brunel and Wang, 2003)

Cα dV
α
i (t)

dt
= gα

L (Vleak − Vα
i (t))+ [gα,extsα,ext

i (t)

+ gαE
∑

j

AαE
ij sαEij (t)](EE − Vα

i (t))

+ gαI
∑

j

AαI
ij s

αI
ij (t)(EI − Vα

i (t)), (7)

with Cα being the membrane capacity, gα
L the leakage

conductance, Vleak the leakage voltage, g
α,ext the strength of the

synapses from external inputs to the neurons in the αth neuronal
population, sα,ext

i the synaptic conductance of unit synaptic
strength from the external inputs, gαβ (β = E, I) the strength of

the synapses from the βth population to the αth population, sαβ
ij

the synaptic conductance of unit synaptic strength from the jth
neuron in the βth population connected to the ith neuron in the

αth population, Aαβ
ij = 1, 0 indicating whether the jth neuron

in the βth population connects to the ith neuron in the αth
population or not, and EE (EI) being the inverse voltage for the
excitatory (inhibitory) synaptic current. The membrane voltage
Vα
i is reset to Vr as soon as it crosses threshold θ , and will stay at

Vr for a refractory period τα
ref

after this reset.

The dynamics of the synaptic conductance of unit synaptic

strength s
αβ
ij follows (Brunel and Wang, 2003)

s
αβ
ij (t) =

∑

k

2(t − tk − τdelay)
τα
m

τα
d
− τα

r

[exp(−
t − tk − τdelay

τα
d

)

− exp(−
t − tk − τdelay

τα
r

)], (8)

with {t1, t2, · · · } being the spike train that the synapse receives,
τα
m ≡ Cα/gα

L the membrane time constant of the αth
population, τα

r (τα
d
) the rising (decaying) time scale of the

synaptic conductance in response to an incoming spike, and

τdelay = 1ms the axonal delay. The normalization factor
τα
m

τα
d
− τα

r
is

chosen so that varying the synaptic time constant does not affect
the time integral of a postsynaptic current (Brunel and Wang,
2003). The dynamics of sα,ext

i (t) is determined by the external
input spike trains, with the other parameters being that same as
those for sαEij (t).

In our simulations, gEL = gIL = 10 nS, CE = 20ms · gEL ,
CI = 10ms · gIL; E

E = 0mV, Vleak = EI = −70mV;
gEE = 0.4 nS, gEI = 5.8 nS, gIE = 0.74 nS, gII = 9.6 nS;
Vr = −60mV, θ = −50mV; τE

ref
= 2ms, τ I

ref
= 1ms;

τEr = τ Ir = 0.5ms, τE
d

= 4ms. The decaying time constant τ I
d

of all the inhibitory synapses are the same in a simulation trial,
but may differ in different trials, resulting in different network
dynamics (see Figure 3A). In a single trial, τ I

d
may take one value

in the 12 integers from 3 to 14ms. Each neuron also receives 1000
Hz external Poisson input, with external conductance gE,ext =

c× 0.53 nS, gI,ext = c× 0.75 nS, with c being a coefficient whose
value depends on τ I

d
. To keep the excitatory population almost

at 20 Hz for different trials, we choose c to be 3.1459, 3.28212,
3.38699, 3.46922, 1.60585, 1.46867, 1.27884, 1.04738, 0.82432,
0.616324, 0.410436, 0.323722 for τ I

d
as integer values from 3 to

14 ms (see Supplementary Materials Section S2 for more details
on how we chose c). Simulations were performed using a second
order Runge–Kutta scheme with fixed time step δt = 0.05ms;
and an interpolation scheme was also used for the determination
of the firing times of the neurons (Hansel et al., 1998).

The purpose of this work is to understand how the dynamic
patterns influence the efficacy variability, instead of how the
dynamic properties change with model parameters; so averaging
configurations of the random LIF networks does not help to gain
more insight to the problem being addressed, only increasing
complexity. Therefore, our study focused on a single typical
network configuration, except that we chose different initial states
and seeds of random generators for different trials, which resulted
in trial-to-trial variability. We did check our results using other
network configurations, and found qualitatively the same results.

2.4. Fitting cdiffv and cdriftv
Because of the additive nature of our STDPmodel, DiffV ∝ t and
DriftV ∝ t2. Therefore, the time evolution of the efficacy variance
v(t) can be written as v(t) = cdiffvt + cdriftvt

2 in a long run,
with cdiffv and cdriftv respectively quantifying the strength of DiffV
and DriftV. To estimate the values of cdiffv and cdriftv, we let the
excitatory population fire according to the recorded or shuffled
spike pattern, with STDP and synaptic homeostasis starting after
the initial 2 s of transient period. We then recorded the efficacy
variance at time 15, 16,..., 39 s after the transient period, and
did linear regression using the formula v(t)/t = cdiffv + cdriftvt.
The estimated values and standard errors of cdiffv and cdriftv
were then used to plot the relevant panels in Figures 8, 9. See
Supplementary Materials Section S3 for more details on the
fitting procedure and the goodness of fit.
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2.5. Spike Pattern Analysis
Here are the methods we used to analyze the statistics
of the spike patterns of the LIF network, both originally
recorded and after being shuffled. Each trial of our simulation
lasted for 41 s biological time, with the first 2 s regarded
as transient period and excluded from the following
analysis.

2.5.1. Analyzing the Statistics of Synchronous Firing
For spike patterns in synchronous states (τ I

d
≥ 7ms),

synchronous events are numerically defined as follows: the firing
rate of the excitatory population is first calculated in bins of 0.1
ms, then filtered using Gaussian window of σwindow = 1ms,
and synchronous events are then defined as the sequential bins
in which the filtered rates are above a threshold 1Hz. The size
of the Gaussian window and the value of the threshold are
chosen so that the duration of a synchronous event is large
enough to include nearly all the spikes that spurt synchronously
(see Figure 3A, middle and right panels), and at the same
time as small as possible. It is possible that some spikes
are not included in any synchronous event, and these spikes
will be excluded from the statistical analysis of synchronous
events.

The firing profiles of the neurons in synchronous events
shown in Figure 10E are calculated as follows. For a synchronous
spike pattern, we first order the firing rates of all the neurons
(2000 in total) from low to high, and then put the 290–299th
neurons into “low rate” bracket, the 1190–1199th neurons into
“middle rate” bracket, 1990–1999th into “high rate” bracket, and
all the neurons into “whole” bracket. Suppose rm,i,s(t) to be the
firing rate (calculated by counting spike numbers within bins
of 0.1 ms) of the ith neuron in the mth bracket in the sth
synchronous event, then the firing profile of the mth bracket is
defined as

r̄m(t) =
1

NiNs

∑

i,s

rm,i,s(t + ts)

m = low rate, middle rate, high rate, whole, (9)

with Ni being the number of neurons in the bracket, Ns being
the number of synchronous events, and ts being the middle time
(i.e., the mean time of all the spikes) of the sth synchronous
event. The idea of this equation is to first translationally move
all the synchronous events so that the middle times of these
synchronous events are all located at 0, and then average the firing
rates in these synchronous events for all the neurons in the same
bracket.

In Figure 7A, we use p and τcross to quantify the mean strength
and duration of synchronous events. p is defined as the mean
spike number per neuron per synchronous event. To calculate
τcross, we use the firing profile r̄whole(t) defined by Equation (9),
and τcross is then defined as the duration between the two times
at which r̄whole(t) drops below 10% of its peak value from its
peak time for the first time, along both the positive and negative
directions.

2.5.2. Analyzing the Statistics of Auto-Correlation

Structure
For spike patterns in asynchronous states (τd,I ≤ 6ms), auto-
correlation structure is quantified by the mean coefficient of
variance (CV , which is the ratio of the standard deviation and
mean of the inter-spike intervals) over all the spike trains,
representing the burstiness/regularity of these spike trains.

For spike patterns in synchronous states (τd,I ≥ 7ms), auto-
correlation structure is separated into three aspects (Figure 4):
(1) the broadness of the distribution of the spike numbers a
neuron fires in different synchronous events (ATSpikeNum), (2) the
burstiness/regularity of pieces of spike trains within synchronous
events (ATWithinEvent), and (3) the burstiness/regularity of the
occurrence of synchronous events (ATevents). ATSpikeNum is
quantified by the variance of the distribution of the spike
numbers a neuron fires in different synchronous events.
ATWithinEvent is quantified by CVWithinEvent , which is calculated
by averaging over the CV values of the pieces of spike trains that
contain more than 2 spikes in synchronous events. ATevents is
quantified by the CV of the middle times (i.e., the mean time of
all the spikes) of the synchronous events.

2.5.3. Analyzing the Statistics of Heterogeneity of

Rates
Heterogeneity of rates means the heterogeneity of time-averaged
firing rates for different neurons in the spike patterns. It is
quantified by the variance of the time-averaged firing rates.

2.5.4. Analyzing the Statistics of Heterogeneity of

Cross-Correlations
We define the unit cross-correlation between neuron a and
neuron b to be Cab(τ ) = 〈ra(t)rb(t + τ )〉/(〈ra(t)〉〈rb(t)〉), with
ra(t) being the firing rate of the ath neuron, and 〈·〉 representing
averaging over time. In this paper, heterogeneity of cross-
correlations typically means that the a post-synaptic neuron has
different unit cross-correlations with its different pre-synaptic
neurons. It reflects that different pre-synaptic neurons tend to fire
at different times relative to a post-synaptic spike.

To quantify the strength of heterogeneity of cross-
correlations, we define Index of heterogeneity of cross-correlations
(HCC) to quantify Eb(Vara∈∂b(

∫ ∞
−∞H(τ )Cab(τ )dτ )), with ∂b

representing all the pre-synaptic neurons of b, andH(τ ) being the
STDP time window (see Equation 5). It is estimated as follows:
for a synapse from neuron a to neuron b, we denote 1na→b as
the synaptic change per unit time under STDP alone (without

considering synaptic homeostasis), and denote1ma→b =
1na→b
rarb

(with ra and rb being the time-averaged firing rates). The index
of HCC is then calculated as Eb(Vara∈∂b(1ma→b)).

2.6. Spike Shuffling Methods
Here we list out the spike shuffling methods we used for spike
patterns in asynchronous states, and discuss how each of them
changes spike pattern statistics. We use different spike shuffling
methods for the spike patterns in asynchronous and synchronous
states, because of the sharp difference of their pattern structure.
Here we first list out the shuffling methods that are used for
both asynchronous and synchronous states, then list out those
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FIGURE 4 | The three types of auto-correlation structure we consider under synchronous firing. (A) The broadness of the distribution of the spike numbers a

neuron fires in different synchronous events. Note that in the left panel, a neuron fires quite different number of spikes during different synchronous events; while in the

right panel, the spike numbers of a neuron during different synchronous events are almost the same. (B) The burstiness/regularity of the pieces of spike trains within

synchronous events. (C) The burstiness/regularity of the occurrence of synchronous events.

only used for asynchronous states, and finally those only for
synchronous states. See Figure 5 and Supplementary Movie for
illustration of these spike shuffling methods.

2.6.1. Spike Shuffling Methods for Both

Asynchronous and Synchronous States

2.6.1.1. Whole-train Swap (WTS)
This method randomly shuffles the neuronal indexes of
spike trains in the pattern. For example, if we denote Ta

to be the spike train of the ath neuron, then the whole
spike pattern can be denoted as a set of neuron-train pairs
{(a, Ta), (b, Tb), (c, Tc), · · · }; then after WTS, the spike pattern
may become {(a, Tc), (b, Ta), (c, Tb), · · · }. By definition, WTS
keeps all the statistics of a spike pattern, but destroys the
possible correlation between the spike trains and the structure
of the underlying neuronal network. To get rid of this pattern-
network coupling thereby focusing on the influence to the
efficacy variability by spike pattern statistics (see the discussions
in Section 3.2), we treated all the recorded spike patterns byWTS
before any other shuffling method.

2.6.1.2. Spike-time Rescaling (STR)
The idea of this method is that the spike times are first projected
to the rescaled time defined as the accumulative function of the
population firing rate r(t)

3(t) =

∫ t

0
r(s)ds, (10)

and then are projected back to the normal time using 3−1
0 (s),

where 30(t) is the linear function connecting (0, 0) with
(T,3(T)), with T being the duration of the spike pattern. In
this way, inter-spike intervals are rescaled according to the
population firing rate, so that the population firing rate is kept
constant in the spike pattern after shuffling. Technically, STR is
realized by first ordering all the M spikes in the pattern, then
setting the time of the ith spike at iT/M. By definition, this
shuffling method flattens population firing rate, while conserving
the time-averaged firing rate of each neuron. As it keeps the
order of spikes, the burstiness/regularity of spike trains and cross-
correlations between spike trains in the original pattern can be,
to some extent, kept in the pattern after shuffling, especially if the
rate fluctuation in the original spike pattern is weak.

2.6.1.3. Neuron Re-choosing (NRC)
In thismethod, each spike in the pattern is assigned to a randomly
selected neuron. When the population size is large, this method
makes all the neurons to fire as Poisson processes with equal
time-dependent firing rate (i.e., ra(t) = rb(t) for two different
neurons a and b). NRC destroys auto-correlation structure,

Frontiers in Computational Neuroscience | www.frontiersin.org 9 August 2016 | Volume 10 | Article 83

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Bi and Zhou Spike Pattern Influences Efficacy Variability

FIGURE 5 | The spike shuffling methods we use to study the spike patterns of our LIF network, and their influences onto spike pattern structures. The

most left panel explains the spike shuffling methods we use to treat spike patterns, and the rest columns in the right show the influence of these spike shuffling

methods onto synchronous firing (SF), auto-correlation structure (AT), heterogeneity of rates (HR) and heterogeneity of cross-correlations (HCC). We consider three

types of auto-correlation structure for synchronous states ATSpikeNum, ATWithinEvent and ATevents (see Figure 4), and the auto-correlation structure under

asynchronous states are shortly represented by ATasync. X means that a shuffling method keeps a pattern structure unchanged; × means that a shuffling method

destroys a pattern structure. Here, “destroy” has a sense of “completely randomize.” For SF, “destroy” means that there is no time fluctuation of population firing rate.

For ATasync, it means that the spike train of the ath neuron can be regarded as an inhomogeneous Poisson process with rate ra(t) = rax(t), with ra being the

time-averaged firing rate, and x(t) being the same for all the neurons. Because of the weak fluctuation of the population firing rate in asynchronous states, this also

makes CV ≈ 1. For ATSpikeNum, it means that the spike numbers of the neurons within a synchronous event follows Poisson distribution of parameter p, with p being

the mean spike number per neuron within the synchronous event. For ATWithinEvent, it means that the spike train of the ath neuron can be regarded as an

inhomogeneous Poisson process with rate ra(t) = rax(t), with ra being the time-averaged firing rate, and x(t) being the same for all the neurons. For ATevents, it means

that the occurrence of synchronous events can be regarded as a Poisson process. For HR, it means that the time-averaged firing rates of all the neurons are the

same. For HCC, it means that the unit cross-correlations Cab(τ ) =
〈ra (t)rb (t+τ )〉
〈ra (t)〉〈rb (t)〉

(with ra(t) representing the firing rate of the ath neuron) are the same for different

neuronal pairs. © means that a shuffling method may change, but does not “completely randomizes,” a pattern structure. Note that STR completely flattens the rate

fluctuation with time, so ATSpikeNum, ATWithinEvent and ATevents are not applicable to the synchronous spike patterns after STR (indicated by the squares in the

figure). However, note that ATSpikeNum and ATWithinEvent of the spike patterns before STR can influence the burstiness/regularity of the asynchronous spike patterns

after STR. All these spike shuffling methods are further illustrated in Supplementary Movie.
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heterogeneity of cross-correlations and heterogeneity of firing
rates, but keeps the time fluctuation of population firing rate.

Note that under synchronous states, NRC also changes the
distribution of the spike numbers a neuron fires in different
synchronous events (i.e., ATSpikeNum). When the population size
is large, this distribution after NRC is a Poisson distribution with
parameter p, with p being mean spike number per neuron within
a synchronous event (i.e., the strength of the synchronous event).

2.6.2. Spike Shuffling Methods Only for

Asynchronous States

2.6.2.1. Translational Move (TM)
In this method, each spike train is translationally moved by a
random displacement, and periodic boundary condition is used
to deal with the spikes which are moved out of the boundaries
of time. By definition, TM keeps the auto-correlation structure
of spike trains, and the time-averaged firing rate of each neuron.
It flattens the cross-correlations between any pair of spike trains,
thereby destroying both synchronous firing and heterogeneity of
cross-correlations.

2.6.2.2. Spike Swap (SS)
The idea of this method is to swap pairs of randomly chosen
spikes of different neurons many times. A spike pattern can
be denoted as a set of number pairs {(a, t1), (b, t2), (c, t3), · · · },
with a, b, c, · · · being neuronal indexes, and t1, t2, t3, · · · being
spike times. Technically, SS shuffles the order of the first fields
of these number pairs, so that the spike pattern after SS may be
{(b, t1), (c, t2), (a, t3), · · · }. SS does not change the spike number
of a neuron, but randomizes the occurrence of these spikes.When
the size of the network is large, the probability that a neuron
fires near time t is proportional to the global firing rate at t, and
the times of different spikes are independent with each other.
Because of this, SS makes the spike trains Poisson processes, and
the rate fluctuations of all these spike trains are simultaneously
time-modulated: i.e., the firing rate of the ath spike train can be
written as ra(t) = rax(t), with ra being the time-averaged firing
rate, and x(t) being the same for all the spike trains. By definition,
SS destroys auto-correlation structure and heterogeneity of cross-
correlations, but keeps the time fluctuation of population firing
rate and the time-averaged firing rate of each neuron.

2.6.3. Spike Shuffling Methods Only for Synchronous

States

2.6.3.1. Spike Swap in Events (SSiE)
The idea of SSiE is to swap pairs of randomly chosen spikes
of different neurons many times, with each pair of chosen
spikes being within the same synchronous event. It can be
understood as implementing SS (see Section 2.6.2.2) onto each
synchronous event in the spike pattern. Our numeric definition
of “synchronous event” is presented in Section 2.5. By definition,
SSiE keeps the spike number of a neuron within a synchronous
event. And the same as SS, SSiE also makes the neurons to fire
like Poisson processes when the size of the neuronal population
is large, and the rate fluctuation of all the spike trains are
simultaneously time-modulated. By definition, SSiE destroys
heterogeneity of cross-correlations and ATWithinEvent.

2.6.3.2. Train Swap in Events (TSiE)
The idea of TSiE is to swap the pieces of spike trains of randomly
selected neurons pairs in the same synchronous event many
times, and the pieces of spike pattern in different synchronous
events are shuffled independently. By definition, TSiE destroys
heterogeneity of rates and heterogeneity of cross-correlations,
but keeps ATWithinEvent. The spike number distribution per
neuron per synchronous event for the whole neuronal population
is kept unchanged under TSiE, but the distribution for a single
neuron in different synchronous events is changed dramatically.

2.6.3.3. Event-time Shuffle (ETS)
The idea of ETS is that all the spikes within the same synchronous
events are translationally moved by a random displacement,
at the same time (1) avoiding the overlapping of different
synchronous events, and (2) keeping the order of synchronous
events unchanged. Here, by “avoiding synchronous-events
overlapping”, we have two meanings. Firstly, we mean that if a
synchronous event S happens in the time interval [t1, t2], then
no other synchronous events should happen in this interval.
Secondly, because of the axonal delay τdelay, a post-synaptic
neuron receives its pre-synaptic spikes in S during the interval
[t1 + τdelay, t2 + τdelay], and we would like the post-synaptic
neuron to receive no spikes from another synchronous event
between the time that it fires in S and the time that it finishes
receiving all its pre-synaptic spikes in S . In a word, these two
conditions mean that if a synchronous event happens in the
time interval [t1, t2], then no other synchronous event should
appear within [t1 − τdelay, t2], with τdelay being the axonal delay.
Technically, this is realized by first randomly selecting Nevent

points in the duration [0,T −
∑Nevents

i=1 (Ti + τdelay)] (with Nevent

being the number of the synchronous events, T being the time
duration of the spike pattern, and Ti being the duration of the
ith synchronous event, see Section 2.5 for the numeric definition
of “synchronous event”), then set the beginning time of the jth

synchronous event at xj +
∑j−1

i=1(Ti + τdelay) (with xj being the
jth selected points). The reason why we avoid the synchronous-
events overlapping is that firstly getting rid of the first constraint
above may change ATWithinEvent in some synchronous events,
thereby changing the efficacy variability through this side effect;
and secondly, our previous paper (Bi and Zhou, 2016) shows that
under the second constraint above the change of DriftV caused
by CVevents is simple to understand, and we would like to focus
on this simple situation here. The reason why we keep the order
of synchronous events is that there may be dependencies (on, say,
spike times, or spike numbers) between the pieces of spike trains
in adjacent synchronous events, and we would like to keep these
possible dependencies to the most extent during ETS. Note that
ETS not only change ATevent, but may also change heterogeneity
of cross-correlations by changing the STDP interactions of spikes
in adjacent synchronous events.

2.6.3.4. Event-order Shuffle (EOS)
EOS shuffles the occurrence order of the synchronous events, so
that the synchronous events appear at the same time points as in
the original pattern, but in a shuffled order. For example, if the
mean spike time of the ith synchronous event is at t̄i, then all the
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synchronous events in the whole spike pattern may be denoted
as a set of number pairs {(i, t̄i), (j, t̄j), (k, t̄k), · · · }; after EOS,
this pattern may become {(i, t̄k), (j, t̄i), (k, t̄j), · · · }. EOS destroys
possible dependencies (on, say, spike times or spike numbers)
between the pieces of spike trains in adjacent synchronous events.
By comparing the efficacy variability under spike patterns before
and after EOS, we found that such dependencies have little
influences onto efficacy variability in our model (Supplementary
Figure 9).

3. RESULTS

3.1. The Dynamic Patterns of the LIF
Network
When the decaying time scale τ I

d
of the inhibitory synaptic inputs

(Equation 8) is within the range 3ms ≤ τ I
d

≤ 6ms, the LIF
network (Section 2.3) works in asynchronous states (Figure 3A).
In this case, we found the population firing rate exhibits strong
fluctuation with time (Figure 6A, upper panels). The firing rate
of individual neurons also fluctuate strongly (Figure 6A, lower
panels); and the coefficient of variance (CV) is larger than 1
(Figure 6B), reflecting the burstiness of the spike patterns. These
features suggest that the network works in chaotic asynchronous
states, which may be caused by the unstability of the network
dynamics to heterogeneous perturbations (Ostojic, 2014). The
firing rates are heavily skewed (Figure 6C), which may be caused
by the heterogeneous input degrees and nonlinear current-rate
relationship of neurons (Roxin et al., 2011). There also exists non-
trivial cross-correlations between neurons in these asynchronous
patterns (Figure 6D), which may be caused by connectivity
details such as unidirectional connections and input sharing
(Ostojic et al., 2009; Trousdale et al., 2012).

When τ I
d

≥ 7ms, the LIF network works in synchronous
states, and gradually goes from weak synchronous state to
synchronously bursting state with the increase of τ I

d
(Figure 3A).

The spike pattern structure in synchronous states is more
complex than that in asynchronous states, and some key points
are listed below:

(1) Synchronous firing. Both the strength p and the duration τcross
of synchronous events increase with τ I

d
(Figure 7A).

(2) Heterogeneity of rates. The skewness and variance of the
firing rates decrease with τ I

d
(Figure 7B).

(3) Auto-correlation structure. For ATSpikeNum, because of
heterogeneity of rates, different neurons fire quite different
number of spikes in a synchronous event; but the spike
number distribution for a neuron in different synchronous
events is not broad (Figure 7C, left panel). For ATWithinEvent,
if a neuron is to fire more than one spikes in a synchronous
event, then these spikes tends to appear regularly (Figure 7C,
middle panel): this is because that the refractory periods of
the excitatory neurons in our model is fixed at τE

ref
= 2ms,

so the neurons will fire regularly at rate close to 1/τE
ref

if

they receive strong excitatory inputs during synchronous
events. For ATevents, synchronous events in our model tends
to appear regularly (Figure 7C, right panel), which reflects

the oscillation nature of the E-I circuit (Brunel, 2000; Brunel
and Wang, 2003).

(4) Heterogeneity of cross-correlations. We found that the
heterogeneity of cross-correlations tends to increase with τ I

d

(Figure 7D), especially when τ I
d
≥ 12ms. The reason of this

phenomenon and its influence onto the efficacy variability
will be discussed in Section 3.5.

3.2. Overview on the Strategy of
Implementing Spike Shuffling Methods
onto the Spike Patterns of the LIF Network
In the following two subsections, we will explain in details
how we investigate the influence of spike pattern structure onto
efficacy variability by implementing a variety of spike shuffling
methods onto the spike patterns generated by the LIF network.
But first of all, we give an overview on our strategy.

We use different spike shufflingmethods for the spike patterns
in asynchronous and synchronous states, because of the sharp
difference of their pattern structure. These methods are explained
in details in Section 2.6, Figure 5, and Supplementary Movie.
For all the recorded spike patterns, we first treat them using
a shuffling method called Whole-train Swap (WTS), before
implementing any other method for further studies. The reason
is that our spike patterns are generated by an underlying network
with a specific structure, so the statistics of the spike patterns
may be correlated with the structure of the underlying network.
For example, if neuron a connects to neuron b in a network N ,
then the cross-correlation between these two neurons in the spike
pattern P generated by N is more likely to be strong; so if the
network N undergoes STDP according to P , then the synapse
a → b is more likely to be potentiated strongly. Now suppose that
there is another network N ′ with the exactly the same structure
with N , except that the neuronal labels are different. In this
case, N and N ′ will generate spike patterns with exactly the
same statistics. However, neuron a may not connect to neuron
b in N ′, so if N ′ also undergoes STDP according to P , then
the strong cross-correlation between neuron a and neuron b in
pattern P will not contribute to the efficacy variability of N ′.
Therefore, the efficacy variability of a network not only depends
on the spike pattern statistics, but also depends on the possible
pattern-network coupling. By comparing the efficacy variability
under the original spike pattern and that under the spike pattern
treated by WTS, we can understand how strongly this pattern-
network coupling may contribute to the efficacy variability. We
found that in both asynchronous and synchronous spike patterns
of the LIF network, this pattern-network coupling can only
slightly increase the efficacy variability (see Figures 10A,B). This
suggests that the efficacy variability under both asynchronous
and synchronous spike patterns can be largely understood by the
spike pattern statistics alone. For all the spike patterns used in the
following subsections, we first implement WTS to remove this
pattern-network coupling.

From Figure 5, we see that a shuffling method may
simultaneously destroy more than one aspects of pattern
structure. Therefore, we must carefully design the order to
implement them when trying to understand how each aspect of
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FIGURE 6 | Statistics of the spike patterns of the LIF network in asynchronous states. (A) Upper panels: population firing rate as a function of time when

τ I
d
= 3ms (left) and 6 ms (right). Lower panels: firing rates for three example neurons, when τ I

d
= 3ms (left) and 6 ms (right). We estimated the instantaneous

population firing rates using bins of 0.1 ms, and estimated the instantaneous firing rates of individual neurons by convolving their spike trains with a 40-ms-wide

Gaussian filter. (B) Mean coefficient of variance (CV ) of all the spike trains in a spike pattern as a function of τ I
d
. (C) Left panel: the standard deviation of population rate

as a function of τ I
d
. Right panel: the distributions of firing rates when τ I

d
= 3 ms and 6 ms. (D) The index of heterogeneity of cross-correlations (HCC) (see Section 2.5)

as a function of τ I
d
. (A) and the right panel of (C) are plotted from one simulation trial, while the other panels are plotted from averaging over 32 simulation trials.

Simulation details are explained in Section 2.3. Error bars represent s.e.m.

pattern structure influences efficacy variability. For example, to
understand the effect of population rate fluctuation with time
in asynchronous patterns, we would like to treat the patterns
using TM. However, from Figure 5, TM destroys not only
synchronous firing but also heterogeneity of cross-correlations,
so to investigate the effect of synchronous firing, we must
implement TM onto the spike patterns whose heterogeneity of
cross-correlations are already destroyed. Therefore, we first treat
the spike patterns using SS, thereby destroying heterogeneity of
cross-correlations, and then investigate the change of the efficacy
variability after further implementing TM. This is the basic idea
we used to design our research.

We outline all the spike patterns we compare and the main
results we obtained from the following sections in Table 1.
For the convenience of the following discussions, we denote
PS1+S2+··· to be the spike patterns sequentially shuffled by
methods S1, S2, ... from the spike patterns firstly shuffled byWTS.
We denote P0 to be the original spike patterns, and PWTS to be the
patterns shuffled by WTS.

3.3. The Influence of Spike Pattern
Structure onto Efficacy Variability in
Asynchronous Patterns
Here we explain in details how we investigate the influence of
spike pattern structure onto efficacy variability by implementing

spike shuffling methods onto the spike patterns of the LIF
network working in asynchronous states (when τ I

d
≤ 6 ms).

(1) To examine the effect of synchronous firing, we observed
the time evolution of the efficacy variability caused by
PSS and PSS+TM . From Figure 5, TM not only destroys
synchronous firing, but also influences heterogeneity of
cross-correlations, so we first destroy heterogeneity of cross-
correlations using SS before implementing TM to study the
effect of synchronous firing. As DiffV ∝ t and DriftV ∝

t2, we fit the time evolution of the efficacy variability with
cdiffvt + cdriftvt

2 under PSS and PSS+TM , with cdiffv and cdriftv
being two to-be-fitted coefficients that respectively manifest
the strengths of DiffV and DriftV. See Section 2.4 for fitting
details. We found that cdiffv is larger under PSS than under
PSS+TM (Figure 8A1), which manifests the contribution of
synchronous firing onto DiffV. We also found that cdriftv is
approximately zero under PSS+TM , but not (although weak)
in PSS (Figure 8A2, blue lower panel). To understand this,
from Supplementary Materials Section S1.3.1, in the absence
of heterogeneity of cross-correlations,

DriftV ∝ |E(ab)(1w̃ab)|
2Vara(ra), (11)

with 1w̃ab being the change of the synapse from neuron
b to neuron a only caused by STDP (without considering
synaptic homeostasis), E(ab) representing averaging over

Frontiers in Computational Neuroscience | www.frontiersin.org 13 August 2016 | Volume 10 | Article 83

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Bi and Zhou Spike Pattern Influences Efficacy Variability

FIGURE 7 | Statistics of the spike patterns of the LIF network in synchronous states. (A) The strength p and duration τcross of synchronous events as

functions of τ I
d
(see Section 2.5 for details). (B) Left panel: Standard deviation of firing rates as a function of τ I

d
. Middle and right panels: the distributions of firing rates

when τ I
d
takes the indicated four values. (C) Left panel: σSpikeNum as a function of µSpikeNum when τ I

d
= 7 ms (blue), 10 ms (red) and 14 ms (black), with µSpikeNum

and σSpikeNum being the mean and standard deviation of the spike number distribution for a neuron in different synchronous events. Middel panel: CVWithinEvent (see

Section 2.5) as a function of τ I
d
, which quantifies the burstiness/regularity of pieces of spike trains within synchronous events. Right panel: CVevents (see Section 2.5)

as a function of τ I
d
, which quantifies the burstiness/regularity of the occurrence of synchronous events. (D) Index of HCC (see Section 2.5) as a function of τ I

d
. The left

panel of (C) is plotted from one simulation trial, while the other panels are plotted from averaging over 32 simulation trials. Error bars represent s.e.m.

TABLE 1 | The spike patterns that we compare to understand the influence onto efficacy variability by different spike pattern structures, and the outline

of main results.

Spike pattern structures The spike patterns we compare Main results

Asynchronous states (τ I
d
≤ 6ms) SF PSS vs. PSS+TM (Term 1 in Section 3.3) SF increases DiffV, influences DriftV by

changing P-D imbalance (see Equation 11).

HCC PSTR vs. PSTR+TM (Term 2 in Section 3.3) HCC increases DriftV under P-D balance.

AT PTM vs. PTM+SS (Term 3 in Section 3.3) CV increases DiffV, does not influence DriftV.

HR PTM+SS vs. PTM+NRC (Term 4 in Section 3.3) HR and P-D imbalance together induce DriftV.

Synchronous states (τ I
d
≥ 7ms) SF PSSiE vs. PSSiE+STR (Term 1 in Section 3.4) SF increases DiffV, influences DriftV by

changing P-D imbalance.

HR PSSiE vs. PSSiE+TSiE (Term 2 in Section 3.4) HR and P-D imbalance together induce DriftV.

AT ATWithinEvent PTSiE vs. PTSiE+SSiE (Term 3 in Section 3.4) Burstiness in ATWithinEvent increases DiffV,

does not change P-D imbalance.

ATSpikeNum PTSiE+SSiE vs. PTSiE+NRC (Term 4 in Section 3.4) Burstiness in ATSpikeNum increases DiffV,

does not change P-D imbalance.

ATevents PSSiE vs. PSSiE+ETS (Term 5 in Section 3.4) Burstiness in ATevents increases DiffV,

potentiates (depresses) synapses when

Ap > Ad (Ap < Ad ).

HCC PWTS vs. PSSiE (Section 3.5.2) HCC is the main reason of DriftV in

synchronous bursting states.

SF, synchronous firing; AT, auto-correlation structure; HR, heterogeneity of rates; HCC, heterogeneity of cross-correlations. We use PS1+S2+··· to represent the spike patterns sequentially

shuffled by methods S1,S2, ... from the spike patterns firstly shuffled by WTS, and use PWTS to represent the patterns treated by WTS.
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all the synapses, and Vara(ra) being the variance of the
firing rates. In this equation, |E(ab)(1w̃ab)| quantifies the
imbalance of the strengths of the potentiation and depression
process under STDP (P-D imbalance), and we see that DriftV
can be induced by the interaction of P-D imbalance and
heterogeneity of rates. Because of the absence of synchronous
firing in PSS+TM andAp = Ad in our model (Equation 5), the
potentiation and depression of STDP are balanced in PSS+TM

(Figure 8A2, red upper panel), but not in PSS because of
the population rate fluctuation with time (Figure 6A, upper
panels). This weak P-D imbalance under PSS makes DriftV
non-zero under heterogeneity of firing rates, which makes
cdriftv non-zero. These findings suggest that in asynchronous
spike patterns, the fluctuation of population rate increases
DiffV, and influences DriftV under heterogeneity of rates by
changing P-D imbalance.

(2) To manifest the effect of heterogeneity of cross-correlations,
we compared the efficacy variability under PSTR and
PSTR+TM . Here we use STR to flatten the population
rate fluctuation with time, before further using TM to
study the effect of heterogeneity of cross-correlations. We
found that cdriftv is significantly larger than zero under
PSTR but close to zero under PSTR+TM (Figure 8B2, blue
lower panel). From Supplementary Materials Section S1.3.2,
DriftV can be largely considered to be contributed by
two factors: heterogeneity of cross-correlations and the
interaction between P-D imbalance and heterogeneity of
rates. To understand the non-zero DriftV in PSTR, note
that PSTR is free of population rate fluctuation, so because
of Ap = Ad in our model (Equation 5), we should
expect P-D balance in PSTR. Although P-D imbalance may
slightly exist in PSTR (Figure 8B1), it is fairly weak. To
understand how strong DriftV this weak P-D imbalance
contributes, we can compare the P-D imbalance and DriftV
under PSTR with those under PSS (Figure 8A2, blue lower
panel and Figure 8B2, blue lower panel). We can see that
the P-D imbalance under PSS is much stronger than that
under PSTR, but the DriftV under PSS is much weaker
than that under PSTR. These suggest that the strong DriftV
under PSTR is not caused by the weak P-D imbalance, but
instead by the heterogeneity of cross-correlations remnant
from the original patterns (Figure 6D). TM destroys this
heterogeneity of cross-correlations (Figure 8B), and cdriftv
accordingly becomes almost zero (Figure 8B2, blue lower
panel).

(3) To examine the effect of auto-correlation structure, we
compared the efficacy variability under PTM with that under
PTM+SS. In these two patterns, synchronous firing and
heterogeneity of cross-correlations are destroyed by TM; and
SS then is used to reduce CV to almost 1 (Figure 8C1). We
studied both the case Ap = Ad and the case Ap 6= Ad

here to investigate whether the influence of auto-correlation
structure onto DriftV depends on P-D imbalance. We found
that SS hardly influences cdriftv but significantly reduces
cdiffv (Figures 8C2,C3). This suggests that the burstiness of
stationary spike trains does not change DriftV, but increases
DiffV.

(4) To study the effect of heterogeneity of rates, we compared
the efficacy variability under PTM+SS and PTM+NRC. Both SS
and NRC destroy heterogeneity of cross-correlations, and
result in spike trains with CV ≈ 1 (Figure 8D1, blue lower
panel), except that SS keeps the heterogeneity of rates, while
NRC homogenizes the firing rates (Figure 8D1, red upper
panel). We found that cdiffv is almost the same under PTM+SS

and PTM+NRC, regardless whether Ap = Ad or Ap 6= Ad

(Figure 8D2), which suggests that heterogeneity of rates does
not significantly change DiffV if the CV of the spike trains is
kept around 1. To understand the influence of heterogeneity
of rates onto DriftV, we kept Ap = 1, and observed how
cdriftv and P-D imbalance change with Ad under these two
patterns. We found that cdriftv is always near to zero under
PTM+NRC, but is positively correlated with the strength of P-
D imbalance under PTM+SS (Figure 8D3). This shows that
P-D imbalance can induce DriftV under heterogeneity of
rates.

3.4. The Influence of Spike Pattern
Structure onto Efficacy Variability in
Synchronous Patterns
Here we explain in details how we investigate the influence of
spike pattern structure onto efficacy variability by implementing
spike shuffling methods onto the spike patterns of the LIF
network working in synchronous states (when τ I

d
≥ 7ms).

(1) To examine the effects of synchronous firing, we fitted
the time evolution of efficacy variability with cdiffvt +

cdriftvt
2 under PSSiE and PSSiE+STR. Here we would like to

use STR to flatten the population firing rate. But as STR
not only destroys synchronous firing, but also influences
auto-correlation structure and heterogeneity of cross-
correlations (Figure 5), we first implement SSiE to result in
inhomogeneous Poisson processes before investigating the
effect of synchronous firing using STR. We found that cdiffv
under PSSiE is larger than that under PSSiE+STR (Figure 9A1),
which manifests the contribution of synchronous firing
onto DiffV. We also found that cdriftv is approximately
zero under PSSiE+STR, but not in PSSiE (Figure 9A2, blue
lower panel). The reason is that the potentiation and
depression of STDP are balanced in PSSiE+STR , because
of the absence of synchronous firing in PSSiE+STR and
Ap = Ad in our model (Equation 5); but not in
PSSiE, because of the population rate fluctuation with time
(Figure 9A2, red upper panel). And this P-D imbalance
results in DriftV under heterogeneity of rates. These findings
suggest that synchronous firing generally increases DiffV,
and influences DriftV under heterogeneity of rates by
changing P-D imbalance, which are consistent with our
results for asynchronous patterns (see Term 1 in the previous
section).

(2) To examine the effects of heterogeneity of rates, we
compared the efficacy variability under PSSiE with that under
PSSiE+TSiE. SSiE destroys heterogeneity of cross-correlations,
so that the interaction of heterogeneity of rates and P-
D imbalance becomes the only possible source of DriftV.
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FIGURE 8 | How spike shuffling methods influence the efficacy variability and spike pattern statistics under asynchronous states. (A1,A2) Comparing

PSS (solid line) with PSS+TM (dashed line). A1: cdiffv is larger under PSS than under PSS+TM. A2: cdriftv (blue) and E(ab)(1w̃ab) (red) are both nonzero under PSS, and

are both almost zero under PSS+TM. Note that there are two panels marked in different colors in this subplot and some subplots below. Here, E(ab)(1w̃ab) represents

the mean synaptic changes only caused by STDP (i.e., if the synaptic homeostasis is absent) (see Equation 11), and we use |E(ab)(1w̃ab)| to quantify P-D imbalance.

The method for calculating cdiffv and cdriftv is explained in Section 2.4. (B1,B2) Comparing PSTR (solid line) with PSTR+TM (dashed line). B1: E(ab)(1w̃ab) is weak

under PSTR and almost zero under PSTR+TM. B2: cdriftv (blue) and the index of HCC (red) are both larger under PSTR than under PSTR+TM. Here, the index of HCC

quantifies the heterogeneity of cross-correlations (see Section 2.5), and the non-zero index of HCC under PSTR+TM manifests its background value caused by chance

in the spike patterns. (C1–C3) Comparing PTM (solid line) with PTM+SS (dashed line). C1: The mean CV of spike trains under these two patterns. C2: cdiffv (blue) is

larger under PTM than under PTM+SS, but cdriftv (red) is almost the same. Ap = Ad = 1. C3: The same as C2, except that Ap = 4/3 and Ad = 1. (D1–D3)

Comparing PTM+SS (solid line) with PTM+NRC (dashed line). D1: Mean CV of spike trains (blue) and the standard deviation of firing rates σrate (red) under these two

patterns. D2: cdiffv is almost the same under PTM+SS with under PTM+NRC, both when Ap = Ad = 1 (blue), and when Ap = 4/3 and Ad = 1 (red). D3: cdriftv (blue)

and E(ab)(1w̃ab) (red) as functions of Ad , keeping Ap = 1, τ I
d
= 6ms. Note that under PTM+NRC, cdriftv ≈ 0; while under PTM+SS, cdriftv increases with |E(ab)(1w̃ab)|,

and cdriftv ≈ 0 only when |E(ab)(1w̃ab)| ≈ 0 (indicated by the vertical dashed line). In (A1–D3), Ap = Ad = 1 by default. Simulations lasted for 41 s of biological time,

and STDP and synaptic homeostasis started after 2 s of transient period. Error bars represent s.e.m. over 32 trials.

TSiE further destroys heterogeneity of rates, which reduces
the DriftV (i.e., cdriftv) under PSSiE+TSiE almost to zero
(Figure 9B, blue lower panel). When we keep Ap =

1 but assign Ad different values, the P-D imbalance is
accordingly changed. We found that cdriftv under PSSiE is
positively correlated with the strength of P-D imbalance
(Figure 9B). These observations again support the idea that
P-D imbalance can induce DriftV under heterogeneity of
rates (see Term 4 in the previous section).

(3) To examine the effects of ATWithinEvent, we compared the
efficacy variability under PTSiE with that under PTSiE+SSiE.
By definition (Figure 5), SSiE not only randomizes the
spike times, but also destroys the heterogeneity of cross-
correlations. So before using SSiE to investigate the effect
of ATWithinEvent, we first implemented TSiE to destroy
heterogeneity of cross-correlations in these two patterns.
We found that after SSiE, the pieces of spike trains within
synchronous events becomes burstier (Figure 9C1, red
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FIGURE 9 | How spike shuffling methods influence the efficacy variability and spike pattern statistics under synchronous states. (A1,A2) Comparing

PSSiE (solid line) with PSSiE+STR (dashed line). A1: cdiffv is larger under PSSiE than under PSSiE+STR. A2: cdriftv (blue) and E(ab)(1w̃ab) (red) are both nonzero under

PSS, and are both almost zero under PSS+STR. Note that there are two panels marked in different colors in this subplot and some subplots below. See the caption of

Figure 8A2 for the meaning of E(ab)(1w̃ab). (B) Comparing PSSiE (solid line) with PSSiE+TSiE (dashed line). cdriftv and E(ab)(1w̃ab) as functions of Ad , keeping Ap = 1

and τ I
d
= 7ms. Note that under PSSiE+TSiE , cdriftv ≈ 0; while under PSSiE , cdriftv increases with |E(ab)(1w̃ab)|, and cdriftv ≈ 0 only when |E(ab)(1w̃ab)| ≈ 0 (indicated

by the vertical dashed line). (C1,C2) Comparing PTSiE+SSiE (solid line) with PTSiE+NRC (dashed line). C1: Both cdiffv and σSpikeNum are larger under PTSiE+NRC than

under PTSiE+SSiE . Here, σSpikeNum represents the standard deviation of the distribution of spike number per neuron per synchronous event. C2: E(ab)(1w̃ab) under

these two patterns strongly overlap. (D1,D2) Comparing PTSiE (solid line) with PTSiE+SSiE (dashed line). D1: Both cdiffv and CVWithinEvent are larger under PTSiE than

under PTSiE+SSiE . Here, CVWithinEvents quantifies burstiness/regularity of the pieces of spike trains within synchronous events (See Section 2.5 for details). D2:

E(ab)(1w̃ab) under these two patterns strongly overlap. (E1–E4) Comparing PTSiE (solid line) and PTSiE+ETS (dashed line). E1: The burstiness of the occurrence of

synchronous events (quantified by CVevents, see Section 2.5 ) under these two patterns. E2: cdiffv under these two patterns both when Ap = 4./3 and Ad = 1 (blue),

and when Ap = 1 and Ad = 4./3 (red). E3: E(ab)(1w̃ab) (red) and cdriftv (blue) under these two patterns when Ap = 4./3 and Ad = 1. E4: The same as E3, except

that Ap = 1 and Ad = 4./3. In (A1–E4), Ap = Ad = 1 by default. Simulations lasted for 41 s of biological time, and STDP and synaptic homeostasis started after 2 s

of transient period. Error bars represent s.e.m. over 32 trials.

upper panel), and cdiffv also becomes larger (Figure 9C1, blue
lower panel). This suggests that burstier spike trains within
synchronous events increases DiffV.
In these two patterns, TSiE destroys both heterogeneity
of cross-correlations and heterogeneity of rates (which are
the two sources of DriftV), so cdriftv ≈ 0. To understand
the possible influence of ATWithinEvent onto DriftV under
heterogeneity of rates, we compared the P-D imbalance
under PTSiE with that under PTSiE+SSiE. We found that the

P-D imbalance under these two patterns are almost the
same (Figure 9C2), which suggests that ATWithinEvent has no
influence onto DriftV under heterogeneity of rates.

(4) To examine the effects of ATSpikeNum, we compared
the efficacy variability under PTSiE+SSiE with that under
PTSiE+NRC. In these two patterns, TSiE homogenizes firing
rates, so that different neurons have almost the same spike
number distribution across synchronous events. Both SSiE
and NRC randomize spike times (so that PTSiE+SSiE and
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PTSiE+NRC have similar ATWithinEvent, see Supplementary
Materials Section S4 for more discussions); but SSiE keeps
this spike number distribution, while NRC makes this
distribution broader (Figure 9D1, red upper panel). We
found that cdiffv is larger under PTSiE+NRC than under
PTSiE+SSiE (Figure 9D1, blue lower panel). This suggests that
broader distribution of the spike numbers a neuron fires in
different synchronous events increases DiffV.
We also found that P-D imbalance under these two
patterns are almost the same (Figure 9D2), which suggests
that ATSpikeNum has no influence onto DriftV under
heterogeneity of rates.

(5) To examine the effects of ATevents, we compared the
efficacy variability under PSSiE with that under PSSiE+ETS.
As ETS changes not only ATevents but also heterogeneity
of cross-correlations (Figure 5), we first implemented SSiE
to destroy heterogeneity of cross-correlations before further
using ETS to study the effects of ATevents. ETS increases
the burstiness of the occurrence of synchronous events
(Figure 9E1), but we found that cdiffv is almost the
same under these two patterns (Figure 9E2). However,
this is possibly because that the irregularity of spike
trains within synchronous events dominates DiffV, while
the contribution from the interactions between spikes in
different synchronous events are small due to the far
separation between synchronous events and the decaying
STDP time window. In Supplementary Material Section
S5.1.4, we study the influence of CVevents onto DiffV in
more details by comparing PTSiE+SSiE with PTSiE+SSiE+ETS,
with TSiE being used to homogenize firing rate to make
DriftV = 0. This makes the efficacy variability totally
caused by DiffV, so that the estimated value of cdiffv becomes
more precise. To increase the STDP interaction between
spikes in different synchronous events, we also increase
the STDP time scale τSTDP (see Equation 5). We find
that cdiffv under PTSiE+SSiE+ETS is larger than that under
PTSiE+SSiE (Supplementary Figure 6), which suggests that
burstier occurrence of synchronous events tends to increase
DiffV.
How ATevents influences DriftV may be intriguing.
Our previous paper (Bi and Zhou, 2016) suggests that
if synchronous-event overlapping is absent (i.e., if a
synchronous event S happens during the interval [t1, t2],
then no other synchronous event should happen within
[t1 − τdelay, t2], with τdelay being the axonal delay), then
the burstiness of the occurrence of synchronous events
tends to potentiate synapses when Ap > Ad and depress
synapses when Ap < Ad. We carefully avoid synchronous-
event overlapping during ETS (see Section 2.6.3.3).
Consistently, we found that ETS tends to potentiate synapses
when Ap > Ad and depress synapses when Ap < Ad

(Figures 9E3,E4, red upper panels), which is consistent
with our previous results. In our model, this weakens (or
strengthens) P-D imbalance (i.e., the absolute value of mean
synaptic changes under STDP) when Ap > Ad (or Ap < Ad),
which decreases (or increases) DriftV under heterogeneity
of rates (Figures 9E3,E4, blue lower panels).

3.5. Understanding the Efficacy Variability
under the Spike Patterns Generated by the
LIF Network
The influence of synaptic time scales onto network dynamics has
been discussed in theoretical studies (Brunel and Wang, 2003;
Geisler et al., 2005). When the decay time scale of inhibitory
conductance τ I

d
≤ 6ms, our LIF network works in asynchronous

state with the firing rate of each neuron fluctuating chaotically
(Figure 6A). It is believed that the high-dimensional nature of the
state trajectory of such networks provides substrate for complex
computations such as classifying temporal signals (Ostojic, 2014)
and learning complex spatio-temporal patterns (Sussillo and
Abbott, 2009), also see the seminal papers by Maass et al. (2002)
and Jaeger (2003) on reservoir computing. When τ I

d
= 7 or 8ms,

the network works in weak synchronous state (Figure 3A, middle
panel). In this case, the oscillation frequency is larger than the
firing frequency of most neurons, and the spike trains of most
neurons look irregular despite the population coherent rhythm,
which is consistent with the observations in hippocampus and
cortex (Csicsvari et al., 1998; Fries et al., 2001). When τ I

d

continues to grow (especially when τ I
d
= 13ms or 14ms), nearly

every neuron fires burstly in a synchronous event (Figure 3A,
right panel), just like in the spike patterns observed in epilepsy
(Gulyás and Freund, 2015). In the following discussions, we
will use spike shuffling methods to understand the contributions
of different statistical features to the efficacy variability under
these spike patterns generated by our LIF network, thereby
gaining understanding on the efficacy variability under the spike
patterns observed in these theoretical and experimental studies.
For example, we would like to know which spike pattern statistics
influences to the efficacy variability significantly, and which spike
pattern statistics is the main reason for the change of efficacy
variability with τ I

d
. In our simulations, we kept the firing rate of

the excitatory population at 20 Hz for different τ I
d
s (see Section

2.3), so that the change of the efficacy variability with τ I
d
is totally

caused by higher order pattern statistics.

3.5.1. Asynchronous States
For asynchronous states, we sequentially shuffled the original
spike pattern by WTS, STR, TM, SS, and NRC, and then
observed the efficacy variability in the resulting spike patterns
(Figure 10A). The change of the efficacy variability after
each of these shuffling methods respectively manifests the
contribution of pattern-network coupling (for WTS), population
rate fluctuation with time (for STR), heterogeneity of cross-
correlations (for TM), auto-correlation structure (for SS), and
heterogeneity of rates (for NRC). Here, after WTS, we first
use STR to assess the influence of population rate fluctuation
onto efficacy variability. From Figure 5, STR not only flattens
population rate, but also influence auto-correlation structure and
heterogeneity of cross-correlations. However, as the fluctuation
of population rate in asynchronous states is not so strong, the
auto-correlation structure and heterogeneity of cross-correlation
in the original patterns should largely preserve after STR. From
Figure 10A, the efficacy variability is only slightly reduced by
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FIGURE 10 | Understanding the contributions to the efficacy variability by different spike pattern structures under the spike patterns of the LIF

network. (A) The efficacy variance under the original asynchronous patterns and the patterns sequentially shuffled by WTS, STR, TM, SS, and NRC. Note that the

variance under PSTR+TM+SS and that under PSTR+TM+NRC are strongly overlapped, because of the P-D balance caused by the absence of population rate

fluctuation after STR and Ap = Ad in our model. (B) The efficacy variance under the original synchronous spike patterns and under PWTS, PTSiE and PSSiE . Note that

the results for the original pattern and PWTS are strongly overlapped. (C) E(ab)(1w̃ab) (blue) and the standard deviation of firing rate σrate (red) as functions of τ I
d
under

PSSiE . (D) Index of HCC in PWTS and PSSiE . (E) Firing profiles within synchronous events under PWTS for neurons with high (blue), middle (red) and low (black) firing

rates as well as the whole population (dashed), when τ I
d
= 7 ms (left panel) and 14 ms (right panel). The zero point indicates the middle time of a synchronous event,

and the function value at time t means the firing rate at time t relative to the middle time of the synchronous event, averaging over all synchronous events in the spike

patterns. See Section 2.5 for details. (F) The unit cross-correlation between the neurons with low rate and middle rate (blue), and that between the neurons with high

rate and middle rate (red), when τ I
d
= 7 ms (left panel) and 14 ms (right panel). The definitions of “high rate,” “middle rate,” and “low rate” neurons are the same as

those in (E) (see Section 2.5 for details). In (A–F), Ap = Ad = 1. Simulations lasted for 41 s of biological time, and STDP and synaptic homeostasis started after 2 s of

transient period. Error bars represent s.e.m. over 32 trials.

STR. After STR, both CV and index of heterogeneity of cross-
correlation are slightly reduced (Supplementary Figure 8), both
of which reduce the efficacy variability. This suggests that the
reduction of the efficacy variability caused by population rate
fluctuation alone is even smaller than the reduction by STR
shown in Figure 10A. Afterwards, we implement TM onto
patterns treated by STR for understanding the contribution of
heterogeneity of cross-correlations, implement SS onto patterns
treated by TM for auto-correlation structure, and compare
the effects of SS and NRC on patterns treated by TM for
heterogeneity of rates. All of these are consistent with the
research design in the previous subsections (see the items about
asynchronous states in Table 1).

We found that under our parameter values, heterogeneity
of cross-correlations and auto-correlation structure are the two
major sources of the efficacy variability; and auto-correlation
structure contributes most to the increase of the efficacy
variability with τ I

d
(Figure 10A). As heterogeneity of cross-

correlations mainly contributes to DriftV (which is of O(t2)
order), and auto-correlation structure mainly contributes to
DiffV (which is of only O(t) order), the significant contribution
of auto-correlation structure here highlights its importance

to understand the efficacy variability in asynchronous
states.

3.5.2. Synchronous States
For synchronous states, we first used WTS to destroy the
pattern-network coupling, and found that this coupling hardly
influences efficacy variability (Figure 10B). Then, we used TSiE
to destroy heterogeneity of rates and heterogeneity of cross-
correlations, which are the two sources of DriftV, and found that
the efficacy variability is reduced bymore than 10 times after TSiE
(Figure 10B). This suggests that the efficacy variability under the
synchronous states in our model is dominated by DriftV, and we
only need to focus on DriftV to understand the change of the
efficacy variability with τ I

d
.

To compare the contribution of heterogeneity of rates
and heterogeneity of cross-correlation to DriftV, we compared
the efficacy variability under PWTS with that under PSSiE
(Figure 10B). After SSiE, the heterogeneity of cross-correlations
is destroyed. Therefore, the DriftV under PSSiE is contributed by
the interaction of heterogeneity of rates and P-D imbalance. We
found that the efficacy variability under PSSiE gets its maximum
around τ I

d
= 9ms, and decreases when τ I

d
continues to
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grow (Figure 10B). This can be understood as a result caused
by the interaction of the increase of P-D imbalance and the
decrease of rate heterogeneity with τ I

d
(Figure 10C). However,

the efficacy variability under PWTS is smaller than that under PSSiE
when τ I

d
is small, but tends to monotonically increase with τ I

d
(Figure 10B), which manifests the contribution of heterogeneity
of cross-correlations. Indeed, we found that the index of HCC
(which quantifies Vara(

∫ ∞
−∞ dτH(τ )Ca(−τdelay − τ )), see Section

2.5) tends to increase with τ I
d
, especially in the strong-bursting

regime (i.e., τ I
d

= 13ms, 14ms, see Figure 10D). Together,
these observations make us come to the understanding that: (1)
in weak synchronous states (when τ I

d
is small), heterogeneity

of rates contributes most to the DriftV, and heterogeneity of
cross-correlations reduces the DriftV caused by heterogeneity
of rates; (2) in synchronous bursting states (when τ I

d
is large),

heterogeneity of cross-correlation overwhelms heterogeneity of
rates to be the dominating factor to DriftV, which pushes DriftV
to continuously increase with τd,I .

To understand the origin of the heterogeneity of cross-
correlations in synchronous states, we plot the firing profiles
of the neurons during synchronous events (Figure 10E). We
found that under PWTS, in weak synchronous states (when τ I

d
is small), the neurons with high firing rates (high-rate neurons)
tends to start to fire earlier and stop to fire later than the neurons
with low firing rates (low-rate neurons) in a synchronous event
(Figure 10E, left panels); in synchronous bursting states (when
τ I
d
is large), however, high-rate neurons still stop to fire later than

low-rate neurons at the end of a synchronous event, but high-rate
and low-rate neurons tend to start to fire at the same timewith the
same rate at the beginning of a synchronous event (Figure 10E,
right panels). To understand this, note that the high-rate (low-
rate) neurons tend to receive more (less) excitatory inputs and
less (more) inhibitory inputs in the network, which makes the
inputs of high-rate neurons increase above (decrease below) the
firing threshold earlier (later) than those of the low-rate neurons
at the beginning (end) of a synchronous event. This is the reason
for the firing profiles when τ I

d
is smaller. When τ I

d
is large,

however, the strengths of the inhibitory currents in our model
(Equation 8) are accordingly scaled down. This enlarges the time
window for the supra-threshold excitatory currents to quickly
push the firing rates of all the neurons to near saturation at the
beginning of a synchronous event, before the time-integrations of
the inhibitory currents gradually turn off the neuronal activities,
from low-rate to high-rate neurons. Now suppose that the 0th
neuron in the network receives both from the hth neuron with
higher firing rate and from the lth neuron with lower firing rate.
When τ I

d
is small, both the unit cross-correlation between the

hth and 0th neurons Ch0(τ ) and that between the lth and 0th
neurons Cl0(τ ) are almost symmetric around τ = 0 (Figure 10F,
left panel). But when τ I

d
is large, there is an apparent left-

shift of Ch0(τ ) comparing with Cl0(τ ) (Figure 10F, right panel):
this causes

∫ ∞
−∞ dτH(τ )Ch0(−τdelay − τ ) very different from

∫ ∞
−∞ dτH(τ )Cl0(−τdelay − τ ) when τ I

d
is large. This is the reason

for the increase of heterogeneity of cross-correlations with τ I
d
.

Another issue that has not been considered till now is the
possible dependence (on, say, spike times or spike numbers)

between the pieces of spike trains in adjacent synchronous events.
To check the influence of this inter-event dependence onto the
efficacy variability, we compared the efficacy variability under
PWTS with that under PEOS (see Section 2.6.3.4 for the method
of EOS). We found that EOS hardly influences the efficacy
variability (Supplementary Figure 9), which suggests that this
inter-event dependence hardly influences the efficacy variability
in our model.

4. DISCUSSION

In this paper, we developed a systematic spike shuffling approach
to alter four types of statistics of spike patterns (i.e., synchronous
firing, auto-correlation structure, heterogeneity of rates and
heterogeneity of cross-correlations) under both asynchronous
and synchronous states, and then applied this approach to
systematically study the influence of the four aspects of pattern
structures onto the efficacy variability under STDP and synaptic
homeostasis in the spike patterns self-organized by a biologically
plausible LIF neuronal network. The main results are shown in
Table 1, which can be summarized as (1) synchronous firing
and burstiness tend to increase DiffV, (2) synchronous firing
influences P-D imbalance, which can induce DriftV together
with heterogeneity of rates, and (3) heterogeneity of cross-
correlations induces DriftV together with heterogeneity of rates.
We compared our results with those of our previous paper (Bi
and Zhou, 2016) in Supplementary Material Section S5, and
found their consistency. We also examined the contributions
of different pattern statistics to the efficacy variability under
the spike patterns of the LIF network, and found that auto-
correlation structure is important to determine the efficacy
variability under asynchronous states, while heterogeneity of
cross-correlations is the main factor to cause efficacy variability
when the network moves into synchronous bursting states. We
believe ourmethod can contribute to the library of spike shuffling
methods, and provide new angles for experimentalists to analyze
their data; and our results can help to understand the efficacy
variability under the spike patterns observed in theoretical and
experimental studies.

When the time scales of inhibition and excitation are
comparable, our LIF network works in asynchronous states;
when the inhibition time scale starts to grow, the LIF network
transites to weak synchronous state at some point, performing
oscillation in the gamma frequency regime (Figure 3A). In
our simulations, we fixed the excitatory decay time constant
at 4 ms while changed the inhibitory decay time constant
within 3–14 ms, both are around typical values of AMPA and
GABAA currents [2 ∼ 5ms for AMPA (Zhou and Hablitz,
1998; Angulo et al., 1999), 5 ∼ 15ms for GABAA (Xiang
et al., 1998; Gupta et al., 2000)]. In physiological situations,
neuronal network dynamics is not only determined by synaptic
time scales, but also by other factors such as the neuronal
response properties and connections; so it is difficult to directly
compare the spike patterns in our simulations with those
observed in experiments. However, we can still gain insight
onto the functional roles of the efficacy variability caused by
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the dynamics through the computational tasks that the network
takes.

In the asynchronous states, the firing rate of each neuron
in our LIF network fluctuates chaotically (Figure 6A, lower
panels), and our study suggests that the irregular auto-correlation
structure of spike trains in this chaotic asynchronous state may
contribute significantly to the efficacy variability of the recurrent
connections. Theoretically, it has been proposed that larger
variance of recurrent synaptic weights facilitates chaoticity of
a network (Sompolinsky et al., 1988; Toyoizumi and Abbott,
2011), which again promotes irregularity of spike trains. This
mutual facilitation of chaos and synaptic variance may have
important implications in the development of brain areas such
as the primary olfactory system and the cerebellum, which
may use the high-dimensional nature of the state trajectory in
chaos to do complex computations such as odor discrimination
(Mazor and Laurent, 2005) andmotion control (Buonomano and
Mauk, 1994; Yamazaki and Tanaka, 2007). One problem of such
chaos-based computations is that the dynamics may be sensitive
to the noises and the initial conditions of the network. This
sensitivity may be suppressed using a feedback loop from the
readout unit (Jaeger and Haas, 2004; Sussillo and Abbott, 2009)
or perform suitable plastic changes on the recurrent weights (Laje
and Buonomano, 2013), so that the innate trajectory becomes
stabilized.

Gamma oscillations is believed important for memory
formation under normal physiological conditions (Sederberg
et al., 2007; Jutras et al., 2009; Yamamoto et al., 2014). Our
intuition shown in Figure 2A suggests that successful memory
embedding requires small efficacy variability, which may be
a physiological function of gamma oscillation. However, in
our simulations, we did not observe small efficacy variability
when our LIF network works in weak synchronous state
(Supplementary Figure 7). This may be because that we did
not consider the shunting effect of perisomatic fast-spiking
interneurons in our model. On the one hand, these interneurons
may help to homogenize neuronal firing rates (Vida et al., 2006),
which reduces DriftV. On the other hand, they are also able
to entrain high temporal precision of spike time (Cobb et al.,
1995; Salkoff et al., 2015), resulting in spike-to-spike synchrony
of pyramidal neurons, which helps to reduce DiffV (see Section
3.3 of our previous paper Bi and Zhou, 2016).

When the time scale of feedback inhibition is much larger
than that of excitation, our LIF network exhibits low-frequency
oscillation burstiness (Figure 3A, left panel). This is similar to
the low-frequency (about 3Hz) “spike-and-wave” EEG pattern
commonly observed in absence seizure (Hughes, 2009), in which
the “spike” component is associated with neuronal firing, while
the “wave” is associated with hyperpolarization of neurons. In
normal case, the thalamocortical (TC) cells are mainly inhibited
by fast GABAA currents from the thalamic reticular (RE) cells
recurrently connected with them in the thalamus, and oscillates
with frequency around 10 Hz. In pathological case, however, the
cortical pyramidal neurons (PN) becomes hyperexcited by, say,
lack of synaptic inhibition (Maheshwari and Noebels, 2014) or
impaired hyperpolarization-activated current (Ih) (Strauss et al.,
2004) in PN. In this case, the strong excitatory corticothalamic

feedback will evoke the IPSPs in TC cells from RE cells
dominated by the slow GABAB component, which lowers down
the oscillation frequency to about 3 Hz (Destexhe, 2007, 2008).
Therefore, absence seizure is closely related to the prolonged
inhibitory time scale in the thalamus, which shares a similar
mechanism as the synchronous burstiness observed in our LIF
network. Our study shows that heterogeneity of cross-correlation
is the main reason for the large efficacy variability in this state,
which provides possible understanding to the memory deficit in
children with absence seizure (Nolan et al., 2004; Henkin et al.,
2005).

However, although spike shufflingmethods provide important
insights into the influence of spike pattern structure to synaptic
plasticity, they have their own limitations. Firstly, the spike
shuffling methods we use always randomize spike patterns, so
that the spike patterns look more like homogeneous Poisson
processes with homogeneous firing rate after being treated by
each method. For example, Spike Swap (SS) is able to change
the CV of stationary spike trains. But this change is always
toward the direction of “randomization”: it increases (decreases)
CV if that of the original spike train is smaller (larger) than 1.
This may be solved using parametric spike shuffling methods.
For example, spike trains can be regularized if we constrain the
shuffling process using spike history effect, such as refractory
period (Berry andMeister, 1998), or correlations among adjacent
inter-spike intervals (Brandman and Nelson, 2002). Secondly,
from Figure 5, some spike shuffling methods simultaneously
strongly alter more than one pattern statistics. As a result,
before we study the influence of a pattern statistics using a
shuffling method, we have to first treat the spike pattern using
other shuffling methods to randomize other pattern statistics
thereby nullifying their influences (see Section 3.2). This limits
us from understanding how a pattern statistics may influence
the efficacy variability when other pattern statistics remain
unchanged. From this aspect, the advantage of the strategy of
our previous paper (Bi and Zhou, 2016) becomes manifested, in
which the statistical features of the spike patterns can be explicitly
controlled by the statistical models, which facilitates a thorough
and systematic study in a large parameter range. Therefore,
both the strategies in this paper and in our previous paper
have their pros and cons. They complement each other, helping
us to gain a thorough and convincing understanding on the
problem.

During plasticity, synaptic efficacies and network dynamics
interact with each other. In both of our papers, we only
studied the influence of network dynamics onto the efficacy
variability under STDP and synaptic homeostasis, by supposing
that the neurons fire spikes according to pre-specified spike
patterns, irrelevant with the synaptic weights. Although this
approach saved us from the complex co-evolution of the two
(Figure 3B), it does not provide a thorough understanding on the
dynamics of plastic networks. Studies on the synapse-dynamics
coevolution usually use the assumption that the timescale of
spiking covariance is far smaller than that of plasticity, thereby
focusing on the evolution of the expectations of synaptic weights
(Babadi and Abbott, 2013; Ocker et al., 2015), and neglecting the
trial-to-trial variabilities; or use heavy simulations (Fiete et al.,
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2010; Litwin-Kumar and Doiron, 2014) to get phenomenological
understandings. The key difficulty here lies in the efficacy
variability during the plasticity process: initial variability of
synaptic weights generates different network dynamics for
different trials, which then further amplifies the trial difference of
network structure during plasticity. This may make the synapse-
dynamics coevolution sensitive to initial conditions and noises,
thereby resulting in sharply different functional performances for
different individuals. How do realistic neuronal networks develop
robust brain functions through the jungle of noises? We believe
our work is able to help to understand this intriguing problem in
future research.
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