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Abstract
Organ fibrosis represents a vital health threat that substantially contributes to yearly mortality rates. While a considerable amount of research
has been conducted on fibrosis, these reports have only focused on specific organs as affected within distinct disorders. Accordingly, results
from such studies have been unable to provide a comprehensive understanding of the pathological processes involved. Here, we describe
the development of FibROAD, an open-access database that integrates evidence from fibrosis-associated disorders as obtained from both the
literature and multi-omics data. This resource will greatly assist both researchers and clinicians in the comprehension and treatment of this
condition. FibROAD currently involves an assembly of 232 strong evidence-based fibrosis-related genes (FRGs) as garnered from 909 PubMed
publications and contains lists of multi-omics data from>4000 samples including RNA-seq, single-cell RNA-seq, miRNA-seq, ChIP-seq, ATAC-
seq MeDIP-seq and MBD-seq as obtained from 17 different organs in 5 species. Results from integrative analyses as obtained using FibROAD
have demonstrated that FRGs can be indicators for a wide range of organ fibrosis and reveal potential pro-fibrotic candidate genes for fibrosis
research. In conclusion, FibROAD serves as a convenient platformwhere researchers can acquire integrated evidence and amore comprehensive
understanding of fibrosis-related disorders.

Database URL: https://www.fibroad.org

Introduction
Fibrosis is a term used to describe the process of connective
tissue deposition in response to organ injury and aging, and
represents a condition that has attracted considerable atten-
tion and interest of late. As part of routine physiological
processes, fibrosis can occur in almost all organs (1) but is
particularly prevalent in the lung, liver, kidney, heart, bone
marrow and skin. Moreover, fibrosis is associated with a
number of essential biological processes, including aging (2)
and wound healing (3). Ordinarily, fibrosis serves as a repar-
ative and protective process to sustain normal functioning of
organs, however pathological states of this process can induce
excessive scarring resulting in organ malfunction and even
failure. Complications due to fibrosis are currently the lead-
ing cause of death in the industrialized world (4) and represent
a major challenge to global health. In addition, the cosmetic
disfigurements of scars or keloids (5) resulting from fibrosis
have generated a global industry of substantial economic

consequence. Based on these issues, fibrosis has emerged as
a condition of increasing importance and will require a pool-
ing of all available resources to achieve a more comprehensive
understanding for research and clinical treatments directed at
this disorder.

With the advent and development of high-throughput
omics techniques, it is now possible to obtain a more compre-
hensive evaluation regarding processes involved with fibrosis.
As achieved with the use of the application of single-cell
transcriptomics, Xie (6) described gene expression patterns
of pulmonary fibrosis within a murine model, while Liu (7)
illustrated the immune landscape of renal fibrosis, with both
studies providing results at much higher resolutions than that
obtained with more traditional techniques. Moreover, by
combining multiple omics approaches, it is possible to deci-
pher more precisely the processes and network changes that
occur during organ fibrosis (8, 9). Although these results have
greatly expanded our view of fibrosis, they represent findings
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that only focus on isolated organs within specific conditions.
In this way, they limit the capacity of achieving a broader
overview of this complicated process. Therefore, pooling of all
available resources to achieve a more comprehensive under-
standing of fibrosis would seem a critical endeavor for a more
complete understanding of these processes.

Currently, only a limited number of databases are available
that can provide investigative information regarding fibro-
sis. These databases are concentrated on either unique types
of diseases, such as the Cystic Fibrosis Database, Fibromine
(10) and PulmonDB (11), or on specialized fields of research
or techniques, including cell identification (IPF Cell Atlas),
genetic mutations (Cystic Fibrosis Mutation Database) and
pharmacology (comparative Toxicogenomics Database) (12).
However, as fibrosis involves a complicated bio-pathological
process, it is imperative that investigators consider and inves-
tigate this condition from a more comprehensive perspec-
tive with integrated evidence. Currently, no such platform
effectively satisfying these requirements exists.

In an attempt to bridge this gap, we developed FibROAD
(Fibrosis-Related Omnibus for Archives and Datasets,
https://www.fibroad.org). This resource enables researchers
to browse and analyze a wide range of multi-omics data
associated with fibrosis, based on a manually curated,
evidence-based fibrosis-related gene set. The current version
of FibROAD consists of a set of 232 Fibrosis-Related Genes

(FRGs) carefully filtered as based on experimental evidence
from PubMed publications and lists the omics data from
researches on 4351 samples involving RNA-seq, single-cell
RNA-seq, miRNA-seq, ChIP-seq, ATAC-seq MeDIP-seq and
MBD-seq. With FibROAD, researchers are provided with a
‘roadmap’ enabling them to evaluate fibrosis from a more
global perspective. We believe this database would be exten-
sively used and significantly promote new avenues for future
research in fibrosis.

Results
Contents and statistics of FibROAD
The overall workflow for the construction of FibROAD is
illustrated in Figure 1A. The major contents of FibROAD
are divided into two parts: (i) fibrosis-related genes (FRGs),
which consists of a gene list containing FRGs curated from
PubMed publications and (ii) multi-omics evidence, which
includes fibrosis-related high-throughput data collected from
GEO, SRA and EBI-ENA databases.

With the use of these methods and criteria previously
described, the current version of FibROAD incorporates
232 FRGs from 909 PubMed publications with strong
experimental evidence and lists the experimental methods
employed, functions (pro- or anti-fibrotic) and their litera-
ture sources (PubMed IDs). For gene descriptions, FibROAD

Figure 1. Workflow and statistics for the FibROAD database. (A) pipeline diagram depicting construction of the principal workflow of FibROAD. (B) Pie
diagrams for the proportions of omic approaches (left) and organs (right) collected in FibROAD, with numbers indicating totals of projects.

https://www.fibroad.org
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introduces each FRG with its basic information and aliases
collected from both NCBI-Gene and UNIPROT databases.
In addition, FibROAD also provides information on FRGs
related protein–protein interactions, transcription factor reg-
ulations and drug–target interactions, as obtained from
STRING, RNAInter (13) and DrugBank databases, respec-
tively.

For the Omics component (Figure 1B), FibROAD lists
the data from 3599 RNA-seq (169 projects), 392 single-cell
RNA-seq (40 projects), 252 miRNA-seq (11 projects), 64
ChIP-seq (6 projects), 18 MeDIP-seq (2 projects), 16 ATAC-
seq (3 projects) and 10 MBD-seq (2 projects) samples as
obtained from 227 independent projects in 5 different species
(Homo sapiens, Mus musculus, Rattus norvegicus, Sus scrofa,
Acomys cahirinus). Among these projects a total of 17 differ-
ent sources of fibrotic organs are included, with lung (75),
liver (58), skin (22), kidney (22) and heart (18) being the top
five, and others (blood, muscle, intestine, blood vessel, bone

marrow, eye, pancreas, oral cavity, gall bladder, spleen, respi-
ratory tract and tendon) present in smaller numbers. Detailed
dataset statistics are shown in Table 1. Notably, two projects
involving COVID-19-associated fibrosis (lung fibrosis) were
also included owing to the significance of the worldwide
SARS-COV-2 outbreak.

Website interface of FibROAD
In order to better facilitate the retrieval of relative informa-
tion in FibROAD, we constructed an open-access website that
offers an opportunity for users to search, browse and down-
load the data. On the home page (Figure 2A), the users are
provided with portal links to either omics datasets or FRGs.
By selecting icons of desired dataset categories on the dataset
portal regions, users will be redirected to the Browse tool
where results from filtered datasets are displayed. Within the
FRGs’ portal region, all 232 FRGs are listed in the form of

Figure 2. Website interface for FibROAD portals and dataset retrieving tools. (A) The home page of the FibROAD website was equipped with a
navigation bar at the top and portals to enter dataset browsers within specific categories (left), as well as portals to enter for the page containing
fibrosis-related genes (right). (B) The FibROAD dataset retrieving tools (Search and Browse), which can be accessed through the navigation bar on the
home page. Users can retrieve relative information with either self-defined keywords (left) or with pre-set FRGs (right).
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Figure 3. Website interface for FibROAD results and visualizations. (A) Result page for Fibrosis-Related Genes: gene introduction collected from both
NCBI-Gene and UniProt databases are displayed in the basic information column, followed by literature evidence for the gene (left). Protein-protein
interactions (right upper), transcription factor regulators (right middle) and drug targets (right lower) with the FRG are collected from String, RNAinter
and DrugBank databases, respectively. An external link to the DrugBank database record for each target drug is provided. (B) Result page for omic data:
retrieved datasets of types (RNA-seq, miRNA-seq, scRNA-seq, ATAC-seq, ChIP-seq, Methyl-seq) are shown in a similar pattern, with dataset
introduction at the top (left panel), followed by a detailed sample information table (middle upper panel). A search tool for a self-input gene or FRGs
within the dataset is provided (middle lower panel) and, once an item is submitted, search results and visualizations will be displayed below (right panel).
For ATAC-seq/ChIP-seq/Methyl-seq, an external link to the UCSC Genome Browser is provided for genome tracks observation.

a combo-box, where users can select any FRG of interest
and click the ‘Browse’ button to obtain basic information,
protein–protein interactions, transcription factor regulations
and drug targets for that specific FRG (Figure 3A).

FibROAD also offers a user-friendly portal to search gene
expression profiles within the entire database to enable a
more individualized use of the database (Figure 2B). Users
can choose to either select a gene of particular interest or one
from the FRGs list for a customized search (Search tool), with
responses supplying statistical information on the expression
of that gene. Internal links to specific datasets are provided
along with these search results, allowing users access to
more details regarding the expression of that gene. More-
over, FibROAD provides a file-directory-structured interface

(Browse tool) for users to locate datasets in specific categories,
including species, organs, experiments and diseases/models.
Once a specific dataset is selected, users will be redirected to a
page where detailed dataset information such as introduction,
sample categories, distinct expression values (transcriptomic
expression values or epigenomic peak concentration values)
and data visualizations are displayed (Figure 3B). Moreover,
on any result page, a convenient portal is available for users
to input their desired gene or select any gene from the FRGs to
review its expression and cell location (for scRNA-seq) within
the dataset.

Other important functional components of FibROAD such
as Download, Submit and the Help page can be accessed
through the navigation bar of the website (Figure 2A).
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Fibrosis-related genes (FRGs) in FibROAD
In an attempt to interpret the molecular essence of fibrosis,
we provide a manually curated collection of 232 FRGs with
inclusion criteria as described above, along with associated
experimental evidence as resulting from 909 representative

PubMed publications. According to the experimental evi-
dence, FRGs can be divided into three functional groups,
namely pro-fibrotic (91 genes), anti-fibrotic (41 genes) and
both (100 genes, with either pro- or anti-fibrotic function
as reported in different studies) (Figure 4A). It should be

Figure 4. Fibrosis-Related Genes in FibROAD. (A) Circos plot for protein-protein interactions of all 232 FRGs as obtained from the String database. FRGs
are divided into three groups (pro/anti/both shown in different colors) according to evidence contained within the literature. Interaction counts (edges
number) for each FRG are presented with a circular heatmap around each circle. (B) Circos plot for several example transcription factors-FRGs
regulations according to hTFtarget and RNAinter databases. Transcription factors are shown in orange whereas FRGs are divided into the three groups
as described above and shown in steel blue. Regulation counts (edges number) for each transcription factor are shown with a surrounding circular
heatmap. (C) Circos plot for several examples of drug targets according to the DrugBank database. Drugs are shown in orange whereas gene targets
(FRGs) in steel blue. The eight different drug actions are presented using different colors. (D) Gene ontology (biological processes, steel blue) and KEGG
(orange) enrichment analysis for FRGs (left panel). The pro/anti-fibrosis normalization (x-axis) was performed by calculating the z-score for pro- and
anti-fibrosis FRGs within each term. The enrichment score (y -axis) was calculated with FDR from the hyper-geometry test. Red dashed line refers to the
FDR threshold (0.05). The top 10 enriched terms of GO-BP (steel blue) and KEGG (orange) are shown in the right panel. (E) The average expressions
(FPKM) of pro- (upper panel) and anti- (lower panel) FRGs in several datasets, with expressions of fibrotic groups (orange) normalized to that of control
groups (steel blue). (F) Expressions (FPKM) of detected pro-fibrotic FRGs in datasets designed for fibrosis progression research. Results from healthy
control groups are indicated in steel blue whereas fibrotic groups are displayed in orange gradients. Results of 4 independent datasets for mouse liver
(left panel) and mouse kidney (right panel) are each illustrated in heatmaps, with normalized average expressions depicted in line plots at the top.
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noted that these three categories were determined as based
on current evidence from the literatures as filtered by our
inclusion criteria, and would be updated if new evidence
were to be reported in the future. By applying the PPI-
relations from the STRING database with interaction scores
>900, we found that FRGs were closely interactive with each
other, showing an average of 13 linkages per gene. Moreover,
we also found that many FRGs share common up-stream
transcription factor regulators according to results from the
hTFtarget (14) and RNAinter databases. Such findings sug-
gests that a portion of FRGs may respond synergistically
to similar cellular stimuli and functions (some examples of
TFs-FRGs regulations are illustrated in Figure 4B). In addi-
tion, by integrating information obtained from the DrugBank
database, we observed that many FRGs also serve as targets
for therapeutic or experimental drugs with varied actions,
such as agonist, antagonist, activator, inhibitor and binder
(several examples of drug–FRGs interactions are illustrated in
Figure 4C).

To further describe functions of these FRGs, we next
performed an enrichment analysis for both Gene Ontol-
ogy Biological Process (GO-BP) and KEGG Pathway with
use of the entire list of FRGs (Figure 4D). The top 10
enriched GO-BP and KEGG (FDR threshold set to 0.05)
terms were highly concentrated in fibrosis-related processes
regarding cytokines (15), cell migration (16) and extracel-
lular matrix organization (17), as well as fibrosis-related
pathways involving cancer (18) and focal adhesion (19).
These results are in accord with findings from FRGs protein-
protein interactions and TF regulations, demonstrating that
FRGs provided by FibROAD comprise a closely correlated
gene set with regard to fibrosis-associated processes and
functions.

Next, we assessed the average expressions (in terms of
FPKM) of FRGs in several RNA-seq datasets collected in
FibROAD to determine if the FRGs list proposed would effec-
tively describe the features of fibrosis (Figure 4E and F).When
summarizing results from human lung, skin and liver fibrosis,
as well as kidney, skin and liver fibrosis of samples from mice,
we found that pro-fibrotic FRGs (upper panel of Figure 4E)
were expressed in higher levels within fibrotic samples as
compared to that obtained from samples of healthy controls,
while average anti-fibrotic FRGs expressions (lower panel of
Figure 4E) are lower when compared than that obtained in
control groups. In order to determine whether FRGs could
provide a dynamic description of procedures involved with
fibrosis, we evaluated the expressions of intersected pro-
fibrotic FRGs in eight datasets (four liver and four kidney
datasets) whose projects were designed to show the dynamic
transcriptomic changes that occur during murine fibrosis
model induction. As revealed from the heatmap results pre-
sented in Figure 4F, the pro-fibrotic FRGs detected in all eight
datasets show an increasing expression pattern as the induc-
tion of fibrosis progresses (except for the last dataset whose
expression remained stable after induction). The normalized
average expressions of all genes in each sample are illustrated
in the line plots above the heatmaps. These results demon-
strate that the FRGs as proposed in FibROAD can be used
as indicators for different organ fibrosis at the trancriptomic
level.

Application of FibROAD to identify potential target
genes for organ fibrosis
To go further into the molecular features of fibrosis and their
associations with FRGs, we integrated a series of multi-omics
data as collected in FibROAD from different organ sources,
including lung, liver, kidney, heart and skin. As fibroblast
is the key cellular component associated with fibrotic pro-
cesses (20), we first examined transcriptomic alterations of
fibroblast with use of all scRNA-seq datasets in FibROAD.
By setting the logFoldchange (fibrosis groups against normal
controls) and P-value thresholds to 0.5 and 0.05, respectively,
a considerable number of genes were found to be differen-
tially expressed (DEGs) in multiple datasets, with the top 15
extensively expressed collagenous and non-collagenous genes
illustrated in Figure 5A. Within these results a high degree of
DEGs overlap was particularly notable within fibroblasts of
lung and skin (upper two venn diagrams in Figure 5B), which
also share 76 and 71 of genes with FRGs in human and mice,
respectively (lower two venn diagrams in Figure 5B), and the
intersection of these two groups further reveals 55 differen-
tially expressed FRGs in common. To decipher the poten-
tial regulators associated with these differentially expressed
FRGs, we performed a transcription factor motif enrichment
analysis with use of the ATAC-seq fibroblast datasets for
lung fibrosis (idiopathic pulmonary fibrosis) and skin fibro-
sis (keloid) in FibROAD. The results of this analysis provide
a prediction for several potential TF motifs on the promo-
tor region of these differentially expressed FRGs (Figure 5C),
among which the AP-1 family (especially the JUN family)
were found to be significantly enriched. Interestingly, as a
pro-fibrotic FRG, JUN was found among the conserved FRGs
which could describe the dynamic alterations during fibrosis
progress (Figure 4F). Moreover, use of the TFs-FRGs reg-
ulation network tool embedded in FibROAD revealed that
the JUN family regulates collagen triple helix repeat contain-
ing 1 (CTHRC1), one of the top 15 extensively expressed
non-collagenous genes (Figure 5A). And, findings from recent
reports have indicated that CTHRC1 influences a special pro-
fibrotic signature in both lung (21) and heart (22) fibroblasts,
which could also be substantiated by correspondent scRNA-
seq datasets in FibROAD (Figure 5D). When searching for
the expression profile of CTHRC1 in other tissues with fibro-
sis, we found similar effects within the skin, with CTHRC1
being elevated in both keloid and wound healing fibroblasts
(Figure 5E). To further assess the means for this regulation of
CTHRC1 expression in the skin, we examined chromosomal
accessibilities of the CTHRC1 promoter region with use of
ATAC-seq datasets involving keloids and lungs in FibROAD
(Figure 5F). The results showed that in both fibrotic groups
the CTHRC1 promoter region was more accessible as com-
pared with that observed in healthy controls. As expected,
JUN was present among the 6 TF binding site predictions
(STAT4, JUN, YY1, SP1, PEA3 and WT1) of PROMO. In
conclusion, after a combining integrated multi-omics analy-
sis with FibROAD, we found that JUN/CTHRC1 expression
and interaction might represent a potential molecular mecha-
nism involved with the promotion of multiple organ fibrosis,
especially in lung and skin. Accordingly, increased attention
should be directed toward the relationship of these genes with
fibrosis in future research.
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Figure 5. Multi-omics explorations with FibROAD indicate that CTHRC1 may be a potential candidate gene for skin fibrosis. (A) Bar graphs showing the
top 15 most extensively and differentially expressed collagenous and non-collagenous fibroblast genes in scRNAseq datasets as collected with
FibROAD (filtered by Wilcoxon Rank Sum test with log fold-change cutoff of 0.5 and P <0.05). (B) Venn plots showing intersections of differentially
expressed genes (DEGs) between lung and skin fibroblasts, in humans and mouse respectively (upper 2 Venn plots), and the intersections between
DEGs and FRGs in the two species (lower 2 Venn plots). (C) Transcription factor motif enrichment analysis of differential chromatin accessibility regions
located in the promotor region of the 55 commonly differentially expressed FRGs with ATAC-seq fibroblast datasets. (D-E) Violin plots showing
significant differences in CTHRC1 expressions within lung (D) and skin (E) fibroblasts between the fibrotic group and healthy controls, in humans (left
panel) and mice (right panel). (F) Representative genome browser tracks comparing CTHRC1 ATAC-seq signals in fibroblasts between the fibrotic group
and healthy controls.
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Discussion
Fibrosis, a condition resulting from extracellular matrix accu-
mulation in response to organ injury, represents a major
causative factor for a number of diseases, such as idiopathic
pulmonary fibrosis (23), cystic fibrosis (24) of the lung, hep-
atic cirrhosis (25) of the liver, post-infarction cardiac failure
(26) of the heart and keloid (5) of the skin. Therefore, this
condition has attracted considerable attention of late, with
>340 000 fibrosis-related articles being published since 1872,
and over 50% of these in the past decade, according to
PubMed. We made a systemic review on the currently existed
online resources regarding fibrosis (Supplementary File 1),
which found that, however, no databases are capable of pro-
viding fibrosis-related information within both the literature
and multi-omics levels across multiple organ origins. Given
this lack of information along with the significance of this con-
dition and potential for future research in the area of fibrosis
we created FibROAD.

The aim of our database is to facilitate researchers in the
field of fibrosis by providing an integration of high-quality
omics data of the field, as well as curating a highly confi-
dential gene set to characterize the essential process of organ
fibrosis. We provided a convenient platform and tool for
investigators to relate evidences from different aspects of
fibrosis researches. With the current version of FibROAD,
users could explore fibrotic information such as gene expres-
sions, epigenomic regulations, protein interactions and drug
targets from 232 FRGs as garnered from PubMed publi-
cations, and datasets for a total number of 4351 samples
frommulti-omics studies as obtained from 17 different organs
in 5 different species, and hopefully reveal important regu-
lation network and hub features underlying biological and
pathological mechanism of fibrosis.

Although there have been some attempts to characterize
the processes of fibrosis as achieved by summarizing a set
of specific gene entities, either with use of text mining (27)
or from aspects of a specific disease (11, 28), these stud-
ies have failed to do so as grounded on solid evidence-based
data or from a broader range of organ characteristics. As one
approach to rectify these deficits, we curated 232 FRGs from
PubMed literature with strong experimental evidence into the
current version of FibROAD, and documented specific gene
functions, tissue origins and experimental techniques for each
of these studies. With this approach, we identified genes with
highly unified pro- or anti-fibrotic functions, and the pres-
ence of these genes was also substantiated with the multiple
datasets as collected in FibROAD.Moreover, additional genes
that can be differentially activated within different organs or
environment scenarios were observed, suggesting that fibro-
sis is a complicated process which will require investigations
at several levels. The integrated multi-omics data within
FibROAD can provide one such mechanism for these inves-
tigations. Data comparison with similar web-based resources
(Fibromine, IPF Cell Atlas, PulmonDB and TiRe) shows
that the current version of FibROAD provides more fibro-
sis information regarding organs, species, omics approaches
and FRGs references (Table 2). With this resource, investiga-
tors are provided with a convenient platform to browse and
relate fibrosis-related information within categories of interest
and, not only explore transcriptomic changes within a given
range of fibrosis, but also their epigenetic regulation, topo-
logical relationships and medical interactions. In this way, this

more integrated data source will lead to amore comprehensive
understanding of the processes involved with fibrosis.

With the advent of new research directed toward fibro-
sis, in particular with that employing new techniques such
as mass-spectrometry and post-transcriptional modification
assays, substantial increases in valuable information regard-
ing fibrosis will be revealed. Therefore, our FibROAD pro-
gram will not only be critical in integrating this information
but also will be continuously managed and upgraded to pro-
vide a long-term and current database of this information. As
a result, we believe this database will be extensively used and
significantly promote new avenues for future research in the
area of fibrosis.

Materials and methods
Fibrosis-related genes curation and criteria
FRGs were collected from PubMed literature published prior
to July, 2021, as retrieved using the terms ‘fibrosis’ or
‘fibrotic’ in the searches of Titles/Abstracts. The search
results were initially filtered by limiting the literature type
to ‘experimental research’ and ‘review with experimental
references’. Then, evidence strength of the experiments in
the literature was further evaluated, to isolate studies with
strong evidence (gene knock-out/knock-in, gene overexpres-
sion, RNA interference, direct treatment with gene-coded
protein, specific inhibition/activation, direct gene upregu-
lation/downregulation). Any reported genes that satisfied
the above criteria in at least two independent studies were
considered as fibrosis-related genes and thus curated into
the Fibrosis-Related Genes (FRGs) component of FibROAD.
Together with the gene symbols, their representative refer-
ences (2–8 studies) along with pro-/anti-fibrotic function in
each reference and level of evidence were also collected.

Omic data collection and criteria
High-throughput omic data were collected from GEO, SRA
and EBI-ENA databases, published prior to February 2021
as achieved by searching the keywords ‘fibrosis’ or ‘fibrotic’.
A manual screening of the retrieved results was performed to
ascertain whether the subject and experimental design focused
on fibrosis. Among the filtered omic approaches, RNA-seq,
single-cell RNA-seq, miRNA-seq, ATAC-seq, ChIP-seq and
Methylation-seq (MBD-seq and MeDIP-seq) were curated for
further data processing.

Omic data processing
RNA-seq
We used Hisat2 (v2.0.52) to build the index of the reference
genome for different organisms and align the paired-end clean
reads with the reference genome (29). Then, StringTie (v2.23)
was used to count the read numbers mapped to each gene (30).
Fragments Per Kilobase perMillion (FPKM) of each gene were
calculated based on gene length and read counts mapped to
this gene. Differential expression was defined by a Benjamini–
Hochberg-adjusted P-value (q-value/FDR) of <0.05 and fold
change of >2 or <0.5.

Single-cell RNA-seq
Sequencing reads were examined by quality metrics, with
transcripts mapped to a reference human (hg38) or mouse
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Table 2. Data comparison of FibROAD with similar web-based resources

FibROAD Fibromine IPF Cell Atlas PulmonDB TiRe

Organs Total count 17 1 1 2 2
Type lung, liver, skin,

kidney, heart,
blood, mus-
cle, intestine,
blood vessel,
bone marrow,
eye, pancreas,
oral cavity, gall
bladder, spleen,
respiratory tract,
tendon

lung lung lung, blood lung, skin

Datasets Total counts 233 110 6 79 N.A.
Omics types 7 4 1 2 N.A.
RNA-seq 169 15 0 4 N.A.
scRNA-seq 40 16 6 0 N.A.
miRNA-seq 11 0 0 0 N.A.
ChIP-seq 6 0 0 0 N.A.
ATAC-seq 3 0 0 0 N.A.
MeDIP-seq 2 0 0 0 N.A.
MBD-seq 2 0 0 0 N.A.
Array 0 70 0 75 N.A.
Proteomics 0 9 0 0 N.A.

Species Total count 5 2 1 1 4
Type Homo sapiens,

Mus musculus,
Rattus
norvegicus,

Sus scrofa,
Acomys cahirinus

Homo sapiens,
Mus musculus

Homo sapiens Homo sapiens Homo sapiens,
Mus musculus,
Rattus norvegicus,
Sus scrofa

FRGs Gene counts
(N.R.)

232 N.A. N.A. N.A. 498

Reference counts
(N.R.)

909 N.A. N.A. N.A. 607

Organs (Ref.) lung (172), liver
(217), skin (37),
kidney (156),
heart (187),
othersa (159)

N.A. N.A. N.A. lung (196), skin
(411)

Abbreviations: N.A.—not available; N.R.—non-redundant; Ref.—reference counts; FRGs—fibrosis-related genes; a—details can be found online at FibROAD.

(mm10) genome and assigned to individual cells of origin
according to cell-specific barcodes, using the Cell Ranger
pipeline (10X Genomics). To ensure that PCR amplified
transcripts were counted only once, only single UMIs were
counted for gene expression levels (31). In this way, cell-
gene UMI counting matrices were generated for downstream
analyses. From each sample, unwanted variations and low-
quality cells were filtered by removing cells with high and
low UMI-counts (>6000 and <200). Gene expression levels
for each cell were normalized by the total expression, multi-
plied by a scale factor (10 000) and log-transformed. Batches
were then regressed out, and scaled Z-scored residuals of
the model were used as normalized expression values. We
defined the top 2000 most variable genes as based on their
average expression and dispersion as being highly variable
genes (HVG). Dimensionality of the data was reduced by per-
forming a principal component analysis (PCA) on the HVG.
To identify cell subpopulations, clustering was performed on
PCA scores using significant PCs assigned by a randomiza-
tion approach as proposed by Chung and Storey (32, 33). To
cluster cells, a K-nearest neighbor (KNN) graph constructed
on a Euclidean distance matrix in PCA space was calculated

and then converted to a shared nearest neighbor (SNN) graph,
in order to locate highly interconnected communities of cells
(34). Cells were then clustered using the Louvain method to
maximize modularity (35). To display data, the Unsupervised
Uniform Manifold Approximation and Projection (UMAP)
method was applied to cell loadings of selected PCs and
the cluster assignments from the graph-based clustering were
used. For cluster numbers >2, cluster-specific marker genes
were identified by running the ‘find_all_markers’ Seurat func-
tion with parameters consisting of a logfc.threshold=0.5 and
test.use= ‘wilcox’. To identify differentially expressed genes
between two clusters, we used the ‘find.markers’ Seurat func-
tion with a logfc.threshold=0.5 and test.use= ‘wilcox’. All
analyses described in this section were performed using Seurat
R package version 3.0.1 (36).

ATAC-Seq/ChIP-Seq/MBD-Seq/MeDIP-Seq
After removing adaptors using Trimmomatic (37), reads
were mapped to the reference human (hg38) or mouse
(mm10) genome using Bowtie2 (38). Mapped reads of
SAM output were converted to a BAM format and sorted
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by Samtools (39). Duplicate reads were removed using
the default parameters of the Picard tools MarkDuplicates
program (http://broadinstitute.github.io/picard/). Accessible
regions and peaks of each sample were identified using
MACS2 (40), with the narrowPeak files from theMACS2 out-
put used for further analysis. The annotatePeaks.pl tool of
the HOMER program (41) was used with the default param-
eters to annotate the location of identified peaks overlapping
with genomic features. To identify regions with differential
peak values, we used Diffbind with the processed alignment
bam file from Bowtie2 and the narrowPeak file from MACS2
for each sample (42). For the MeDIP-Seq, differential cov-
erage between experimental groups was calculated using the
MEDIPS R package (43). The P-value from edgeR was used
to determine significance of the difference between the two
groups for each 100-bp genomic window (44). Windows with
an edgeR P-values less than a specified threshold (P<10–7)
were considered as the initial start of the differentially methy-
lated regions.

miRNA-Seq
Reads with low-quality or with a length <15 or >41 nt in the
raw data were filtered to obtain clean reads. Clean reads were
initially used for length distribution analysis in the reference
genome. These clean reads were then aligned, subjected to
BLAST database analysis (45), and searched against Rfam
(v.10.1) (http://www.sanger.ac.uk/software/Rfam) (46) and
GenBank databases (http://www.ncbi.nlm.nih.gov/genbank/).
The noncoding RNAs annotated as tRNAs, rRNAs, small
nuclear RNAs (snRNAs) and small nucleolar RNAs (snoR-
NAs) were excluded from the analysis. Known miRNAs were
identified by alignment against the miRBase (v.22.1) database
(http://www.mirbase.org/) with Bowtie (v1.1.1), and their
expression levels were quantified with miRDeep2 (47). Differ-
entially expressed miRNAs were identified as those meeting
a threshold P-value <0.05 and a fold change >2.0. The fold
change and P-values were calculated with the DEG algorithm
(R, DESeq package) (48).

Statistics and visualizations
All statistical calculations were performed with use of R (ver-
sion 3.6.3) or Python (version 3.8.8) programs. Statistical
significance was considered when adjusted P-values (q-value
or FDR) or Wilcoxon Rank Sum test P-values were <0.05.
Figures were plotted with use of either the ggplot2 library of
R (version 3.6.3) or matplotlib package of Python (version
3.8.8) programs.

Supplementary data
Supplementary data are available at Database Online.

Acknowledgements
We thank the ED-IT Editorial Service for revision of this
manuscript for submission in English.

Funding
This work was supported by the National Natural Science
Foundation of China [82073418 to B.Y., 82003350 to YZ.S].

Conflict of interest
The authors have no conflict of interest to declare.

References
1. Weiskirchen,R., Weiskirchen,S. and Tacke,F. (2019) Organ and

tissue fibrosis: molecular signals, cellular mechanisms and trans-
lational implications. Mol. Aspects Med., 65, 2–15.

2. Hu,H.H., Cao,G., Wu,X.Q. et al. (2020) Wnt signaling pathway
in aging-related tissue fibrosis and therapies. Ageing Res. Rev., 60,
101063 epub.

3. Gurtner,G.C., Werner,S., Barrandon,Y. et al. (2008) Wound repair
and regeneration. Nature, 453, 314–321.

4. Henderson,N.C., Rieder,F. and Wynn,T.A. (2020) Fibrosis: from
mechanisms to medicines. Nature, 587, 555–566.

5. Andrews,J.P., Marttala,J., Macarak,E. et al. (2016) Keloids: the
paradigm of skin fibrosis - Pathomechanisms and treatment.
Matrix Biol., 51, 37–46.

6. Xie,T., Wang,Y., Deng,N. et al. (2018) Single-cell deconvolution
of fibroblast heterogeneity in mouse pulmonary fibrosis. Cell Rep.,
22, 3625–3640.

7. Liu,Y., Hu,J., Liu,D. et al. (2020) Single-cell analysis reveals
immune landscape in kidneys of patients with chronic transplant
rejection. Theranostics, 10, 8851–8862.

8. Saviano,A., Henderson,N.C. and Baumert,T.F. (2020) Single-cell
genomics and spatial transcriptomics: discovery of novel cell states
and cellular interactions in liver physiology and disease biology. J.
Hepatol., 73, 1219–1230.

9. Wang,Z., Cui,M., Shah,A.M. et al. (2020) Cell-type-specific gene
regulatory networks underlying murine neonatal heart regenera-
tion at single-cell resolution. Cell Rep., 33, 108472.

10. Fanidis,D., Moulos,P. and Aidinis,V. (2021) Fibromine is a multi-
omics database and mining tool for target discovery in pulmonary
fibrosis. Sci. Rep., 11, 21712.

11. Villaseñor-Altamirano,A.B., Moretto,M., Maldonado,M. et al.
(2020) PulmonDB: a curated lung disease gene expression
database. Sci. Rep., 10, 514.

12. Davis,A.P., Grondin,C.J., Johnson,R.J. et al. (2019) The compar-
ative toxicogenomics database: update 2019. Nucleic Acids Res.,
47, D948–D954.

13. Lin,Y., Liu,T., Cui,T. et al. (2020) RNAInter in 2020: RNA interac-
tome repository with increased coverage and annotation. Nucleic
Acids Res., 48, D189–D197.

14. Zhang,Q., Liu,W., Zhang,H.M. et al. (2020) hTFtarget: a com-
prehensive database for regulations of human transcription fac-
tors and their targets. Genomics Proteomics Bioinformatics, 18,
120–128.

15. Mack,M. (2018) Inflammation and fibrosis. Matrix Biol., 68-9,
106–121.

16. Zuo,C., Li,X., Huang,J. et al. (2018) Osteoglycin attenuates
cardiac fibrosis by suppressing cardiac myofibroblast prolifera-
tion and migration through antagonizing lysophosphatidic acid
3/matrix metalloproteinase 2/epidermal growth factor receptor
signaling. Cardiovasc. Res., 114, 703–712.

17. Bonnans,C., Chou,J. and Werb,Z. (2014) Remodelling the extra-
cellular matrix in development and disease. Nat. Rev. Mol. Cell
Biol., 15, 786–801.

18. Piersma,B., Hayward,M.K. and Weaver,V.M. (2020) Fibrosis and
cancerf A strained relationship. Biochim. Biophys. Acta Rev. Can-
cer, 1873, 188356.

19. Wong,V.W., Rustad,K.C., Akaishi,S. et al. (2011) Focal adhesion
kinase links mechanical force to skin fibrosis via inflammatory
signaling. Nat. Med., 18, 148–152.

20. Wohlfahrt,T., Rauber,S., Uebe,S. et al. (2019) PU.1 controls
fibroblast polarization and tissue fibrosis. Nature, 566, 344–349.

21. Tsukui,T., Sun,K.H., Wetter,J.B. et al. (2020) Collagen-producing
lung cell atlas identifies multiple subsets with distinct localization
and relevance to fibrosis. Nat. Commun., 11, 1920.

http://broadinstitute.github.io/picard/
http://www.sanger.ac.uk/software/Rfam
http://www.ncbi.nlm.nih.gov/genbank/
http://www.mirbase.org/
https://academic.oup.com/database/article-lookup/doi/10.1093/database/baac015#supplementary-data


12 Database, Vol. 2022, Article ID baac015

22. Ruiz-Villalba,A., Romero,J.P., Hernández,S.C. et al. (2020) Single-
cell RNA sequencing analysis reveals a crucial role for CTHRC1
(collagen triple helix repeat containing 1) cardiac fibroblasts after
myocardial infarction. Circulation, 142, 1831–1847.

23. Richeldi,L., Collard,H.R. and Jones,M.G. (2017) Idiopathic pul-
monary fibrosis. Lancet, 389, 1941–1952.

24. Elborn,J.S. (2016) Cystic fibrosis. Lancet, 388, 2519–2531.
25. Bataller,R. and Brenner,D.A. (2005) Liver fibrosis. J. Clin. Invest.,

115, 209–218.
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