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ABSTRACT

The Gene Expression Omnibus (GEO) at the National
Center for Biotechnology Information (NCBI) is the
largest fully public repository for high-throughput
molecularabundancedata,primarilygeneexpression
data. Thedatabasehasa flexible andopendesign that
allows the submission, storage and retrieval of many
data types. These data include microarray-based
experiments measuring the abundance of mRNA,
genomic DNA and protein molecules, as well as non-
array-based technologies such as serial analysis of
gene expression (SAGE) and mass spectrometry
proteomic technology. GEO currently holds over
30 000 submissions representing approximately half
a billion individual molecular abundance measure-
ments, for over 100 organisms. Here, we describe
recent database developments that facilitate effective
mining and visualization of these data. Features
are provided to examine data from both experiment-
and gene-centric perspectives using user-friendly
Web-based interfaces accessible to those without
computational or microarray-related analytical
expertise. The GEO database is publicly accessible
through the World Wide Web at http://www.ncbi.
nlm.nih.gov/geo.

INTRODUCTION

Since 2000, the Gene Expression Omnibus (GEO) has served
as a public repository for high-throughput molecular abund-
ance experimental data, providing free distribution and
shared access to comprehensive datasets (1). These data include
single and multiple channel microarray-based experiments

measuring the abundance of mRNA, genomic DNA and pro-
tein molecules. Data generated by innovative applications of
microarray technology are also accepted, e.g. chromatin
immunoprecipitation (ChIP-chips) for identifying protein-
binding DNA regions and tiling arrays for genome annotation.
Data from non-array-based high-throughput functional geno-
mics and proteomics technologies are also archived, including
serial analysis of gene expression (SAGE), and mass spectro-
metry peptide profiling.

The initial aim of GEO—to function as a robust, versatile
high-throughput data repository—has been accomplished. As
of fall 2004, GEO holds over 30 000 submissions representing
approximately half a billion individual molecular abundance
measurements, for over 100 organisms, submitted by over
600 researchers. Typically, GEO records are accessed over
15 000 times each weekday by over 1000 unique users, and
bulk FTP downloads average 30 000 per month. Although
GEO represents a huge reservoir of gene expression data
that is widely used by the scientific community, it was recogn-
ized that the full potential of the repository could only be
achieved by making these data easy to search and analyze,
even by individuals having little experience in the field, with-
out the need of massive data downloads. This paper describes
database developments and tools that enable effective explora-
tion, query and visualization of hundreds of experiments and
millions of gene expression profiles using user-friendly Web-
based interfaces.

REPOSITORY ORGANIZATION AND DATA FLOW

The principle architecture of the GEO database remains as
described previously (1). Briefly, data submitted to GEO
are stored in a relational database partitioned into three
upper-level entity types: Platform, Sample and Series. A Plat-
form describes the list of elements (e.g. oligonucleotide
probesets, cDNAs, SAGE tags, antibodies) being assayed or
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that may be detected and quantified in that experiment.
A Sample references a Platform and describes the abundance
measurement of each feature element for a single hybridiza-
tion or experimental condition. A Series brings together
related Samples that make up an experiment and may include
tables of extracted summary sets of significant genes or
analysis as defined by the submitter. Each individual entity
is assigned a unique and stable accession number; the acces-
sion number prefix indicates whether the record is a GEO
Platform (GPL), Sample (GSM), or Series (GSE).

Unlike metadata that are stored in designated fields within
database tables, Platform and Sample data tables are not fully
granulated, but are stored as text objects. This design allows
GEO to remain adaptable and responsive to developing tech-
nology trends, as it permits optimal flexibility in the quantity
and type of data stored. For example, Platform elements may
be described by any number of auxiliary attributes, and
Sample data tables may contain all classes of supplementary
and supporting measurements and calculations. The data
within these tables may be extracted for higher-level rendering,
indexing, search and retrieval purposes. Recent enhancements
to the database include addition of supplementary metadata
fields intended to facilitate and encourage MIAME (Minimum
Information About Microarray Experiment) compliant data
submissions (2), and acceptance of raw data contributions
for storage and retrieval, e.g. Affymetrix .cel files or cDNA
array scanned images.

Submission and standards

GEO aims at a balance between a submission procedure that is
user-friendly and not overly rigid, while still encouraging
high-quality data and a high level of experimental annotation.
An infrastructure is provided so that submitters can present
their data in a MIAME-compliant fashion (2). Submissions are
validated syntactically according to a limited set of criteria and
are subject to basic curation, assuring that records contain
meaningful information and are organized correctly. Data
depositors retain editorial control and are responsible for
the content and quality of their records as outlined in the
open letter published recently by the Microarray Gene
Expression Data (MGED) Society board (3). GEO obviously
could not attempt to independently verify the validity, merit,
quality or biological significance of submitted data.

Once submitters establish their own private GEO accounts,
there are three ways in which data may be deposited with GEO:

(i) Interactive web-based forms. For each Platform and
Sample submission, a text tab-delimited data table file
is uploaded and validated. Metadata fields are entered
interactively through a series of Web forms. This process
is straightforward and is most useful when submitting
relatively few entries. Updates to individual records
may also be performed using similar interactive Web
forms.

(ii) Direct submission using Simple Omnibus Format in text
or SOFT format. SOFT was designed for rapid batch
submission of data, and files may be easily produced from
common spreadsheet and database applications. A single
SOFT file can hold both data and metadata for multiple
Platforms, Samples and Series, and can be uploaded
directly to the database. Batch updates may also be

quickly and efficiently performed using SOFT format.
Detailed information on SOFT format is available on
the GEO Web site.

(iii) Submitters may FTP files in valid MAGE_ML (4) format
to GEO.

Records may remain private for several months, typically
pending journal publication. Manuscript reviewers may gain
confidential access to data prior to publication using read-only
passwords.

DataSets and profiles

It was evident early-on that retrieval of data by means of
accession number alone, or browsing by categories, would
be insufficient to allow effective data mining and essential
linkage between expression data and other sequence informa-
tion and publication resources. High-throughput molecular
abundance data are inherently more complex than other
data types, such as sequence or bibliographic records; the
strong association between measured entities and the bio-
logical and statistical context in which they were extracted
must be considered; GEO stores a wide assortment of high-
throughput experimental data processed by multiple means
and analyzed by various methods. To address these issues,
an additional level of curation was introduced where submit-
ted samples are assembled into biologically meaningful and
statistically comparable GEO DataSets (GDS). GDS records
provide a coherent synopsis about an experiment, and serve as
the basis for downstream data mining and display tools.

Samples within a GDS refer to the same Platform, that is, a
common set of elements are assayed. Calculations are com-
puted on the ‘value’ column extracted from original Sample
data tables. These value measurements are calculated in an
equivalent manner for each Sample within a GDS, i.e. con-
siderations such as background processing and normalization
are consistent across the GDS. Samples within DataSets are
further grouped and classified into subsets according to the
experimental variables under examination in the study, for
instance ‘tissue’ or ‘strain’.

The Sample-centric tabular data under the control of the
GDS upper level object then undergoes a final re-factoring
into a gene-oriented view, and the results are indexed into
a query engine and retrieval system, and display suites. The
NCBI Entrez (5) database system is used as grounds for
the query engine and retrieval system; two databases are
defined:

(i) GEO DataSets stores all experimental metadata, provid-
ing an ‘experiment-centric’ perspective of GEO data. The
query interface is accessible from the GEO homepage
or directly at http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?CMD=search&DB=gds.

(ii) GEO Profiles stores individual gene expression profiles,
providing a ‘gene-centric’ perspective of GEO data. The
query interface is accessible from the GEO homepage
or directly at http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?CMD=search&DB=geo.

Thus, each DataSet entity defines a single experiment in GEO
DataSets, and each DataSet parents a multitude of profile
entities in GEO Profiles (Figure 1).
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RETRIEVAL, QUERY AND ANALYSIS

Basic retrieval

There are several ways and formats in which GEO data may be
retrieved:

(i) Individual Platform, Sample, Series and GDS records can
be accessed directly on the Web via their GEO accession
number. Related records are intra-linked on the GEO site,
such that one may conveniently navigate to associated
Platform, Sample, Series and GDS records.

(ii) GDS records may be browsed by title, type, Platform or
organism at http://www.ncbi.nlm.nih.gov/geo/gds/gds_
browse.cgi. User-submitted records may also be browsed
by category or submitter.

(iii) All user-submitted records, GDS value matrices with
annotation, and raw data are available for bulk download
via FTP. User-submitted records are grouped as com-
pressed Series and Platform ‘family’ files, which incorp-
orate all related accessions. Equivalent files are available
for individual download from each record on the Web.

Query and mining

Effective searches may be accomplished by querying Entrez
GEO DataSets and/or Entrez GEO Profiles. As with other
NCBI Entrez databases (5), both trivial and sophisticated
query and mining is achieved using Boolean phrases that
may be restricted to, or combined with, a number of supported
attribute fields.

Experiments of interest may be located by searching
GEO DataSets for attributes such as experimental variable
information, technology type, author, organism or any
text keywords from the GDS description or original

submitter-supplied Sample and Series records. For example,
all dual channel nucleotide microarray experimental DataSets
exploring metastasis in humans can be located using the
query ‘dual channel[Experiment Type] AND metastasis
AND human[Organism]’. Retrievals display the DataSet
title, a brief experiment description, taxonomy, experimental
variable types and links to the parent Platform, reference
Series record and the complete GDS record. Once a relevant
DataSet has been identified, users may go on to further
explore that experiment either by taking advantage of the
various supplementary tools on the GDS record page
(Figure 2C) or by restricting subsequent GEO Profiles
searches to that DataSet.

The elemental unit in GEO Profiles is a gene, sequence or
other reporter molecule, and its traced behavior along the
measured conditions of the experiment, hence a ‘profile’.
GEO Profiles are annotated in accordance with concurrent
Entrez Gene and UniGene resources, and may be queried
for attributes such as gene name, GenBank accession number,
SAGE tag, GDS accession, DataSet description or profiles
flagged as having significant effects with regards to specific
experimental variables. For example, the query ‘Type 1
diabetes[GDS Text] AND apolipoprotein[Gene Description]
NOT Homo sapiens[Organism]’ retrieves all apolipoprotein-
related gene profiles in Type 1 diabetes-related datasets in
organisms other than human. Query results display reporter
annotation, brief experimental information, taxonomy and a
bar-graph thumbnail image of the profile (Figure 2A). The
thumbnail images are helpful for rapid batch profile scanning
and comparison. A click on a thumbnail reveals the profile
details (Figure 2B). Gene expression values extracted from
original sample records are represented by red bars. Blue
bars represent intra-sample percentile rank information, pro-
viding an indication of the relative expression level of that
gene compared to all other genes on the array. Experimental
structure is reflected in subgroup labels along the bottom of
each chart allowing even complex experiments involving mul-
tiple and overlapping subset types to be clearly visualized.
Standard GEO Profile retrievals are ordered according to sub-
set effect flags by default, bringing potentially significant and
interesting profiles to the fore. However, users may select
alternative sorting schema based on mean value, deviation
or outliers.

Selected GEO Profile entities possess intra-database links.
‘Profile neighbors’ connects genes that show a similar profile
shape within a DataSet, as calculated by Pearson correlation
coefficients. ‘Sequence neighbors’ retrieves related profiles
based on nucleotide sequence similarity by BLAST (6) across
all DataSets, and ‘Homologs’ retrieves profiles of genes
belonging to the same HomoloGene group. Sequence and
profile neighbor retrievals are weighted by presumed relev-
ance, and are subject to cutoffs so as to limit the number of
links that can be managed.

Entrez GEO DataSets and GEO Profiles are fully integrated
with each other, as well as with other NCBI Entrez databases
(7). Where possible, links are provided to GenBank, PubMed,
Gene, UniGene, OMIM, Homologene, SNP, Taxonomy,
SAGEMap and MapViewer. These links are reciprocal,
meaning they can be traced back to GEO from any of the
above resources, and facilitate seamless navigation and
cross-referencing between databases.

Figure 1. Schematic diagram of the relationships between GEO Platform,
Sample, DataSet and Profiles. For each gene on a Platform (e.g. Gene A),
multiple Sample measurement values are generated (Sample1–Sample3).
Related Samples make up a DataSet, from which multiple, individual gene
profile entities are generated.
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Supplementary features

In addition to the Entrez query system, several supporting
tools and features are provided to assist with enhanced mining
and visualization of data:

(i) Cluster heat maps. Pre-computed sample and gene hier-
archical cluster heat maps are provided for most DataSets
(Figure 2). Users are given the option to view clusters
calculated using a variety of distance metrics (Euclidean

distance, Pearson correlation or un-centered correlation
coefficient) and clustering methods (single linkage, com-
plete linkage or average linkage). Multiple cluster por-
tions of interest may be selected, expanded, downloaded,
charted as line plots or linked directly to Entrez GEO-
Profile records.

(ii) Query subset A versus B. This feature identifies gene
expression profiles of interest by calculating average rank
or value differences between experimental subsets within

Figure 2. Selection of GEO web screenshots and how they link with each other. (A) GEO Profiles retrieval results; each entity includes sequence identifier and
DataSet information, and a thumbnail profile image. Links to other Entrez databases or related profiles are provided above the thumbnail image. (B) Expanded profile
chart depicts values (red bars) and rank (blue bars) information for one gene across each Sample in a GEO DataSet. Experimental subset groupings are reflected in
labels at foot of chart. (C) DataSet record includes experiment summary information, DataSet subset classifications, and access to data mining features such as
hierarchical cluster heat map and ‘Query subset A versus B’ tool. (D) DataSet hierarchical cluster heat map calculated by un-centered correlation coefficient/average
linkage option. Regions of interest are selected using the red image cropper box, then either expanded to view Sample and gene annotation, downloaded, charted as
line plots, or linked directly to corresponding Entrez GEO Profiles records.

Nucleic Acids Research, 2005, Vol. 33, Database issue D565



a DataSet. For example, a user can specify that he wants to
locate genes displaying 10-fold higher expression values
in time point ‘A’ compared to time point ‘B’, and he will
be directed to profiles matching those criteria.

(iii) Subset effects. Profiles are flagged if they display signi-
ficant differences in expression values or ranks between
subsets. This feature retrieves all profiles, either DataSet-
specific or across all DataSets, that are flagged as having
significant profiles with respect to a specific experimental
variable, e.g. ‘age’ or ‘strain’.

(iv) Value distribution. Box and whisker plots for each Sam-
ple within a DataSet are presented, allowing an overview
of the distribution of values across a DataSet.

(v) GEO BLAST. This interface allows users to search for
GEO Profiles of interest based on nucleotide sequence
similarity using BLAST. The GEO BLAST database
contains all GenBank sequences represented in GEO
DataSets. Furthermore, standard BLAST output as per-
formed using NCBI’s BLAST interface, displays ‘E’ icon
links where appropriate, linking directly to GEO Profiles
expression data.

CONCLUSION

GEO represents a large compendium of gene expression data,
addressing awide range of biological issues acrossmany organ-
isms. The database already contains approximately half a
billion measurements, and continues to grow at an average
rate of >20 million per month. While very valuable, these data
are not immediately interpretable or human readable in the raw
form. To address this issue, database applications have been
developed to facilitate complex data mining by providing
query capabilities and concise displays that allow human scan-
ning and data reduction. Tools are provided to help identify
and categorize gene and sample relationships. Additional
context is provided through comprehensive integration with
sequence information, mapping and bibliographic resources.

As an open repository, the data in GEO have typically been
analyzed and studied, and in most cases, the results published
in journals. Nonetheless, pooling disparate data into one
location and organizing them to be analyzable and cross-
comparable using common interfaces adds a valuable analytic
layer not attainable when considering individual experiments.
Mining GEO data can provide clues as to the function of
uncharacterized genes and genetic networks by examining
spatial and temporal expression patterns (8–10), and co-
regulation with well-characterized markers. Cross-comparison
of independently generated but experimentally similar datasets
can corroborate interesting gene expression trends that may be
overlooked in one experiment alone (11). The GEO database
and tools may also substantiate laboratory findings, or suggest
supportive or negating evidence for research proposals and
hypotheses (12). Reanalysis and reinterpretation of GEO
data can provide valuable insights into other fields (13,14).
Such opportunities for discovery will only increase as the
database continues to grow in size and diversity.

Future plans for GEO are continued development of sub-
mission and retrieval formats, further integration with NCBI
resources, and enhancements to data visualization and mining

features. The features described herein are mostly relevant to
gene expression studies; separate tools and graphical repres-
entations specific to other data types, such as proteomic tech-
nologies and comparative genomic hybridization, are also
planned.
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