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Abstract: In karst areas, the characteristics of water chemistry and carbon and nitrogen are of
great significance to basic research. The contents of Ca2+, Mg2+, K+, Na+, HCO3

−, SO4
2−, NO3

−,
Cl−, dissolved organic carbon (DOC), and total nitrogen (TN) in water samples from 18 rivers
and 14 springs in the Huangzhouhe River Basin were determined. The results showed that the
water chemistry type in the Huangzhouhe River Basin is HCO3-Ca-Mg. The chemical composition
is mainly affected by dolomite weathering and also by ion exchange and other human activities.
The river and spring DIC remain at the same level in the upper and middle reaches and decrease
in the lower reaches. The NO3-N and TN of river water and TN of spring water increase in the
middle reaches, while NO3-N of spring water decreases in the lower reaches. The DOC in the basin
increases with the increase of SO4

2− and Cl−, mainly due to the human influence of agricultural
and domestic sewage. In the basin, the NO3-N and TN in spring water are larger, and the DOC in
river water is larger, mainly because there are more phytoplankton and human activities in the river
water. The carbon and nitrogen in the Huangzhouhe River Basin are mainly HCO3

− and NO3
− ions.

The evaluation of pH, Cl−, NO3-N, SO4
2−, and TDS shows that the water quality is good and the

ecological environment is good.

Keywords: water chemistry; dolomite; chemical weathering; dissolved organic carbon; total nitrogen;
Huangzhouhe River

1. Introduction

The input of terrestrial erosion material from rivers to the ocean is a key part of
the biogeochemical cycle. River chemistry is influenced by many natural geochemical
processes such as climate, structure, weathering, and vegetation cover [1–4]; lithology (rock
weathering) is the dominant factor in these processes because rock is the main source of
dissolved load in river water [5,6]. The content and distribution characteristics of ions in
rivers are influenced and controlled by many factors such as precipitation, temperature,
topography, altitude, recharge type, runoff and discharge processes, land use type, and
surface lithology. In the Garhwal Bhagirathi watershed, chemical parameters, anions, and
cations are related to geomorphological parameters and land cover parameters, and they
change with the season [7]. The characteristics of water chemistry and their variation can
indicate the main ion sources of the water body and reflect the influence of human activities
on water environments. The inorganic carbon dissolution load in river water comes from
different sources: rock dissolution, precipitation, and human input [8].

River DOC and TN mainly come from soil leaching [9,10], complex biological pro-
cesses (e.g., production and release of bacteria and phytoplankton, and feeding of zooplank-
ton) [11–13], and human input [14]. The DOC content affects aquatic communities [15] and
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facilitates heavy metal migration in river water by forming organic complexes [16,17], and
may lead to enrichment with toxic metals [18]. The DOC is an important part of the global
carbon cycle, and is related to the environment and climate change [19–21]. Dissolved
organic carbon, as an indicator of organic matter levels, can reflect the extent of organic
pollution in rivers and is closely related to water quality [22,23]. It is well known that
Cl−, dissolved inorganic nitrogen (DIN), and SO4

2− are mostly derived from human in-
puts [8,24]. Abnormal changes in climate and temperature also impact carbon and nitrogen
species. For example, bacterial communities in Poyang Lake are sensitive to DOC and
NO3

− contents in the dry season [25]. On the one hand, waste input into rivers affects the
river’s hydrochemical properties and may interfere with natural geochemical processes
and accelerate weathering processes [26,27]. On the other hand, river carbon and nitrogen
concentrations can be directly increased [28–30].

In the hydrological cycle, surface water and groundwater are interdependent, mutually
restricted, and independent. For example, the groundwater system of Abadir Farm is
invaded by shallow groundwater and Basaka Lake [31]. Dinka [32] found that when
surface water and groundwater are polluted, the upper freshwater layer is exchanged with
the deeper water, and the frequent exchange of groundwater and river water increases
the risk of water pollution. The high content of organic carbon in wastewater can lead to
a large amount of microbial growth, making groundwater unsuitable for residential use.
The variation in the characteristics of water chemistry and carbon and nitrogen contents
not only reflects the ecological evolution characteristics of the region, but also affects the
ecological security of the downstream regions.

In the carbonate regions of the world, dolomite is widely distributed as limestone.
China is dominated by limestone, but dolomite, dolomitic tuff, and ash dolomite account
for 25.7% of the total distribution of carbonate rocks in China. Most research in China
has focused on limestone karst areas, with less research on dolomite karst areas. Large
areas of dolomite are also exposed in some other provinces in China, mainly as grey
dolomite or dolomite interbedded with limestone; pure dolomite up to 1100 m thick is only
found in Shibing, Guizhou [33]. Through the study of the temporal and spatial dynamics
of the contents of anions and cations in the Huangzhouhe River Basin, we revealed the
hydrogeochemical characteristics of typical subtropical dolomite basins in this study. The
objectives of this study were to (1) analyze the hydrochemical characteristics of river water
and spring water in the basin, (2) determine the variation in water C and N concentrations
and their relationship, and (3) clarify the effects of human input on water chemistry and
water quality.

2. Materials and Methods
2.1. Study Area

The Huangzhouhe River Basin in Guizhou Province is located in a World Natural
Heritage Protection Area (Figure 1). It is a complete and typical dolomite karst basin, and
is a natural site for studying the weathering of dolomite rocks. In the Huangzhouhe River
Basin, limestone is exposed in 8% of the area and dolomite is exposed in 92% of the area.
The exposed strata are the Cambrian Gaotai, Loushanguan, and Shilengshui formations,
and a small amount is the Qingxudong formation. It flows from the eastern heritage site
buffer to the southwest core area, the upper part is a wide valley. Above the Baiduo is
the upstream, above the Qingcaitang is the midstream, and below is the downstream. A
dolomite landform developed strongly in the basin, and the landform is broken. Due to
river-cutting and erosion, the area developed into a typical deep subtropical karst gorge
landform. The Huangzhouhe River Basin has a subtropical humid monsoon climate, with
rainy and hot periods and abundant precipitation. The annual average temperature is
14–16 ◦C, the annual rainfall is 1060–1200 mm, the annual average discharge is 4.2 m3/s,
and the annual average evaporation is 1078.42 mm. The topography of Shibing Karst World
Natural Heritage Site in which the Huangzhouhe River is located high in the northwest
and low in the southeast, with a core area of 10,280 hm2, a buffer area of 18,015 hm2,
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and a total area of 28,295 hm2 [33]. The study area is a World Natural Heritage Site. It
has a pure natural ecological environment, mainly vegetated by trees and shrubs. The
middle and upper reaches of the Huangzhouhe River are located in the buffer zone, with
a high population density and diverse land use types, mainly including dry arable land,
paddy field, woodland, and shrub forest, where the ecological environment is disturbed
by human beings. There is the potential for large amounts of pollutants to flow from
the buffer zone into the core area, thereby impacting the ecological health of the site.
Therefore, it is of considerable value to study the hydrochemistry, carbon and nitrogen
characteristics, and their influencing factors on the Huangzhouhe River for the protection
of world natural heritage.
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2.2. Water Sampling and Analysis

The sampling was conducted in January and July 2021, taking the Huangzhouhe River
basin as a whole and collecting 18 river samples from downstream to upstream, tributaries
and main streams, and 14 spring samples within the basin, for a total of 32 samples. The
samples were washed with a 1 mol·L−1 solution of analytically pure HNO3, then rinsed
clean with pure water and dried to ensure that the ions in the water sample did not adhere
to the bottle wall. The collected samples were filtered on the same day (0.45 µm Millipore
membrane), and the filtered samples were packed into different pretreatment polyethylene
bottles. Cationic polyethylene bottles were acidified on site with 1:1 pure nitric acid to pH
< 2; the contents of the anionic polyethylene bottles, and TN and DOC polyethylene bottles
were added directly to the filtered water samples, and the polyethylene bottles were sealed
with sealing film. The collected samples were stored at low temperature in the field in a
refrigerated box and quickly sent to the laboratory.

The water temperature (◦C), pH, and conductivity (EC, µS·cm−1) of the dripping
water were tested in the field with a HQ40d portable water quality analyzer (HACH,
Loveland, CO, USA), and the HCO3

− (mmol·L−1) concentration of the water samples was
determined through titration, with the value recorded separately with an alkalinity meter
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(Merck, Germany). The concentrations of anions (Cl−, NO3
−, and SO4

2−) were determined
by ion chromatography (IC, DX-120, Dionex, Germany). An Optima-2100DV full-spectrum,
direct-reading ICP-OES (Perkin-Elmer, USA) was used to determine the concentrations
of K+, Na+, Ca2+, and Mg2+ in dripping water samples, having a detection accuracy of
0.001 mg·L−1 and a relative standard deviation of <2%. The detection limits for all ions
were less than 0.1 mg/L. DOC and TN concentrations were determined using a Shimadzu
TOC-VCPH total organic carbon analyzer with a relative standard deviation of <1.5%. Each
sample value represents the average of two consecutive measurements. The measurement
error was less than 1%.

2.3. Data Processing

We used IBM SPSS Statistics 26 (IBM, Armonk, NY, USA) and Excel (Microsoft Corpo-
ration, Albuquerque, NM, USA) to complete the statistical analysis, and Aq-QA (version 1.1)
water chemistry analysis software (RockWare, Inc., Golden, CO, USA) and Origin2021b for
plotting (OriginLab. Northampton, MA, USA).

3. Results
3.1. Physicochemical Parameters and Hydrochemical Type

The water samples in the Huangzhouhe River Basin are generally weakly alkaline,
with a pH between 6.98 and 8.99. The pH of the river during the rainy season is slightly
higher than during the dry season. The TDS is 202.30–488.50 mg·L−1, with an average of
338.4 mg·L−1, in the rainy season and 348.58 mg·L−1 in the dry season. Table 1 shows that
the ion content in the rainy season is slightly higher than that in the dry season.

Table 1. Statistics of the hydrochemical parameters of the Huangzhouhe River Basin (mg·L−1).

Dry pH Ca2+ Mg2+ K+ Na+ Cl− NO3
− SO4

2− HCO3
− TDS

Minimum 6.98 46.15 16.56 0.11 0.08 0.43 1.20 4.63 274.50 265.60
Maximum 8.19 101.57 80.94 5.13 5.29 5.79 8.51 28.53 469.70 488.50
Average 7.46 70.25 40.12 1.40 1.10 2.27 3.68 16.19 367 348.58

SD 0.29 13.69 13.30 1.26 1.11 1.31 1.99 6.05 48.71 51.01

Wet pH Ca2+ Mg2+ K+ Na+ Cl− NO3
− SO4

2− HCO3
− TDS

Minimum 7.19 45.47 34.66 0.49 0.55 0.92 2.61 8.84 268.4 202.30
Maximum 8.99 122.40 52.93 3.37 2.59 5.45 26.64 26.08 469.7 440.20
Average 8.16 89.71 43.10 1.52 1.31 2.60 8.84 17.12 355.3 338.40

SD 0.48 15.54 4.40 0.87 0.62 1.20 7.67 5.44 51.53 54.69

Ca2+, Mg2+, and HCO3
− are the dominant ions in the Huangzhouhe River Basin

(Figure 2). The decreasing order of cations in the river is Ca2+ > Mg2+ > K+ > Na+, with
Ca2+ and Mg2+ accounting for about 97.93% of the cations. The decreasing order of anion
concentration is HCO3

− > SO4
2− > NO3

− > Cl−, with HCO3
− accounting for about 94.31%.

The cations in the spring are Ca2+ > Mg2+ > K+ > Na+, with Ca2+ and Mg2+ accounting
for about 97.83% of the cations. The anion concentration is HCO3

− > SO4
2− > NO3

− >
Cl−, with HCO3

− accounting for about 92.05% of the total. The box plot in Figure 2 shows
that the Na+, K+, and Cl− contents in the river water are roughly the same as those in
groundwater, so it can be inferred that atmospheric precipitation is the main source of
recharge. The Ca2+ and Mg2+ contents in river water are slightly higher than those in
spring water, and the concentration of HCO3

− in spring water is higher than that in river
water, which is related to the longer time of water–rock interaction in spring water. pH
and SO4

2− and NO3
− contents in spring water are also higher than those in river water.
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Figure 2. Ion box diagram for the water samples: (a–h) comparison of ion contents between river water and spring water.

The Piper trilinear map, which is divided into nine zones according to ion content,
assigns different positions in the diamond to different water chemistries, which can objec-
tively reflect the water chemistry of the region. The trilinear diagram shows that surface
water and groundwater have basically the same ion positions, with all having a carbonic
acid content of more than 80%, calcium and magnesium contents in the range of 30% to
70%, and the sum of carbonic acid and calcium and magnesium contents accounting for
more than 60%, indicating the same water–rock action. The water chemistry type is mainly
HCO3-Ca-Mg because the study area is controlled by karst area carbonate rocks (Figure 3).
After long-term water–rock interaction, groundwater is more concentrated in the lower
left corner of the Piper three-line diagram, which is consistent with the results of Nandong
karst water in December [34].
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3.2. C and N Types and Distribution

The DIC in natural water bodies is mainly derived from CO2 input from air and soil
and the dissolution or precipitation of carbonate rocks [35]. Within the Huangzhouhe
River Basin, which is mainly subject to carbonate rock weathering, DIC is mainly derived
from dolomite weathering. The DIC in the water column occurs mainly in the form of
HCO3

−, CO3
2−, CO2, and H2CO3. HCO3

− is highly significantly positively correlated
with DIC, accounting for 80.39% of the DIC [36]. In this paper, the HCO3

− content is used
to represent the DIC. The TN in a river is input through three main pathways: external
input, internal organic matter cycling, and substrate release [37]. In springs, TN is mainly
provided from rainfall and overlying vegetation activities.

Table 2 shows the variation law of the concentrations of various forms of carbon and nitro-
gen concentration in the Huangzhouhe River Basin. In the dry season, the TN content of the river
from upstream to downstream is 0.62~1.91 mg·L−1, the NO3-N content is 0.49~1.19 mg·L−1,
the DIC content is 305~445.3 mg·L−1, and the DOC content is 2.04~4.52 mg·L−1. The spring
water TN content is 0.29~2.63 mg·L−1, the NO3-N content is 0.15~1.92 mg·L−1, the DOC
content is 1.48~4.85 mg·L−1, and the DIC content is 274.5~469.7 mg·L−1. In the rainy sea-
son, the TN content of the river from upstream to downstream is 1.22~3.23 mg·L−1, the
NO3-N content is 0.77~1.29 mg·L−1, the DIC content is 292.87~378.2 mg·L−1, and the DOC
content is 2.57~4.81 mg·L−1. Spring water’s TN content is 1.62~3.78 mg·L−1, its NO3-N
content is 0.89~2.51 mg·L−1, the DOC content is 1.66~3.36 mg·L−1, and the DIC content is
274.5~469.7 mg·L−1. The NO3-N and TN contents in river water are higher in the middle
reaches, DIC content is slightly lower in the downstream area, and DOC content decreases
along the river from the upper to lower reaches. In spring water, NO3-N, TN, and DIC contents
are lower in the downstream area, and the DOC content is higher in the middle reaches. In
general, the carbon and nitrogen contents of spring water are higher than those in river water.

Table 2. C and N species in the Huangzhouhe River Basin (mg·L−1).

Parameter
Upper Huangzhouhe Middle Huangzhouhe Lower Huangzhouhe

Range Mean Value Range Mean Value Range Mean Value

River
(dry)

DOC 2.46–4.52 3.33 2.34–3.77 2.90 2.04–3.54 2.79
DIC 305–445.3 351.36 317.2–439.2 356.85 323.3–329.4 326.35

NO3-N 0.49–0.79 0.63 0.76–1.19 0.92 0.64–0.7 0.67
TN 0.62–1.33 0.9 1.04–1.91 1.26 0.89–0.93 0.91

River
(wet)

DOC 2.57–4.81 3.38 2.82–3.96 3.37 2.86 2.86
DIC 323.3–378.2 347.7 311.1–347.7 324.83 292.87 292.8

NO3-N 0.85–1.99 1.20 0.77–1.29 1.01 0.90 0.90
TN 1.22–3.23 1.89 1.29–1.97 1.54 1.06 1.06

Spring
(dry)

DOC 1.56–1.93 1.75 1.77–4.85 3.09 1.48–1.8 1.70
DIC 378.2–433.1 405.65 335.5–469.7 407.16 274.5–408.7 341.6

NO3-N 0.15–1.92 1.04 0.27–1.4 1 0.7–0.88 0.81
TN 0.59–2.99 1.44 0.62–2.63 1.50 0.83–1.55 1.17

Spring
(wet)

DOC 1.90–2.33 2.11 2.11–4.23 3.36 1.66–1.86 1.75
DIC 420.9–433.1 427 274.5–469.7 390.4 268.4–372.1 312.63

NO3-N 0.59–1.55 1.07 0.89–6.01 3.54 1.15–4.75 2.43
TN 1.84–2.16 2 1.62–3.78 2.97 1.99–3.32 2.70

DIC: dissolved inorganic carbon; DOC: dissolved organic carbon;NO3-N: nitrate; TN: dissolved organic nitrogen.

4. Discussion
4.1. Analysis of Major Ion Sources

Correlation analysis between anions and cations can reflect the material origin of the
ions and the characteristics of the chemical reactions they underwent. Ions with stronger
correlations may be from the same material or may have undergone the same chemical
reaction process. The Ca2+ and Mg2+ in the river water in the basin are strongly correlated,
as are the K+ and Na+, and Cl− and SO4

2− (Figure 4a), which indicates that Ca2+ and Mg2+,
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Cl− and SO4
2−, and K+ and Na+ came from different substances or underwent the same

chemical process. The analysis is provided below. In the basin spring water, TDS and
HCO3

− are extremely correlated (Figure 4b) and show strong correlation with Ca2+ and
Mg2+, where Ca2+, Mg2+ and HCO3

− are all major ions. HCO3
− correlates with both Ca2+

and Mg2+, indicating a similar origin. In the basin water samples, Ca2+ shows an extremely
strong correlation with Mg2+ and TDS with HCO3

−, indicating that carbonate rocks are
the main factor controlling water chemistry in the study area.
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Atmospheric precipitation, evaporite dissolution, rock weathering, and anthropogenic
input are the sources of ions in the water column. The source and chemical reaction character-
istics can be inferred from the ion content, species, and ratio in the water column [38,39]. The
main sources of K+ and Na+ in the water column are atmospheric precipitation, evaporite
minerals, and silicate minerals. Numerous studies have shown that the average Na+/Cl−

value in atmospheric precipitation and seawater is about 0.86, and when evaporite is dissolved
without other influences, the (Na+ + K+)/Cl− ratio is about one. In Figure 5, water samples
are evenly distributed on both sides of the straight line, but there is no evaporite in the study
area, indicating other influences, which will be analyzed below. The ratio of (Na+ + K+)/Cl−

and Na+/Cl− in the water samples in the rainy season is larger than that in the dry season
because the water is more affected by humans in summer. In Figure 4, the river water Na+,
K+, and Cl− contents are highly correlated, indicating that atmospheric precipitation is the
main source of Na+, K+, and Cl−, being also affected by humans.

When only dolomite is dissolved, the ratio of γHCO3
− to γCa2+ is close to 4:1, the

ratio of γHCO3
− to γMg2+ is close to 4:1, and the ratio of γCa2+ to γMg2+ is close to 1:1.

When only calcite is dissolved in groundwater, the ratio of γHCO3
− to γCa2+ is close to 1:2.

Since there is no Mg in calcite (CaCO3), the content of Mg2+ in groundwater is low and can
be ignored. When calcite (CaCO3) and dolomite (CaMg(CO3)2) dissolve simultaneously in
karst groundwater, the ratio of γHCO3

− to γCa2+ is close to 3:1, and the ratio of γHCO3
−

to γMg2+ is close to 6:1. Correlation analysis showed that Mg2+, Ca2+ and HCO3
− are

strongly correlated, indicating strong homology.
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In Figure 6a, γHCO3
− and γCa2+ ratios are on either side of the 1:4 line, and γHCO3

−

and γMg2+ ratios are below 1:1 and above 1:6, respectively, in Figure 6b, indicating that one
of the Ca2+ sources is carbonate rock. The bias is toward the 1:2 equivalence in the γ(Ca2+

+ Mg2+) to γHCO3
− ratio in Figure 6c. A ratio near 1:1 for γCa2+ to γMg2+ in Figure 6d

suggests that the weathered carbonate rock is predominantly dolomite in the study area.
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4.2. Water Chemistry Evolutionary Processes

Carbonate rocks contain anions on the surfaces of mineral particles, which, under
certain conditions, release certain cations from the adsorbed surface and absorb new
cations, which is called cation exchange. In general, the Na+ and K+ contents are relatively
low in karst areas, being mainly produced from silicate rocks and evaporite rocks, where
evaporation of water or ion exchange with clay minerals can also increase the K+ and
Na+ contents in water [40]. Sodium–calcium exchange can change the concentration of
cations in groundwater, an important process in the evolution of water chemistry [41]. The
chlor-alkali index (CAI-I and CAI-II) was proposed by Schoeller [42]. If the values of both
indices are negative, a certain amount of Ca2+ is replaced by a corresponding amount of
Na+ in the soil. If the indices are positive, the reaction is occurring in the opposite direction.
If a positive exchange occurs between Na+ and K+ in the groundwater and Ca2+ and Mg2+

in the aquifer, then the index is positive. In Figure 7, the distribution of the water samples
shows that a positive exchange as well as a reverse exchange occur, so Ca2+ and Mg2+ are
replaced by Na+ and K+ in the groundwater, explaining why some of the water samples in
Figure 5 have a ratio greater than 1 and some have a ratio of less than 1.

CAI-I =
Cl− −

(
Na+ + K+

)
Cl−

(1)

CAI-II =
Cl− −

(
Na+ + K+

)
HCO−

3 + SO2−
4 + CO2−

3 + NO−
3

(2)
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Gibbs diagrams are often used to determine the main controls of the evolution of
water chemistry (evaporative crystallization, rock weathering, and atmospheric precipita-
tion effects). The use of ratio plots of ions helps to consider the extent to which seawater,
carbonate, and silicate rocks contributed to karst water ion concentrations [5,43]. In the
Gibbs diagram, the lower right-hand corner of the diagram is dominated by atmospheric
precipitation; in the middle left-hand part of the diagram, such sampling sites are mainly
controlled by rock weathering; in the upper right-hand corner of the diagram, such streams
are mainly controlled by evaporative crystallization. The scatter diagram is used to deter-
mine the main controls (carbonate, silicate, or evaporite) on the weathering process of the
rocks. We found that the Huangzhouhe River basin is mainly controlled by rock weathering
(Figure 8a,b), while the water samples are distributed in the carbonate rock(Figure 8c,d),
indicating that the ionic composition of the water is mainly due to the weathering process
of the rocks and is influenced by the weathering of carbonate rocks.
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4.3. Impacts of Human Activities on Water Chemistry and Carbon and Nitrogen Contents

River water chemistry is controlled both by natural geochemistry and by anthro-
pogenic disturbances. It is well known that river ions Cl−, SO4

2−, and DIN are closely
related to anthropogenic inputs (both agricultural and industrial) [8,44]. The overall sources
of ions can be divided into atmospheric precipitation, rock weathering, and external in-
puts. The sources of NO3

− and SO4
2− are mainly rock weathering and anthropogenic

inputs, Cl−, and atmospheric inputs. The watershed is mainly subject to the weathering
of carbonate rocks. To estimate the contribution of rainfall, the lowest concentrations of
Cl− (0.73 mg·L−1) and NO3

− (1.2 mg·L−1) in the pristine area were assumed to represent
atmospheric inputs [45]. The calculations show that the contribution of atmospheric inputs
to Cl− and NO3

− is less than 5% of the total dissolved ions. A positive correlation between
DOC and Cl− and SO4

2− is clearly shown in Figure 9, indicating anthropogenic pollution
from the source.
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Biological mechanisms of, e.g., phytoplankton and bacteria are considered to be
important sources of river DOC [12]. The temporal and spatial changes in river DOC are
largely affected by its source. In winter, the average DOC of river water is 3.33 mg·L−1

in the upper reaches and 2.90 mg·L−1 in the middle reaches. The average downstream
DOC is 2.79 mg·L−1. In summer, the average DOC of the river is 3.37 mg·L−1, 3.37 mg·L−1,
and 2.86 mg·L−1 in the upstream, middle, and downstream areas, respectively, decreasing
along the river. The upstream agriculture is mainly rice and tobacco, and there are more
phytoplankton in rice. The numbers of villages and farms increase from sampling points
1 to 10. Domestic sewage is discharged at will, and river water sampling points 9 and 10
are located in towns. Therefore, we found that the DOC is higher upstream. In summer,
agricultural and domestic sewage have a greater impact, resulting in more nutrients in the
water and greater phytoplankton activity. This led to higher DOC concentrations than in the
dry season, but not higher than the world average level of 5.35 mg·L−1 [46], indicating that
the Huangzhouhe River is less affected by human activities. With increasing distance from
towns and villages, the population density in the middle reaches of the basin decreases,
the farmland area decreases, and human pollution decreases. The downstream enters the
core protected area, where humans have even less influence. With the gradual reduction
in human influence, the river also has the ability to purify itself, so the DOC gradually
decreases in the direction of the river. In winter, the average DOC in the upper, middle,
and lower spring reaches is 1.75 mg·L−1, 3.09 mg·L−1, and 1.70 mg·L−1, respectively.
In summer, the average upstream, midstream, and downstream DOC is 2.11 mg·L−1,
3.36 mg·L−1, and 1.75 mg·L−1, respectively. In karst areas, spring water is one of the water
sources used in agriculture. Part of the spring water in the middle reaches of the river is
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used on rice fields. At the same time, there are aquatic plants in the spring water. This may
be the reason for the high DOC in the spring water in the middle reaches. The upstream
and midstream DICs in the watershed remain at the same level due to the influence of
domestic sewage. The highest DIC in domestic sewage reaches 7397 µmol·L−1, having less
of an effect in downstream areas [47,48].

In some river systems such as the Lichunhe and Daguhe Rivers in China, where
DIN is the dominant form of N [36], TN is highly significantly and positively correlated
with NO3-N (r = 0.96, p < 0.01; Table 3). NO3-N is the main component of DIN, a key
nutrient essential for phytoplankton, and its main sources are biological and surface runoff.
Changes in NO3-N lead to changes in TN, which may be due to the preferential uptake
and use of DIN by phytoplankton and bacteria [49,50]. River NO3-N and TN contents are
higher in the middle reaches, where anthropogenic influences are stronger. Downstream
in the core protected area, anthropogenic influences are weaker and the self-purification
capacity of the river results in decreased levels of NO3-N and TN. Spring NO3-N and TN
contents are the same in the upper stream and midstream and lower in the lower reaches,
probably due to a decrease in anthropogenic influences.

Table 3. Pearson correlation coefficients between C and N species and physicochemical parameters
in the Huangzhouhe River Basin.

Parameters T PH EC TDS DIC DOC NO3-N TN

T 1
pH 0.83 ** 1
EC 0.46 * −0.31 1

TDS −0.17 −0.32 0.36 * 1
DIC −0.17 −0.10 0.71 0.58 ** 1
DOC 0.20 0.77 0.32 0.35 * −0.08 1

NO3-N 0.64 ** 0.33 0.61 ** 0.29 0.003 0.39 * 1
TN 0.67 ** 0.42 0.56 ** 0.27 0.14 0.42 * 0.96 ** 1

*, ** Significance at 0.05 and 0.01 probability levels, respectively. T: temperature; EC: conductivity; TDS: total
dissolved solids.

Within the Huangzhouhe River Basin, DOC levels are higher in rivers than in springs,
and TN and NO3-N levels are higher in springs than in rivers, mainly because plankton
consume DIN to release DOC and because of anthropogenic pollution. Spring DIC levels
are significantly higher than those in river water due to the longer duration of water–rock
action in springs. The trend in carbon and nitrogen in springs is consistent with that
of river water, indicating that springs and river water are independent, interacting, and
interdependent in the hydrological system. Compared with river water, spring water is
less affected by the outside world. TN and NO3-N are extremely significantly positively
correlated (r = 0.96, p < 0.01; Table 3), with roughly the same range of values, with NO3-N
accounting for as high as 83% of the TN. This shows that the output of carbon and nitrogen
in the Huangzhouhe River Basin is mainly DIC and NO3-N.

4.4. Relationship between C and N

A total of 38 species of algae in the Huangzhouhe River Basin were detected in 6 phyla,
29 families, 37 genera, 5 phyla, 25 genera, and 25 species in summer; 3 phyla, 17 genera, and
18 species in winter. Diatom species are dominant. In summer, diatoms and green algae
are positively correlated with NO3-N; in winter, oscillating algae are mainly negatively
correlated with TN and NH3-N, and Scenedesmus dimorpha in the phylum Chlorophyta is
positively correlated with NH3-N [51].

The relationship between water pH and carbon-to-nitrogen ratio is complex: aquatic
plants and animals consume relative levels of NO3

− and NH4
+ and thus have a direct

role in regulating water pH, and river C:N has an important influence on the growth and
reproduction of plankton in water [52,53]. Planktonic algae and aquatic plants can absorb
and utilize water DIC through photosynthesis [54], so lower levels of planktonic algae
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lead to weaker photosynthesis in the water column, which, in turn, reduces the amount
of DIC absorbed and used in the water [55]. These processes inevitably cause changes
in the pH of the water [56], which affect the growth activities of microorganisms and
algae [57,58], which affect DOC release and TN decomposition. Dead cells of planktonic
algae release high-molecular-weight DOC, while living cells release low-molecular-weight
DOC [59]. DOC has an important role in the process of biological denitrification and
denitrification [60], where the organic carbon source acts both as an energy source for
denitrifying bacteria to synthesize cells and as an electron donor in the denitrification
reaction, which can facilitate the conversion of nitrogen in the water column into N2O and
N2 to be released from the water column into the atmosphere. This reduces the TN content
of the water column. There is a correlation between TN and DOC (r = 0.42, p < 0.05; Table 3).
Therefore, microorganisms may be the main factor causing carbon and nitrogen coupling
in conventional water bodies in the basin. Anthropogenic activities have an impact on
water chemistry characteristics, affecting phytoplankton, which, in turn, affects the carbon
and nitrogen contents, which, in turn, affect the water chemistry characteristics.

According to the stoichiometric ratio of nutrients in the plant plankton body proposed
by Redfield [61], C:N:P = 106:16:1, it can be seen that the C:N suitable for the growth
of plankton in the basin water should be about 6.6 The C:N range of the conventional
water body of the Huangzhouhe River is 1.7–4.66, with an average of 3.25. Although
it has not reached the optimal growth state, good living conditions are provided for
plankton, indicating that the pollution caused by human activities is relatively low in the
Huangzhouhe River and that the Huangzhouhe River ecosystem is healthy.

4.5. Water Quality Assessments

Based on the Sanitary Standards for Drinking Water (GB 5749-2006) [62], some of
the water quality parameters (pH, Cl−, NO3−N, SO4

2−, and TDS) are shown in Table 4.
The content of N species in the water samples in the basin is within the standard range,
and the DOC content is far less than the average level of 5.35mg·L−1 in the world’s rivers.
Shibing is a World Natural Heritage Site, with no serious industrial activities, and only
a small area used for traditional agricultural activities. Large areas of virgin forest and
diversified ecosystems have been protected and developed, indicating that the world’s
natural heritage is being protected.

Table 4. Water quality determination (mg·L−1).

Parameter pH Cl− NO3−N SO42− TDS

Standard range 6.5-8.5 <250 <10 <250 <1000
Water sample 6.98–8.99 0.43–5.79 0.15–3.05 4.62–28.53 202.3–488.5
Unqualified 1 0 0 0 0

5. Conclusions

In this study, we found that river and spring water samples within the Huangzhouhe
River Basin are dominated by Ca2+, Mg2+, and HCO3

−. Ca2+ and Mg2+ account for 97%
of the total cation concentration. For anions, HCO3

− accounts for about 96% of the total
anion concentration. The higher HCO3

− content in the spring water than in the river water
is mainly due to the longer duration of spring water–rock action. The water chemistry
identified by the Piper diagram is dominated by HCO3-Ca-Mg. Through ion correlation,
we found that the correlation between Cl− and SO4

2− in river water is stronger than
that in spring water, which is due to human influences. The ion ratios, Gibbs plots, and
scatter diagram reveal that the water chemistry of the Huangzhouhe River Basin is mainly
influenced by the weathering of dolomite rocks, and that cation exchange is also present.

Within the Huangzhouhe River Basin river water, the DOC content decreases gradu-
ally in the river direction, mainly due to decreases in population density and anthropogenic
impacts. The spring water DOC content is higher in the middle reaches, mainly due to
its use for agriculture with more aquatic plants. The river and spring water DIC contents
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increase in midstream areas, which may be due to inputs of domestic wastewater. Due
to the impact of agricultural and domestic sewage, the DOC content increases with in-
creases in Cl− and SO4

2−. The TN and NO3-N contents in rivers change with the change
in population density, reaching a maximum in the middle reaches; the TN and NO3-N
contents in spring water are lower downstream. The trends of the changes of the river
and spring water contents are the same, with a higher DOC content in river water than
in river water, and NO3-N leading to less TN in river water than in spring water, mainly
due to the reduction in consumption by plants and organisms’ activities in the river. pH
and water temperature affect phytoplankton and bacterial activity, and phytoplankton
affect C and N concentrations, so microorganisms may be causing carbon and nitrogen
coupling in the conventional waters of the basin. The main carbon and nitrogen species in
the Huangzhouhe River Basin are HCO3

− and NO3
−, respectively.

The water quality index content of the Huangzhouhe River Basin complies with
Sanitary Standards for Drinking Water (GB5749-2006). Although the Huangzhouhe River
is subject to tourism and agricultural impacts, the water quality is still good.
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