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Cell signaling in response to an array of diverse stress stimuli converges on the phosphoryla-
tion of eukaryotic initiation factor-2α (eIF2α). Evidence is accumulating that persistent eIF2α

phosphorylation at Ser51 through prolonged overactivation of regulatory kinases occurs in
neurodegenerative diseases such as Alzheimer’s disease (AD), leading to shutdown of
general translation and translational activation of a subset of mRNAs. Recent advances in
the development of gene-based strategies and bioavailable inhibitors, which specifically
target one of the eIF2α kinases, have enabled us to investigate pathogenic roles of
dysregulated eIF2α phosphorylation pathways.This review provides an overview of animal
model studies in this field, focusing particularly on molecular mechanisms by which the
dysregulation of eIF2α kinases may account for synaptic and memory deficits associated
with AD. A growing body of evidence suggests that correcting aberrant eIF2α kinase
activities may serve as disease-modifying therapeutic interventions to treat AD and related
cognitive disorders.
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INTRODUCTION
Although the molecular cause of Alzheimer’s disease (AD) has
not been completely understood, recent investigations increasingly
implicate the aberrant translational machinery through the α sub-
unit of eukaryotic initiation factor-2 (eIF2α) in the pathogenesis
of this devastating neurodegenerative disease. It has been reported
that eIF2α phosphorylation is significantly increased in the brains
of sporadic AD patients as well as different lines of amyloid pre-
cursor protein (APP)/presenilin 1 (PS1) transgenic mice (Chang
et al., 2002; Page et al., 2006; Kim et al., 2007; O’Connor et al., 2008;
Devi and Ohno, 2010, 2013b; Mouton-Liger et al., 2012). Accumu-
lation of misfolded proteins such as amyloid-β (Aβ) is known to
induce eIF2α phosphorylation, whereas genetic and environmen-
tal risks for AD may be associated with modulation of the eIF2α

phosphorylation pathway. The phosphorylation of eIF2α at Ser51
inhibits general translation initiation, representing a protective
cellular mechanism that induces the transient shutdown of pro-
tein synthesis (UPR: unfolded protein response; Hoozemans et al.,
2005; Lee et al., 2010). However, emerging evidence from animal
model studies suggests that sustained eIF2α phosphorylation and
translational repression of global protein synthesis, which occur
under severe or prolonged stress conditions (Erguler et al., 2013),
may lead to synaptic failure accompanied by reductions in vital
synaptic proteins, neurodegeneration, and memory deficits asso-
ciated with AD (Devi and Ohno, 2013a, under review; Ma et al.,
2013).

While eIF2α phosphorylation suppresses general protein syn-
thesis, it is shown to paradoxically cause translational activation
of a subset of mRNAs, including the β-secretase called β-site APP-
cleaving enzyme 1 (BACE1; De Pietri Tonelli et al., 2004; Lammich
et al., 2004; Mihailovich et al., 2007; O’Connor et al., 2008; Devi

and Ohno, 2010) and the transcriptional modulator activating
transcription factor 4 (ATF4; Harding et al., 2000; Vattem and
Wek, 2004). In accordance with persistently great amounts of
phosphorylated eIF2α, expression levels of BACE1, a key enzyme
responsible for triggering the production of Aβ peptides, are sig-
nificantly elevated in AD brains (Fukumoto et al., 2002; Holsinger
et al., 2002; Yang et al., 2003; Li et al., 2004; Ohno et al., 2007;
Zhao et al., 2007; Cai et al., 2012). A recent report also demon-
strates AD-related upregulation of ATF4 (Lewerenz and Maher,
2009), which is a repressor of cAMP response element binding
protein (CREB)-dependent transcription critical for memory con-
solidation (CREB-2; Abel et al., 1998; Silva et al., 1998; Chen et al.,
2003). Therefore, aberrant eIF2α phosphorylation may under-
lie AD pathogenesis and memory impairments not only as a
downstream mechanism of Aβ accumulation but also by accel-
erating β-amyloidogenesis through BACE1 elevations and directly
suppressing CREB function. In this article, I review recent publi-
cations suggesting multifaceted deleterious mechanisms by which
dysregulated eIF2α kinases may cause memory deficits associated
with AD. The findings would have important implications for the
development of novel therapeutic interventions targeted at eIF2α

kinases.

eIF2α KINASES AND TRANSLATIONAL CONTROL BY eIF2α
PHOSPHORYLATION
eIF2 consists of three subunits (α, β, and γ) and binds GTP
and Met-tRNAi

Met (initiator methionyl-tRNA) to form a ternary
complex, which delivers the initiator tRNA to the 40S riboso-
mal subunit. Exchange of GDP for GTP on the γ subunit is
catalyzed by eIF2B, a guanine nucleotide exchange factor that
is required to replenish the active GTP-bound form of eIF2
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complex for a new round of translational initiation. Phos-
phorylation of eIF2 on its α subunit at Ser51 in response to
diverse stress stimuli suppresses general translation initiation,
since it converts eIF2 to a competitive inhibitor of eIF2B by
blocking the GDP-GTP exchange reaction and reducing the
dissociation rate of eIF2 from eIF2B (Figure 1). Although
phosphorylation of eIF2α causes a reduction in general trans-
lation, it also selectively increases the translation of a subset of
mRNAs that contain upstream open reading frames (uORFs). The
molecules that undergo the gene-specific translational upregula-
tion via eIF2α phosphorylation include the β-secretase enzyme
BACE1 (De Pietri Tonelli et al., 2004; Lammich et al., 2004;
Mihailovich et al., 2007; O’Connor et al., 2008; Devi and Ohno,
2010) and the CREB repressor ATF4 (CREB-2; Harding et al.,
2000; Vattem and Wek, 2004), which are closely associated with
the development of AD pathology and deficient memory for-
mation (Figure 1). The molecular mechanism of eukaryotic
translation initiation and its regulation have been described in
detail in previous reviews (Costa-Mattioli and Sonenberg, 2008;
Costa-Mattioli et al., 2009; Jackson et al., 2010; Donnelly et al.,
2013).

The phosphorylation of eIF2α at Ser51 is controlled by four
protein kinases such as general control non-derepressible-2 kinase
(GCN2), double-stranded RNA-activated protein kinase (PKR),
PKR-like endoplasmic reticulum kinase (PERK), and heme-
regulated inhibitor kinase (HRI; Figure 1; Costa-Mattioli and
Sonenberg, 2008; Donnelly et al., 2013). The eIF2α kinases except

FIGURE 1 | Multiple molecular mechanisms by which dysregulated

eIF2α kinase activities may lead to memory deficits and

neurodegeneration associated with AD. Four eIF2α kinases become
activated in response to diverse cellular stress stimuli. Persistent eIF2α

phosphorylation through aberrant activation of these kinases in AD causes
the inhibition of general translation, while it activates gene-specific
translation of mRNAs such as BACE1 and ATF4.

for HRI are prominently expressed in the mammalian brain. These
eIF2α kinases share a conserved kinase domain but have divergent
regulatory domains to specifically become activated (i.e., phos-
phorylated) in response to a variety of cellular stress stimuli, as
reviewed previously (Donnelly et al., 2013). In brief, PERK is pri-
marily activated by the accumulation of misfolded proteins in the
endoplasmic reticulum (ER), a phenomenon termed ER stress.
Generally, PERK-dependent eIF2α phosphorylation is thought to
block global translation initiation and in this manner can alleviate
ER stress by reducing the amount of protein transport into the
ER. This allows the ER time to refold misfolded proteins and dis-
pose of those that are terminally misfolded, an important element
of cellular protective UPR processes. PKR was initially discovered
as a kinase that phosphorylates eIF2α in response to viral infec-
tion or double-stranded RNA, thereby blocking the translation of
viral mRNAs and promoting apoptosis. GCN2 is primarily a sen-
sor of amino acid availability and a regulator of changes in gene
expression in response to amino acid deprivation. GCN2 is also
activated by UV irradiation and viral infection. HRI is predomi-
nantly found in erythroid cells and activated by heme deficiency.
Remarkably, considerable evidence is accumulating that these
eIF2α kinases are dysregulated on different disease conditions
and may play pathogenic roles, especially, in neurodegenerative
disorders including AD and related cognitive impairments, as
summarized in this review.

eIF2α PHOSPHORYLATION AND AD
It has become increasingly apparent that amounts of phospho-
rylated eIF2α are significantly elevated in sporadic AD brains
(Chang et al., 2002; Hoozemans et al., 2005; Kim et al., 2007;
O’Connor et al., 2008; Mouton-Liger et al., 2012; Natunen et al.,
2013; Segev et al., 2013). Moreover, the elevation in eIF2α phos-
phorylation is successfully recapitulated in different transgenic
mouse models of AD that exhibit memory impairments, including
5XFAD (O’Connor et al., 2008; Devi and Ohno, 2010, 2013a,b),
Tg2576 (Kim et al., 2007), and APP/PS1 KI (Page et al., 2006;
Mouton-Liger et al., 2012). Among the eIF2α kinases, these studies
detect aberrant activation of PERK and/or PKR in brain, which
may thus represent major mediators of eIF2α phosphorylation
that overly occurs with relevance to AD.

Interestingly, recent animal model studies also reveal that
genetic and environmental risk factors for sporadic AD are associ-
ated with increased eIF2α phosphorylation. For example, amounts
of phosphorylated eIF2α increase with normal aging in wild-
type mice, while mice overexpressing human apolipoprotein E4
(ApoE4: a strong genetic risk factor that modulates the preva-
lence, age of onset and the burden of pathology in sporadic
AD) show elevations in eIF2α phosphorylation in brains and
deficient learning and memory, as compared with age-matched
ApoE3 control mice (Segev et al., 2013). This ApoE4-related eIF2α

phosphorylation occurs at an early age (4 months) concomi-
tant with overactivation of PKR and GCN2 pathways and is not
further enhanced with aging, suggesting that genetic and aging
risks for AD converge on the eIF2α phosphorylation pathway. We
have demonstrated that young (3- to 4-month-old) 5XFAD mice,
which have not yet showed an increase in eIF2α phosphorylation
at baseline levels, exhibit robust activation of the PERK-eIF2α
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pathway and enhanced Aβ plaque pathology in response to poten-
tial environmental risks for AD such as insulin-deficient diabetic
conditions and behavioral stress (Devi et al., 2010, 2012). Con-
versely, a recent study shows that physical activity (i.e., treadmill
exercise), a therapeutic regimen hypothesized to delay AD pro-
gression, prevents ER stress-related activation of PERK-dependent
eIF2α phosphorylation, apoptosis, Aβ accumulation and cognitive
impairments in PS2 mutant mice (Kang et al., 2013). Taken collec-
tively, these data provide compelling evidence that the increases in
eIF2α phosphorylation through dysregulated eIF2α kinase activi-
ties may be closely associated with the pathogenesis or acceleration
of AD and responsible for disrupting memory processes in this
disease.

eIF2α KINASES AS NEGATIVE MODULATORS OF MEMORY
FUNCTION
Recent work suggests the importance of translational control
through eIF2α phosphorylation in learning and memory. First,
Costa-Mattioli et al. (2005) have reported that GCN2 deficiency
facilitates long-term memory formation as well as hippocampal
late-phase long-term potentiation (L-LTP: a long-lasting synap-
tic plasticity model for memory consolidation) when they are
induced by a weak subthreshold training or tetanic stimulation
protocol that does not normally elicit stable long-term memory
or L-LTP. Similarly, the suppression of eIF2α phosphorylation in
heterozygous knock-in mice with an eIF2α+/S51A point muta-
tion also enhances L-LTP and memory formation in multiple
learning paradigms such as the Morris water maze, fear con-
ditioning and conditioned taste aversion (Costa-Mattioli et al.,
2007). These results are consistent with the observations that
behavioral training for contextual fear conditioning and novel
taste learning tasks results in reduced levels of eIF2α phospho-
rylation at Ser51 in the hippocampus, whereas hippocampal
application of Sal003, an inhibitor of eIF2α dephosphorylation,
impairs not only L-LTP but also contextual and taste memo-
ries (Costa-Mattioli et al., 2007; Jiang et al., 2010; Stern et al.,
2013). Moreover, baseline levels of ATF4, a repressor of CREB
(CREB-2), is decreased concomitant with reduced eIF2α phospho-
rylation in GCN2-deficient mice, suggesting that these behavioral
alterations may be associated with changes in CREB-mediated
gene expression. Therefore, the findings provide convergent evi-
dence that GCN2-dependent eIF2α phosphorylation works as a
negative regulator of L-LTP and long-term memory formation
through reducing not only general translation initiation but also
CREB-dependent transcription. However, it should be noted that
GCN2-deficient mice exhibit, conversely, declines in memory for-
mation and L-LTP when they are exposed to a robust training or
stronger tetanic stimulation protocol that is sufficient to produce
stable long-term memory or L-LTP (Costa-Mattioli et al., 2005).
Conceivably, stronger stimulations may potentiate an inhibitory
pathway that is upregulated by the lack of translational repression
in these mice, so the GCN2-mediated ATF4 translation needs to
be tightly controlled for normal memory function and synaptic
plasticity.

Likewise, the impacts of genetic and pharmacologic manipula-
tions of PKR on learning and memory as well as hippocampal
L-LTP have also been recently investigated. Jiang et al. (2010)

developed a novel conditional transgenic mouse model in which
PKR is specifically increased in hippocampal CA1 pyramidal cells
by the chemical inducer. These mice show deficient L-LTP and
contextual fear memory concomitant with increased levels of
eIF2α phosphorylation. Notably, they found that the facilitation
of PKR-dependent eIF2α phosphorylation in this model elevated
ATF4 translation and suppressed CREB-dependent gene expres-
sion (e.g., BDNF: brain-derived neurotrophic factor), while it
was not sufficient to affect de novo general translation. There-
fore, it seems likely that increased gene-specific translation of
ATF4 rather than global translational inhibition may be a key
event to deteriorate long-term memory and L-LTP. This idea
is supported by the previous observation that ATF4 deficiency
was able to prevent hippocampal L-LTP suppression associated
with pharmacologic induction of eIF2α phosphorylation with
Sal003 (Costa-Mattioli et al., 2007). Furthermore, a recent study
demonstrates that reducing eIF2α phosphorylation by pharma-
cologically inhibiting PKR activities in mice and rats enhances
their novel taste and conditioned taste aversion memories
(Stern et al., 2013).

Meanwhile, Trinh et al. (2012) recently generated a mouse
model that has forebrain-specific and postnatal deletion of PERK.
These PERK mutant mice show reductions in eIF2α phos-
phorylation and ATF4 expression but no change in general
translation. Therefore, ATF expression seems more responsive
than general translation to the alteration of eIF2α phospho-
rylation caused by PKR (Jiang et al., 2010) and PERK gene
manipulations (Trinh et al., 2012). Intriguingly, although con-
ditional PERK removal does not affect initial learning or
memory formation, it results in impaired behavioral flexi-
bility including deficient fear memory extinction and rever-
sal learning in the Morris water maze or Y-water maze. It
appears that the reversal learning as well as initial learn-
ing is normally associated with a reduction in phosphorylated
eIF2α in wild-type controls. However, since mice with con-
ditional PERK ablation show dramatically reduced levels of
eIF2α phosphorylation after acquisition, they lack further reduc-
tion in response to reversal learning. Altogether, the neuro-
biological studies using genetic and pharmacologic manipula-
tions of eIF2α kinases have indicated that translational reg-
ulation of ATF4 expression through eIF2α phosphorylation
should be tightly controlled for normal mnemonic processing,
thus suggesting the possibility that dysregulated activities of
eIF2α kinases on disease conditions may account for cognitive
disorders.

eIF2α KINASES AND MEMORY DEFICITS IN AD
To directly address the molecular mechanisms by which over-
activation of the eIF2α phosphorylation pathway may cause
AD-associated memory impairments, recent studies have tested
whether genetic manipulations of eIF2α kinases in transgenic
mouse models can rescue their synaptic and cognitive failures. By
crossing forebrain-specific PERK knockout mice with APP/PS1
transgenic mice, Ma et al. (2013) showed that PERK ablation pre-
vents hippocampal eIF2α phosphorylation and memory impair-
ments, as assessed by the hippocampus-dependent spatial learning
paradigms such as the Morris water maze, Y-water maze and
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object location tasks. Furthermore, this report revealed that con-
ditional PERK removal ameliorates deficient LTP (a cellular basis
for learning and memory) at hippocampal Schaffer collateral-CA1
synapses in APP/PS1 mice. As observed with behavioral training,
LTP-inducing high-frequency stimulation causes dephosphoryla-
tion of eIF2α, which is prevented by application of exogenous Aβ.
Interestingly, Aβ-induced impairment of CA1 LTP in hippocampal
slices is also rescued by deleting PERK, suggesting that PERK-
dependent hyperphosphorylation of eIF2α as a consequence
of Aβ accumulation may underlie deficient synaptic plasticity
(Ma et al., 2013).

We recently found that PERK haploinsufficiency is sufficient
to block overactivation of the PERK-dependent eIF2α phospho-
rylation pathway in 5XFAD transgenic mice (Devi and Ohno,
under review), which represent an early onset and aggressive
amyloid mouse model based on a combination of five famil-
ial AD (FAD) mutations (Oakley et al., 2006; Ohno et al., 2006,
2007). Our results demonstrate that PERK haploinsufficiency can
also lead to amelioration of memory deficits in 5XFAD mice, as
tested by the hippocampus-dependent contextual fear condition-
ing. Therefore, two independent investigations using different AD
mouse models combined with PERK gene targeting approaches
consistently support the idea that dysregulated PERK activities
and eIF2α hyperphosphorylation account for memory deficits
associated with AD.

It has also been examined whether genetic deletion of GCN2,
another eIF2α kinase, may have beneficial effects on memory
defects in transgenic mouse models of AD (Devi and Ohno,
2013a; Ma et al., 2013). A recent study shows that knocking out
GCN2 in APP/PS1 mice rescues spatial memory deficits in the
water maze task, as observed with conditional PERK deletion
(Ma et al., 2013). Moreover, GCN2 gene ablation is demon-
strated to prevent LTP deficits found in Aβ-applied hippocampal
slices as well as in APP/PS1 mice. Therefore, GCN2 also seems
to be an eIF2α kinase of which dysregulation may be respon-
sible for synaptic and mnemonic deficits in AD. In contrast,
we found that GCN2−/− and GCN2+/− deficiencies aggravate
rather than suppress eIF2α phosphorylation in 5XFAD mice, thus
failing to rescue memory deficits in the contextual fear condi-
tioning task (Devi and Ohno, 2013a). Interestingly, our data
indicate that GCN2 deletion causes further activation of the PERK-
dependent eIF2α phosphorylation pathway in 5XFAD mice in
the absence of changes in the PKR pathway. It should be noted
that the overactivation of PERK in response to GCN2 deletion
is observed specifically in 5XFAD mice, since GCN2−/− mice
show reduced eIF2α phosphorylation (relative to wild-type con-
trols) without compensatory changes in phosphorylated PERK
levels. Therefore, we postulate that signaling mechanisms con-
trolling eIF2α phosphorylation are different between normal and
severe AD conditions. GCN2 may be an important eIF2α kinase
under the physiological condition, whereas PERK-mediated eIF2α

phosphorylation becomes prominent under exposure to great
amounts of misfolded proteins (e.g., robust β-amyloidosis in
5XFAD) and GCN2 may function as a negative regulator of
this pathway (Devi and Ohno, 2013a). Collectively, two recent
studies provide contradictory results concerning the role of GCN2
in translational dysregulation through eIF2α phosphorylation

and memory impairments associated with AD. These might be
accounted for by the different lines of animal models used and/or
neuropathological stages that represent a key determinant for
the degree of stressful conditions. In any case, further study is
clearly required, given that it has not been conclusively deter-
mined whether aberrant GCN2 activation may occur in AD
brains.

Meanwhile, overactivation of the PKR pathway has been well
established in many models of AD and patients with AD. A pre-
clinical longitudinal study was undertaken to evaluate the effects
of a PKR inhibitor (Compound C16) in APP/PS1 mice (Couturier
et al., 2012). The results indicate that PKR inhibition transiently
prevents inflammation without affecting Aβ concentrations in
brains. However, treatments with C16 become ineffective in reduc-
ing inflammation markers and induce a great increase in Aβ levels
in APP/PS1 mice during advanced stages of disease. No beneficial
effects of the PKR inhibitor on spatial memory impairments, as
tested by the water maze and Y-maze paradigms, are observed in
these AD model mice throughout the progression of disease.

eIF2α KINASES AND GENERAL TRANSLATIONAL INHIBITION
IN AD
The analysis of in silico model reveals that chronic and severe
ER stress induces persistent PERK-dependent phosphorylation
of eIF2α, which is sufficient to induce shutdown of translation
(Erguler et al., 2013). In accordance with this scenario, it is shown
that de novo protein synthesis is significantly suppressed concomi-
tant with elevated levels of phosphorylated eIF2α in APP/PS1
transgenic mice, whereas conditional PERK deletion prevents the
reduction of general protein synthesis in these mice (Ma et al.,
2013). Moreover, knocking out PERK restores reduced levels of
vital plasticity-related synaptic proteins and improves synaptic
and cognitive dysfunctions in APP/PS1 mice. We recently extend
these findings by showing that reducing PERK-dependent eIF2α

phosphorylation in 5XFAD mice is able to prevent their AD-like
cholinergic neuron loss in the medial septum (Devi and Ohno,
under review). It is important to note a study demonstrating that
treatments with the specific PERK inhibitor GSK2606414 prevent
aberrant eIF2α phosphorylation and translational failure in prion-
infected mice, leading to rescue from deficient synaptic proteins,
neurodegeneration, and clinical signs of prion disease including
memory impairments (Moreno et al., 2013). Taken together, these
findings support the concept that the dysregulated PERK-eIF2α

pathway and translational repression may be common molecular
mechanisms underlying neurodegenerative diseases that occur as
a consequence of the accumulation of misfolded proteins. How-
ever, two other pathways of the UPR (i.e., ATF6 and IRE1α) are
not activated in APP/PS1 or prion-diseased mice (Ma et al., 2013;
Moreno et al., 2013), and it currently remains unclear whether
PERK overactivation found in AD animal models may be part of
the UPR signaling (Endres and Reinhardt, 2013).

eIF2α KINASES AND BACE1 ELEVATION IN AD
As opposed to the shutdown of general translation, dysregu-
lated eIF2α phosphorylation leads to translational upregulation of
the β-secretase enzyme BACE1. O’Connor et al. (2008) reported
that levels of phosphorylated eIF2α are significantly elevated in
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human AD brains and positively correlate with BACE1 expres-
sion levels and Aβ plaque loads. Similarly, phospho-eIF2α-related
increases in BACE1 protein are also found in brains of 5XFAD
model mice (O’Connor et al., 2008; Devi and Ohno, 2010) in
the absence of changes in its mRNA levels (Zhao et al., 2007).
Therefore, it seems likely that the BACE1 elevation is not the
results of increased BACE1 gene transcription or mRNA stability
at least in this AD model. Remarkably, we previously demon-
strated that increased amounts of phosphorylated eIF2α resulting
from the application of Sal003, a specific inhibitor of its phos-
phatase, can elevate BACE1 protein levels in young 5XFAD mice,
which have not yet showed BACE1 upregulation consistent with
only marginal changes in eIF2α phosphorylation (Devi and Ohno,
2010). Sal003 also increases BACE1 expression and Aβ production
in primary neurons (O’Connor et al., 2008). Together, these find-
ings provide convergent evidence for a link between aberrant eIF2α

phosphorylation and BACE1 elevation in AD.
Which eIF2α kinase(s) may be responsible for mediating

BACE1 upregulation? We recently demonstrate that reducing
PERK-dependent eIF2α phosphorylation blocks BACE1 elevation
in advanced stages of 5XFAD mice (8-to 9-month-old), leading to
the suppression of β-amyloidogenesis as evidenced by decreased
levels of the β-cleaved C-terminal fragment of APP (β-CTF or
C99), Aβ40 and Aβ42 peptides, and amyloid plaque burden in
PERK+/−·5XFAD mice (Devi and Ohno, under review). APP/PS1
mice with conditional PERK ablation also have reduced levels of
Aβ and C99 (Ma et al., 2013). Furthermore, a recent report shows
that administration of arctigenin, a natural product from Arctium
lappa (L.), to APP/PS1 mice can block the translational upregu-
lation of BACE1 by suppressing the PERK-eIF2α pathway in the
absence of transcriptional alteration (Zhu et al., 2013). This action
of arctigenin leads to improved memory performances of APP/PS1
mice in the water maze concomitant with reduced Aβ produc-
tion and plaque loads, although enhanced Aβ clearance through
autophagy attributable to mTOR inhibition is also noted. Con-
versely, GCN2-deficient 5XFAD mice exhibit the facilitation of
PERK-dependent eIF2α phosphorylation, which is accompanied
by the exacerbation of BACE1 elevation, Aβ/C99 accumulation,
and plaque pathology (Devi and Ohno, 2013a). Furthermore, we
found that BACE1 is elevated concomitant with robust activation
of the PERK-eIF2α pathway in young 5XFAD mice under exposure
to insulin-deficient diabetic conditions or behavioral stress (Devi
et al., 2010, 2012). In accordance with these observations in trans-
genic mouse models, transfection with dominant negative PERK,
but not dominant negative GCN2, prevents energy deprivation-
induced phosphorylation of eIF2α and BACE1 elevation in an
in vitro model of incipient AD conditions (O’Connor et al., 2008).
Therefore, literature seems consistent with the pathogenic role
of dysregulated PERK in mediating robust eIF2α phosphorylation
that accounts for BACE1 elevation and the consequent acceleration
of neurotoxic Aβ/C99 accumulation associated with AD.

The PKR-eIF2α phosphorylation pathway is also shown to
be highly activated in AD brains and correlate with the degree
of BACE1 elevation (Mouton-Liger et al., 2012). In this study,
APP/PS1 KI mice have similarly increased levels of BACE1
expression concomitant with overactivation of PKR-eIF2α sig-
naling. Mechanistically, it is demonstrated that BACE1 elevation

occurs in response to hydrogen peroxide-induced oxidative stress
in cell culture, which is blocked by a specific inhibitor or siRNA
targeting PKR (Mouton-Liger et al., 2012). Moreover, in vivo and
cell culture experiments reveal that infection with herpes simplex
virus type 1 (HSV1: a virus suggested to be implicated in AD devel-
opment) causes activation of the PKR-eIF2α pathway, resulting in
elevations of BACE1 expression and Aβ/C99 generation (Ill-Raga
et al., 2011). A recent study also reports that pharmacological inhi-
bition of PKR successfully blocks BACE1 upregulation in APP/PS1
transgenic mice; however, these effects do not necessarily lead
to cerebral Aβ reduction or cognitive benefits (Couturier et al.,
2012). Interestingly, we found that 5XFAD mice, an aggressive AD
model in which PERK-dependent BACE1 elevation is prominent
(Devi and Ohno, under review), do not show activation of the
PKR-eIF2α phosphorylation pathway (Devi and Ohno, 2013a,b).
Collectively, it seems likely that the severity of disease or differ-
ent stress conditions to which nerve cells are exposed during the
course of AD development may be an important factor to deter-
mine the predominant eIF2α kinase(s) that may be responsible for
BACE1 elevation.

It has been demonstrated that Aβ accumulation induces BACE1
elevation in neurons (most likely, swollen dystrophic neurites) sur-
rounding plaques, which in turn further accelerates Aβ generation
in 5XFAD mouse and human AD brains (Zhao et al., 2007; Zhang
et al., 2009; Devi and Ohno, 2013a; Kandalepas et al., 2013). There-
fore, it is conceivable that eIF2α kinases (especially, PERK and
PKR) may be mediators of amyloid plaque growth. Likewise, it
is important to note that both PERK and PKR are also involved
in tau hyperphosphorylation. These eIF2α kinases activate glyco-
gen synthase kinase-3β (GSK-3β), a major tau kinase, in brain
(Baltzis et al., 2007; Bose et al., 2011). Furthermore, there is evi-
dence that PERK and PKR may also facilitate phosphorylation of
tau independently of GSK-3β connection in some experimental
setting (Azorsa et al., 2010; Ho et al., 2012). Of particular inter-
est, Ho et al. (2012) report that ER stress-related activation of
the PERK-eIF2α pathway causes tau phosphorylation, while levels
of phosphorylated PERK and eIF2α are increased in response to
experimentally induced hyperphosphorylation of tau in primary
cortical cultures and TauP301L transgenic mice. Taken together, it
is likely that the dysregulation of eIF2α kinases may represent a
crucial signaling component underlying the development of both
plaque and tangle pathologies through interplays with BACE1/Aβ

and tau phosphorylation, respectively.

eIF2α KINASES AND ATF4 ELEVATION IN AD
ATF4, a repressor of CREB (CREB-2), is another signaling
molecule of which translation is facilitated by eIF2α phos-
phorylation (Harding et al., 2000; Vattem and Wek, 2004). As
described above, there is compelling evidence that ATF4 nega-
tively regulates memory processes by suppressing CREB activity
and that level of ATF4 and phosphorylated eIF2α are upregu-
lated and tightly correlated each other in AD brains (Lewerenz and
Maher, 2009). Therefore, it is important to understand signaling
mechanisms underlying these changes. Our recent work demon-
strates that 5XFAD mice recapitulate increased levels of ATF4
expression and CREB dysfunction concomitant with robust ele-
vation of phosphorylated eIF2α (Devi and Ohno, under review).
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Remarkably, we found that PERK haploinsufficiency can abolish
ATF4 elevation and rescue deficient CREB function in 5XFAD
mice. This is consistent with the results showing that reduc-
ing eIF2α phosphorylation with conditional PERK deletion in
APP/PS1 mice blocks ATF4 upregulation (although CREB sig-
naling is not studied in this report; Ma et al., 2013). Conversely,
enhanced PERK-dependent eIF2α phosphorylation in GCN2-
deficient 5XFAD mice leads to the aggravation of ATF4 elevation
and CREB dysfunction (Devi and Ohno, 2013a). Although further
investigation is needed to test the role of other eIF2α kinases, the
current data strongly suggest that the PERK-eIF2α pathway is crit-
ically involved in mediating ATF4-dependent CREB dysfunction
associated with AD.

CONCLUDING REMARKS
The findings summarized in this review provide experimen-
tal evidence that the aberrant activation of eIF2α phospho-
rylation pathways found in AD may be responsible for mul-
tifaceted memory-deteriorating and neurodegenerative mecha-
nisms, including accelerated β-amyloidogenesis through BACE1
elevation, CREB dysfunction via ATF4 upregulation, and inhibi-
tion of general translation (Figure 1). It should be noted that
cross-talk impacts such as BACE1- or Aβ-dependent suppres-
sion of CREB function (Vitolo et al., 2002; Chen et al., 2012)
would worsen the detrimental outcomes in this scenario. More-
over, eIF2α kinase dysregulation may also be associated with tau
hyperphosphorylation, although underlying mechanisms remain
to be fully understood. As upstream signaling components, the
activity of each eIF2α kinase (except for HRI) seems to play roles
in controlling the deleterious events, more or less, depending
upon stress conditions during the progression of AD. Chal-
lenging questions in the future are how we can determine the
eIF2α kinase that is central to these detrimental mechanisms
at different AD stages and whether inhibiting a single eIF2α

kinase may be sufficient to exert beneficial effects in clinical set-
tings. Currently, selective and bioavailable inhibitors of PERK
(Axten et al., 2012; Moreno et al., 2013) and PKR (Couturier
et al., 2010, 2012) are developed for neurodegenerative disease
therapy, although their potential adverse effects (e.g., hyper-
glycemia with PERK inhibitors) need to be carefully addressed.
Clearly, much work remains for validation and practical applica-
tion, but the present data warrant further preclinical evaluations
of the eIF2α kinase inhibitors in animal models (e.g., the regi-
men for timing and duration of drug administration to optimize
their efficacies during neuropathological development) as novel
disease-modifying therapeutic interventions to treat AD and
related cognitive impairments.
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